
1

Scalable Peer Finding on the Internet
Suman Banerjee, Christopher Kommareddy, Bobby Bhattacharjee

Department of Computer Science, University of Maryland, College Park

Abstract—We consider the problem of finding nearby application peers
over the Internet. We define a new peer-finding scheme (called Tiers) that
scales to large application peer groups. Tierscreates a hierarchy of the
peers, which allows an efficient and scalable solution to this problem. The
scheme can be implemented entirely in the application-layer and does not
require the deployment of either any additional measurement services, or
well-known reference landmarks in the network.

We present detailed evaluation of Tiers and compare it to one previously
proposed scheme called Beaconing. Through analysis and detailed simula-
tions on 10,000 node Internet-like topologies we show that Tiers achieves
comparable or better performance with a significant reduction in control
overheads for groups of size 32 or more.

I. INTRODUCTION

Consider a distributed peer-to-peer application, such as Gnutella.
When a new member joins the application, it often has to find an-
other peer that is already part of the application. Usually, the goal
is to find another application peer that is ”near” the new host. We
refer to this problem as the peer-finding problem. Efficiently lo-
cating nearby peers is an important problem for many applica-
tions, including the emerging peer-to-peer applications. For ap-
plications like Gnutella, finding the nearest peer can reduce net-
work load for queries and responses. Distributed data storage
and lookup services like Chord [17] and CAN [14] is more ef-
ficient when the neighbors on the overlay are near to each other
on the underlying topology. Nearest-peer finding techniques can
also be used to efficiently construct overlay networks [1], [18],
[2], [7], [5], [19] where proximity between overlay peers is de-
sirable, to locate nearby mirrors for file transfers [6], to locate
nearby sources in content distribution networks 1, to naturally
implement application-layer anycasting services [3], [11].

In our prior work, we had introduced a peer-finding technique
called Beaconing [12], that efficiently, quickly and accurately
finds nearby peers on the Internet, but does not scale to large ap-
plication groups. In this paper, we present a new peer-finding
technique (called Tiers 2) that is specifically designed to scale to
large application groups. Like Beaconing, Tiers is implemented
on an unicast-only network. There are specific challenges that
need to be addressed for such unicast-only solutions, which are
outlined in [12].

A. Existing Approaches

We can classify peer-finding techniques based on the amount
of infrastructure support that they require. The peer-finding
problem can be effectively solved by using anycast services [13],
[3], [11]. All application peers can join an anycast group, and the
closest peer is then found by simply sending a message to the
group. However, it would require global anycast support from
all participating domains. An Internet-measurement infrastruc-
ture such as IDMaps [8] can be used to efficiently solve this prob-

�
See http://www.stardust.com/cdn�
Our work is not related to the Tiers topology generator by M. Doar.

lem. However, it requires Internet-wide deployment of the mea-
surement entities.

Techniques that require a very limited infrastructure sup-
port include a triangulation method, due to Hotz [10], and its
weighted variant [9], a “distributed binning” technique [15] and
Beaconing [12]. These techniques use a small set of measure-
ment reference points in the network called landmarks [15] or
beacons [12]. Distances between each application peer and these
beacons are measured, and are processed to obtain the nearest
peer. Therefore, the control overheads (e.g. for distance mea-
surements) at each of these beacons are

�������
, where

�
is the

size of the group.

B. Tiers Approach

In the Tiers technique, proposed in this paper, we create a hi-
erarchy of the application peers. The hierarchy is based on topo-
logical clustering of these peers, where nearby peers are grouped
into the same cluster. The querying member (termed query-host)
finds its closest peer by successively refining its search in a top-
down manner over this hierarchy.

The Tiers technique has benefits over previously known tech-
niques in two significant ways:	 No infrastructural support required: All the prior proposed
schemes rely on the existence of some infrastructure support.
Schemes based on GIA and IDMaps would require a widespread
deployment of these mechanisms on the Internet. Schemes based
on Hotz triangulation, Distributed Binning and Beaconing re-
quires the existence of special landmark entities (referred to as
landmarks or beacons) which serve as the reference point for dif-
ferent proximity tests.
In contrast, the Tiers scheme requires no such support. In this
scheme, each application peer dynamically discovers a few other
application peers, and is required to make distance measure-
ments to a subset of them.	 Scalability: Because of its use of an appropriate peer hierar-
chy, the Tiers scheme scales well with increase in the application
group size. More specifically, the worst case storage and com-
munication overhead at any entity (application peers or query-
host) in this technique is bounded by

����

�������
, while the over-

heads at an average entity is a constant. The query latency is also
bounded by

����
��������
. In this paper, we study in detail the trade-

offs of the marginal increase in query latency to the significant
reduction in control overheads.

II. TIERS : SCALABLE PEER FINDING

The Tiers peer-finding technique arranges the set of applica-
tion peers into a hierarchy; the basic operation of the protocol is
to create and maintain the hierarchy. We use the same hierarchy
construction scheme that was used to define a scalable applica-
tion layer multicast protocol [2]. Use of this hierarchy enables
scalability, since most peers are at the bottom of the hierarchy

2

A

Cluster−leaders of

Layer 0

L

Cluster−leaders of
layer 1 form layer 2

layer 0 form layer 1

Topological clusters
Layer 2 F

joined to layer 0
All hosts are

E

H

J

K

D

Layer 1
M

C
B

C F

F
G

M

Fig. 1. Hierarchical arrangement of peers in Tiers. The layers are logical entities
overlaid on the same underlying physical network.

and only maintain state about a constant number of other peers.
The peers at the very top of the hierarchy maintain (soft) state
about

����

�������
other peers. Logically, each peer keeps detailed

state about other peers that are near in the hierarchy, and only
has limited knowledge about other peers in the group. The hi-
erarchical structure is also important for localizing the effect of
peer failures.

While constructing the Tiers hierarchy, peers that are “close”
with respect to the distance metric are mapped to the same part
of the hierarchy. In this paper, we use end-to-end latency as the
distance metric between hosts. We leverage this topological ar-
rangement in efficiently identifying the closest peer, with a small
number of probes. The closest peer-finding operation proceeds
top-down on the hierarchy thus successively refining the search
at each step, till the appropriate peer is identified.

In the rest of this section, we briefly describe how the Tiers
hierarchy is defined. Details and specifics of the hierarchy con-
struction mechanism can be found in [2].

A. Hierarchical Arrangement of Application Peers

The Tiers hierarchy is created by assigning peers to different
levels (or layers) as illustrated in Figure 1. Layers are numbered
sequentially with the lowest layer of the hierarchy being layer
zero (denoted by ���). Hosts in each layer are partitioned into
a set of clusters. Each cluster is of size between � and ������� ,
where � is a constant, and consists of a set of hosts that are close
to each other. Further, each cluster has a cluster leader. The
protocol distributedly chooses the (graph-theoretic) center of the
cluster to be its leader, i.e. given a set of hosts in a cluster, the
cluster leader has the minimum maximum distance to all other
hosts in the cluster. The cluster leader, is therefore, an approxi-
mation of the location of all the cluster peers.

Hosts are mapped to layers using the following scheme: All
hosts are part of the lowest layer, � � . The clustering protocol at
� � partitions these hosts into a set of clusters. The cluster leaders
of all the clusters in layer �! join layer �! #"%$. This is shown with
an example in Figure 1, using �'&)(. The layer ��� clusters are
[ABCD], [EFGH] and [JKLM]3. In this example, we assume that*

, + and , are the centers of their respective clusters of their
��� clusters, and are chosen to be the leaders. They form layer �-$
and are clustered to create the single cluster, [CFM], in layer � $.
+ is the center of this cluster, and hence its leader. Therefore +
belongs to layer �/. as well.

The Tiers clusters and layers are created using a distributed
algorithm as described in [2].

0
We denote a cluster comprising of hosts 132#452�67298:8;8 by < 134�6=898;8 > .

B. Finding the closest peer

The closest peer finding operation proceeds top down on the
peer hierarchy. We assume the existence of a special host that the
query-hosts know of a-priori through out-of-band mechanisms.
We call this peer the Boot Strap Host (BSH) 4. Each query-host
initiates the query process by contacting the BSH. For ease of
exposition, we assume that the BSH is the leader of the single
cluster in the highest layer of the hierarchy. bypassed on the data
path. (Alternatively is is possible that the BSH is only aware of
the leader of the highest layer cluster, and therefore, not itself be
part of the hierarchy. We do not belabor this complexity further.)

We illustrate the query procedure using the example shown in
Figure 2. In the figure, we the application group has already been
arranged into four � � clusters (marked by dotted lines). Hosts* �@?BAC��?DAE$ and A . are the leaders of these respective clusters.
They together form a single cluster in layer �-$. The leader of
this �-$ cluster is

* � , and is the only host in layer � . .
Assume that host FG$ wants to find its closest peer in this

group. First, it contacts the BSH with its query (Panel 0). The
BSH responds with the hosts that are present in the highest layer
of the hierarchy. The query-host then contacts all peers in the
highest layer (Panel 1) to identify the peer closest to itself. In
the example, the highest layer ��. has just one peer ,

* � , which
by default is the closest peer to F $ amongst layer �/. peers. Host* � informs F $ of the three other peers (AC��?DAE$ and A .) in its � $
cluster. FG$ then contacts each of these peers with the query to
identify the closest peer among them (Panel 2), and iteratively
uses this procedure to find the closest � � cluster (whose leader
happens to be A .). Finally, it queries each of these �/� cluster
peer (Panel 3), and is thus able to select the closest of these peers
(i.e. F �) as its closest peer in the application group.

It is important to note that any host, H , which belongs to any
layer � is the center of its � �I%$ cluster, and recursively, is an
approximation of the center among all peers in all � � clusters
that are below this part of the layered hierarchy. Hence, query-
ing each layer in succession from the top of the hierarchy to layer
� � results in a progressive refinement in finding the closest peer.
The outline of this operation are presented in pseudocode as Pro-
cedure FindClosest in Figure 3.

Occasionally it might happen that the cluster membership in-
formation at the leader is stale (e.g. all members of the cluster
suddenly left the application peer group). The cluster leader de-
tects this situation when it does not receive appropriate heart-
beat messages from its members. In such cases, the query-host
is unable to elicit responses from any of these members returned
by the cluster leader. In such cases, the query-host re-initiates
the query from the previous layer cluster leader, which had re-
sponded to it. In the worst case, the query is re-initiated from
the BSH.

C. Invariants

The following properties hold for the distribution of hosts in
the different layers:	 A host belongs to only a single cluster at any layer.	 If a host is present in some cluster in layer � , it must occur in
one cluster in each of the layers, ��� ?KJLJKJB? �! �IM$. In fact, it is the
N
It is same as the host known as the Rendezvous Point in [2].

3

BSH

C0

B0

B1

B2

Query

L2: {C0}

A0

BSH

C0

B0

B1

B2

L1: {C0,B0,B1,B2}

A1

BSH

C0

B0

B1

B2

Query
L1: {B1,...}

A1

BSH

C0

B0

B1

B2

L0 probes
A1

Query Query

Query

L1: {B0,...}

L1: {B2,A0,...}

A0A0A0A0

Query
L1: {C0,...}

0 1 2 3

Fig. 2. Query-host O � finds its closest peer (O%P).

Procedure : FindClosest(Q)
ClRTS Query

� AGU H ? � �V Q5W�X#Y �#Z�[]\��
Find ^ s.t. d W�_a` � Q ? ^ �-b d W�_B` � Q ?Dc � ?BcM? ^Td ClR
W�e �#Z & \��

f Ya`Dg f@h ^
Y hji W�e
ClR I%$ � ^ � S Query

� ^ ? Z �k� �
Decrement

Z
, ClRTS ClR I%$ � ^ �

Y hjilV QmW�X#Y

Fig. 3. Basic query operation for peer n . Query o�p@2
q!rGsut seeks the mem-
bership information of ClvBw � o
pKt from peer p . Query o�xzy|{32�r7t seeks
the membership information of the topmost layer of the hierarchy, from
the x}y~{ .

cluster-leader in each of these lower layers.	 If a host is not present in layer, �! , it cannot be present in any
layer � R , where

Z�� W .	 Each cluster has its size bounded between � and ���=�]� . The
leader is the graph-theoretic center of the cluster.	 There are at most

���|�!�
layers, and the highest layer has only

a single peer.
All the good properties of this scheme (as analyzed next) hold
as long as the hierarchy is maintained. Thus, the objective of the
distributed Tiers protocol, described in [2], is to scalably main-
tain the host hierarchy as new peers join and existing peers de-
part.

D. Analysis

We analyze the efficiency of this peer-finding scheme by eval-
uating the storage requirements for peer state, communication
overheads to exchange control messages for maintaining the hi-
erarchy and the latency incurred by the query-host in identifying
the closest peer.

Each cluster in the hierarchy has between � and ���=�k� peer.
Then, a host that belongs only to layer �/� maintains state for only��� � � other hosts and incurs an equivalent communication over-
head for exchange of control messages. In general, a host that
belongs to layer � and no other higher layer, maintains state for��� � � other hosts in each of the layers � �@?KJLJLJD? � . Therefore,
the control overhead for this peer is

��� � J W � . Hence, the cluster-
leader of the highest layer cluster (Host

* � in Figure 2), main-
tains state for a total of

��� �

������� neighbors. This is also the
worst case control overhead at a peer.

It follows using amortized cost analysis that the control over-
head at an average peer is a constant. The number of peers
that occur in layer �! and no other higher layer is bounded by���;��� � � . Therefore, the amortized control overhead at an aver-
age peer is

b ��
� �D�|��
 #�j�

�
� � J Wj&

��� � �j�����

������
� �j����� �� �/����� � �

with asymptotically increasing
�

. Thus, the control overhead is��� � � for the average peer, and
��� �

������� in the worst case.

The query process incurs a message overhead of
��� �

�������

query-response pairs. The query-latency depends on the delays
incurred in these exchanges, which is typically about

����

�������
round-trip times.

III. SIMULATION EXPERIMENTS

We have analyzed the performance of Tiers using detailed
simulations on very large network topologies. The topologies
were generated using the Transit-Stub graph model, using the
GT-ITM topology generator [4]. All topologies in these simula-
tions had � \ ? \�\�\ routers with an average node degree between
(and � . Application peers were attached to a set of routers, cho-
sen uniformly at random. The number of such peers in the mul-
ticast group were varied between � and ���L� for different exper-
iments. We also placed 500 query-hosts, again distributed uni-
formly at random, on the topology, that sought to find the clos-
est peer using the proposed Tiers approach and the beaconing ap-
proach [12] for comparison. For the beaconing scheme, we use a
set of seven beacon hosts located on the topology as was shown
to be appropriate in [12]. We ran between 10 and 20 instances
for each experiment, to get a tight bound on the variations in the
results.

We observe three different metrics in this study:	 Accuracy: of the different schemes in finding the closest peer.	 Query latency: measured from the instant the query for the
nearest peer is initiated by the query-host upto the time when this
query is resolved.	 Control overheads: of the different schemes for the application
peers and other entities.
We studied two different aspects of the protocols in this paper —
the behavior of the different schemes as we varied the number of
application peers, and the effect of membership changes to the
group of application peers.

For both Beaconing and Tiers we choose the same periodic
rate (of once every 5 seconds) with which the soft states are re-

4

3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e
(in

 h
op

s)

Number of peers

Proximity of selected nearest peer in hops

Beaconing
Tiers-3
Tiers-6

Tiers-12
Oracle

Fig. 4. Accuracy of the queries. ‘Oracle’ indi-
cates the actual closest peer. (Varying peer group
sizes).

2.5

5

10

25

50

100

50 100 150 200 250 300 350 400 450 500

P
ac

ke
t o

ve
rh

ea
ds

 /
se

c

�

Number of peers

Average Overheads at Hosts

Peers (Beaconing)

Peers (Tiers-3)

Peers (Tiers-6)

Peers (Tiers-12)

Beacons (Beaconing)

Fig. 5. Average control overheads at the end-hosts.

2

3

4

5

6

7

0.05 0.1 0.15 0.2 0.25 0.3

D
is

ta
nc

e
(in

 h
op

s)

Average Join/Leave Rate (per sec)

Proximity of selected nearest peer in hops

Beaconing
Tiers-3
Tiers-6

Tiers-12
Oracle

Fig. 6. Accuracy of queries. ‘Oracle’ indicates the
actual closest peer. (Varying join/leave rates).

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

50 100 150 200 250 300 350 400 450 500

La
te

nc
y

(in
 s

)

Number of peers

Latency in finding nearest peer

Tiers-3
Tiers-6

Tiers-12
Beaconing

Fig. 7. Query latency (Varying peer group sizes).

2.5

5

10

25

50

100

50 100 150 200 250 300 350 400 450 500

P
ac

ke
t o

ve
rh

ea
ds

 /
se

c

�

Number of peers

Maximum Overheads at Hosts

Peers (Beaconing)

Peers (Tiers-3)

Peers (Tiers-6)

Peers (Tiers-12)

Beacons (Beaconing)

Fig. 8. Worst case control overheads at the end-
hosts.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05 0.1 0.15 0.2 0.25 0.3

La
te

nc
y

(in
 s

)

Average Join/Leave Rate (per sec)

Latency in finding the nearest peer

Tiers-3
Tiers-6

Tiers-12
Beaconing

Fig. 9. Query latency (Varying join/leave rates).

freshed. For the Tiers scheme, we also varied the cluster size pa-
rameter, � to study its effect on the different metrics. In the dif-
ferent plots Tiers-3, Tiers-6 and Tiers-12 represent the data for
the Tiers scheme with the cluster size parameter, � , set to 3, 6,
and 12 respectively. In this implementation, the cluster size up-
per bound was relaxed to (������ to avoid a cluster split and a
merge operation to occur in quick succession that may occur oth-
erwise in some special cases. This is explained in [2]. This does
not change the analysis (in Section II) or the nature of the results.

Broadly, our findings can be summarized as follows: The ac-
curacy of the query and the latency incurred to satisfy the query
are similar for both Tiers and Beaconing. However, due to its hi-
erarchical structure, the worst case overheads at hosts in Tiers
are significantly lower.

Application Peer Group Size

We varied the application group between 8 and 512 to study
the effects of the application peer group size on the different met-
rics. In Figure 4 we plot the accuracy of the different schemes
(Tiers and Beaconing) in finding the closest peer. In the plot, ‘Or-
acle’ indicates the distance of the query-host to its actual closest
peer on the topology. Tiers-12 performs the best among all the
schemes. In particular, for the Tiers schemes, larger the cluster
size, the more accurate is the result of the query. Beaconing per-
forms somewhat less accurately than Tiers, however the differ-
ence between the schemes is relatively low.

In Figure 7, we plot the latency of the queries for the same set
of topologies. Beaconing and Tiers-12 has very similar latencies.
In particular, with asymptotically increasing size, the query la-
tency for Beaconing does not depend on the peer group size and

therefore is expected to be the lowest. For the Tiers schemes,
the query latency increases very slowly (logarithmically) with
the increase in peer group size. In Figure 7, the latency for the
Tiers schemes do not increase smoothly for a given cluster pa-
rameter, � . This is because the query latency increase only when
the number of layers increase, i.e. when the peer group size ap-
proximately increases by a factor of � , as can be observed in the
plots. For peer group sizes that have the same number of lay-
ers, the latency actually decreases with increase in group size.
This is because, as the topology gets more and more populated
by application peers, the nearest peers are effectively closer to
the query-host.

Finally, in Figures 5 and 8 we plot the average and the max-
imum control traffic overheads at the hosts. Note that Y-axis
in the figures are plotted in the log scale. For all the group
sizes simulated, the overheads at the average application peers
for Beaconing and Tiers-3 are very similar (about 2.6 pack-
ets/second). The overheads for Tiers-6 and Tiers-12 are corre-
spondingly higher (2.9 and 13.0 packets/second respectively for
groups of size 512). In contrast, the overheads at the beacons
(in Beaconing) are about 193.5 packets/second for the same size
group. The maximum packet overhead at any host for Tiers-
6 is significantly lower than than Beaconing for groups of size
32 or more, is about an order of magnitude lower (22.8 pack-
ets/second) for the peer groups of size 512. The overheads at the
beacons increase linearly with the peer group size, where as the
worst case overheads for Tiers increase logarithmically. There-
fore, the Beaconing scheme is efficient and fast for small groups,
but does not scale with increasing group sizes.

In Tiers, as the cluster size parameter, � is increased the con-

5

trol overheads at the hosts also increase. However, the query ac-
curacy and query latency correspondingly decrease. Therefore,
this parameter can be appropriately chosen to trade-off between
the protocol performance and control overheads.

Changing Group Membership

Next, we studied the effects of dynamic changes to the group
membership for the different schemes. In this experiment, a set
of 256 application peers initially joined the group over a 200 sec-
ond period. Subsequently, new application peers joined and ex-
isting peers left the group uniformly at random at a specified rate.
We varied this average join/leave rate from moderately changing
groups (i.e. 1 change per 40 seconds, a rate of 0.025/s) to very
rapidly changing groups (i.e. 1 change every 3 seconds, a rate of
0.33/s). In Figure 6, we plot the accuracy of the results for this
experiment. As can be observed, the accuracy of the result is not
significantly impacted for these change rates.

The query latency, however, increases significantly for the
high change rate scenarios (Figure 9). Note that for the most dy-
namic scenarios, the join/leave rate is faster than the periodic re-
fresh rates (of one every 5 seconds) used for the schemes. For
the Beaconing scheme, the responses from the beacons might
include peers that have already left the group, leading to re-
initiating the query. The high join leave rate has a greater impact
on the Tiers scheme, because in this scenario, the membership of
clusters change frequently. The cluster leaders have stale infor-
mation about the cluster members (some of them might have al-
ready left). This also leads to occasional re-queries at each layer
in the hierarchy. This causes the corresponding increase in the
query latency.

IV. RELATED WORK

Guyton et. al. [9] present a taxonomy for locating peers
on the Internet. They classify existing techniques into reac-
tive gathering and proactive gathering categories. Expanding
ring searches are classified under the reactive category. Our
work can be classified under probing-based schemes along with
the triangulation-based approaches due to Hotz [10] and the
weighted variant [9]. The beaconing technique [12] also uses
similar distance-estimation probes to find the nearest peer. How-
ever, all these other schemes require incur significantly higher
traffic overhead in comparison to the Tiers approach. A com-
pletely different approach to finding the nearest peer is to use
passive measurements, as described in [16], and is particularly
useful if the nearest peer in the group remains relatively static.

We additionally classify peer finding techniques based on the
amount of infrastructure support necessary. Anycasting [13],
[11], [3] can be used o solve the nearest peer problem by group-
ing all peers in the same anycast group but requires universal de-
ployment of this service. IDMaps is a global distance measure-
ment infrastructure that needs deployment of “tracers” or mea-
surement servers in the network. For

�
tracers and , peers

This technique incurs
���;� . � , �

overheads. Techniques like
Distributed Binning [15] and Beaconing [12] use limited infras-
tructure support — a set of well-known landmark entities that
are distributed in the network, with respect to which all distance
measurements are made. In contrast, the Tiers approach uses a

no infrastructure support except for the BSH — a single boot-
strapping host which is necessary for all schemes.

V. CONCLUSIONS

In this paper, we have presented a new protocol for scalable
peer finding on the Internet. Through detailed simulations we
show that the protocol achieves similar performance while sig-
nificantly lower overheads on groups larger than 32. The proto-
col is based on a hierarchical clustering of the peers. This tech-
nique has a wider applicability than this peer finding application.

While in this paper, we describe the protocol to find the closest
peer with respect to the hop-count metric, it is applicable to other
metrics. For example, by performing the hierarchical clustering
based on the access bandwidths, it is easy to see that this protocol
is able to find peers with similar bandwidths. Such bandwidth-
based peer finding proved to be useful in the preference cluster-
ing approach for multicast data delivery to a group, where mem-
bers clustered into sub-groups based on their bandwidths, and an
appropriate data rate is sent to these sub-groups that best meets
their capabilities.

REFERENCES

[1] D.G. Andersen, H. Balakrishnan, M. Frans Kaashoek, and R. Morris. Re-
silient overlay networks. In Proceedings of 18th ACM Symposium on Op-
erating Systems Principles, October 2001.

[2] S. Banerjee, S. Parthasarathy, and B. Bhattacharjee. A protocol for scal-
able application layer multicast. In CS-TR-4278, Department of Computer
Science, University of Maryland College Park, USA, July 2001.

[3] S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah, and Z. Fei. Application-
layer anycasting. In Proceedings of INFOCOM, 1997.

[4] K. Calvert, E. Zegura, and S. Bhattacharjee. How to Model an Internet-
work. In Proceedings of IEEE Infocom, 1996.

[5] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In
Proceedings of ACM SIGMETRICS, June 2000.

[6] Z. Fei, E. Bhattacharjee, S. Zegura, and M. Ammar. Finding the best server
within the application-layer anycasting architecture. In Proceedings of IN-
FOCOM, 1998.

[7] P. Francis. Yoid: Extending the Multicast Internet Architecture, 1999.
White paper http://www.aciri.org/yoid/.

[8] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz, and Y. Jin. An
architecture for a global internet host distance estimation service. In Pro-
ceedings of INFOCOM, March 1999.

[9] J. Guyton and M.F. Schwartz. Locating nearby copies of replicated internet
servers. In Proceedings of SIGCOMM, 1995.

[10] S. Hotz. Routing information organization to support scalable interdomain
routing with heterogeneous path requirements. In PhD thesis, University
of Southern California, 1996.

[11] D. Katabi and J. Wroclawski. A framework for scalable global ip-anycast
(GIA). In Proceedings of ACM SIGCOMM, August 2000.

[12] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding close friends
on the Internet. In Proceedings of ICNP, November 2001.

[13] C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. In
Request for Comments 1546, IETF, November 1993.

[14] S. Ratnaswamy, P. Francis, M. Handley, K. Karp, and S. Shenker. A scal-
able content-addressable network. In Proceedings of SIGCOMM, August
2001.

[15] S. Ratnaswamy, M. Handley, K. Karp, and S. Shenker. Topologically-
aware overlay construction and server selection. In Proceedings of INFO-
COM, June 2002.

[16] M. Stemm, S. Seshan, and R. Katz. A network measurement architecture
for adaptive applications. In Proceedings of INFOCOM, March 2000.

[17] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of SIGCOMM, August 2001.

[18] J. Touch and S. Hotz. The x-bone. In Proceedings of 3rd Global Internet
Mini-Conference at Globecom ’98, November 1998.

[19] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant wide-area dat a dis-
semination. In Eleventh International Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video (NOSSDAV 2001), 2001.

