
0018-9162/02/$17.00 © 2002 IEEE56 Computer

Rover: Scalable
Location-Aware
Computing

C
onsider a group touring the museums in
Washington, D.C. The group arrives at a
registration point, where each person
receives a handheld device with audio,
video, and wireless communication capa-

bilities—an off-the-shelf PDA available in the mar-
ket today. A wireless-based system tracks the loca-
tion of these devices and presents relevant
information about displayed objects as the user
moves through the museum. Users can query their
devices for maps and optimal routes to objects of
interest. They can also use the devices to reserve
and purchase tickets to museum events later in the
day. The group leader can send messages to coor-
dinate group activities.

The part of this system that automatically tai-
lors information and services to a mobile user’s
location is the basis for location-aware comput-
ing. This computing paradigm augments the more
traditional dimensions of system awareness, such as
time-, user-, and device-awareness. All the tech-
nology components to realize location-aware com-
puting are available in the marketplace today.
What has hindered the widespread deployment of
location-based systems is the lack of an integra-
tion architecture that scales with user populations.

We developed Rover technology to meet this
need.1 We have completed the initial implementa-
tion of a system based on it and have validated its
underlying software architecture, which achieves
system scalability through fine-resolution, applica-
tion-specific resource scheduling at the servers and
network.

ROVER ARCHITECTURE
Rover technology tracks the location of system

users and dynamically configures application-level
information to different link-layer technologies and
client-device capabilities. A Rover system represents
a single domain of administrative control, managed
and moderated by a Rover controller. Figure 1
shows a large application domain partitioned into
multiple administrative domains, each with its own
Rover system—much like the Internet’s Domain
Name System.2

End users interact with the system through Rover
client devices—typically wireless handheld units
with varying capabilities for processing, memory
and storage, graphics and display, and network
interfaces. Rover maintains a profile for each device,
identifying its capabilities and configuring content
accordingly. Rover also maintains end-user profiles,
defining specific user interests and serving content
tailored to them.

A wireless access infrastructure provides connec-
tivity to the Rover clients. In the current implemen-
tation, we have defined a technique to determine
location based on certain properties of the wireless
access infrastructure. Although Rover can leverage
such properties of specific air interfaces,1 its loca-
tion management technique is not tied to a particu-
lar wireless technology. Moreover, different wireless
interfaces can coexist in a single Rover system or in
different domains of a multi-Rover system. Software
radio technology3 offers a way to integrate the dif-
ferent interfaces into a single device. This would
allow the device to easily roam between different

Rover technology adds a user’s location to other dimensions of system
awareness, such as time, user preferences, and client device capabilities.
The software architecture of Rover systems is designed to scale to large
user populations.

Suman
Banerjee
Sulabh
Agarwal
Kevin Kamel
Andrzej
Kochut
Christopher
Kommareddy
Tamer
Nadeem
Pankaj
Thakkar
Bao Trinh
Adel Youssef
Moustafa
Youssef
Ronald L.
Larsen
A. Udaya
Shankar
Ashok
Agrawala
University of
Maryland,
College Park

C O V E R F E A T U R E

Rover systems, each with different wireless access
technologies.

A server system implements and manages Rover’s
end-user services. The server system consists of five
components:

• The Rover controller is the system’s “brain.”
It manages the different services that Rover
clients request, scheduling and filtering the
content according to the current location and
the user and device profiles.

• The location server is a dedicated unit that
manages the client device location services
within the Rover system. Alternatively, appli-
cations can use an externally available loca-
tion service, such as the Global Positioning
System (GPS).4

• The streaming-media unit manages audio and
video content streamed to clients. Many of
today’s off-the-shelf streaming-media units can
be integrated with the Rover system.

• The database stores all content delivered to the
Rover clients. It also serves as the stable store
for the user and client states that the Rover
controller manages.

• The logger interacts with all the Rover server
components and receives log messages from
their instrumentation modules.

The server system exports a set of well-defined
interfaces through which it interacts with the het-
erogeneous world of users and devices. Third-party
developers can use these interfaces to develop appli-
cations that interact with the system.

For multi-Rover systems, we define protocols
that allow interaction between the domains. This

enables users registered in one domain to roam into
other domains and still receive services from the sys-
tem.

ROVER SERVICES
Rover offers two kinds of services to its users.

We refer to them as basic data services and trans-
actional services.

• Basic data services use text, graphics, audio,
and video formats. Users can subscribe
dynamically to specific data components
through the device user interface. Rover filters
the available media formats according to the
device’s capabilities. The basic data service
involves primarily one-way interaction.

• Transactional services have commit semantics
that require coordinating state between the
clients and Rover servers. E-commerce inter-
actions are examples of this service class.

Location is an important attribute of all objects
in Rover. Several techniques exist for estimating an
object’s location, including the GPS and radio-fre-
quency techniques based on signal strength or sig-
nal propagation delays. The choice of technique
significantly affects the granularity and accuracy
of the location information. Rover therefore uses a
tuple of value, error, and time stamp to identify an
object’s location.1 The value is an estimate of the
object’s location (either absolute or relative to some
well-known location). The error identifies the
uncertainty in the estimate. The time stamp iden-
tifies when the estimate was made.

The accuracy required of location information
depends on the context of its use. For example, an

October 2002 57

Database

Streaming-
media unit

Local
network

Internet/
Public Switched

Telephone Network

Location server

Rover controller

Base stations

Client devices

Rover system

Firewall

Rover system

Intercontroller protocols
Rover system

Logger

Figure 1. Rover
physical architec-
ture in the context
of a multi-Rover
system. The Rover
controller manages
system services,
including communi-
cation between
individual Rover
systems.

58 Computer

accuracy of 4 meters is adequate to provide
walking directions from the user’s current
location to another location about 500 meters
away. However, it is inadequate for locating
a particular painting on a museum wall
directly in front of the user. Obviously, the
accuracy of location information improves
significantly with direct user input. For exam-
ple, the user can directly input a location on
a map displayed on his or her device.

Rover includes support for operations to fil-
ter, zoom, and translate map display. Filter opera-
tions are keyed to a set of attributes that identify
certain properties of map objects. Rover generates
the filters based on the user’s context. The filters select
and map the appropriate object subset for display.
For example, one user may be interested only in the
restaurants in a specific area, while another wants to
view only museum and exhibition locations.

A displayed map’s zoom level identifies its granu-
larity. The user’s context, consisting of a location and
profile, determines its default setting. For example,
inside a museum, the map shows a detailed museum
layout. When the user steps outside, the display
zooms out to an area map with points of interest in
the geographic vicinity. Additionally, the user can
choose to alter the major zoom level through explicit
input. In either case, appropriate filters are used to
selectively display different objects on a map at any
zoom level. Rover automatically translates the map
displayed on the client device as the user moves to a
new region.

SYSTEM SCALABILITY
Two potential bottlenecks can hinder the system’s

scalability. One is the server system, which must
handle a large number of client requests with tight
real-time constraints. The other is the wireless
access points, which have limited bandwidth.

To handle the large volume of real-time requests
that users generated, we developed the action
model, a fine-grained, real-time, application-spe-
cific architecture that allows Rover systems to scale
to large user populations.

To make its implementation more efficient, we
divided the Rover server components into two classes
based on the user request volumes they handle:

• primary servers directly communicate with the
clients and therefore directly handle large vol-
umes of user requests. They include the Rover
controller, location server, and streaming
media unit; and

• secondary servers, which communicate only

with primary servers to provide back-end sys-
tem capabilities, include the Rover database
and logger.

Only the primary servers need to implement the
Action model.

Action model
The Action model avoids the overhead of thread

context switches and allows more efficient sched-
uling of execution tasks. The Rover controller
implements this architecture.

In the action model, scheduling occurs in
“atomic” units called actions. An action is a small
piece of code that has no intervening I/O opera-
tions: Once an action begins execution, another
action cannot preempt it. Consequently, given a
specific server platform, it is easy to accurately
bound an action’s execution time.

A server operation is a transaction, either client- or
administrator-initiated, that interacts with the Rover
controller: Examples in the museum scenario would
include registerDevice, getRoute, and locateUser. A
server operation consists of a sequence—or more
precisely, a partial order—of actions interleaved with
asynchronous I/O events. Each server operation has
one action for each kind of I/O event response.

A server operation at any given time has zero or
more actions eligible for execution and is in one of
three states:

• ready-to-run—at least one of the server oper-
ation’s actions is eligible for execution but none
is executing;

• running—one action is executing (in a multi-
processor setup, several of the operation’s
actions can execute simultaneously); or

• blocked—the server operation is waiting for
an asynchronous I/O response, and no actions
are eligible to be executed.

An action controller uses administrator-defined
policies to decide the execution order of the eligible
actions. The scheduling policy can be simple and
static, such as priorities assigned to server opera-
tions. It also can be time based, such as earliest-
deadline-first or a function of real-time costs. In any
case, the controller picks an eligible action and exe-
cutes it to completion, then repeats the process—
waiting only if there are no eligible actions,
presumably because all server operations are wait-
ing for I/O completions.

A simple action API defines the management and
execution of actions:

A task-scheduling
architecture

handles the large
volume of real-time

requests that
users generate.

• init (action id, function ptr)—
initializes a new action (identified by action
id) for a server operation. Function ptr
identifies the function (or piece of code) asso-
ciated with the action.

• run (action id, function parame-
ters, deadline, deadline failed
handler ptr)—marks the action as eligible
to run. Function parameters are the
parameters used in executing this instance of
the action. Deadline is optional and indi-
cates the time (relative to the current time) by
which the action should execute; the deadline
is soft—that is, violating it leads to some
penalty but not system failure. If the action
controller cannot execute the action within the
deadline, it will execute the function indicated
by deadline failed handler ptr. This
parameter can be null, indicating that no com-
pensatory steps are needed.

• cancel (action id, cancel handler
ptr)—cancels a ready-to-run action, provided
it is not executing. Cancel handler ptr
indicates a cleanup function; it can be null.

Actions versus threads
There are several ways to implement the Rover

controller using a thread model. For example, each
server operation could have a separate thread, or
each user could have a separate thread handling
all its operations. Both of these approaches imply
a large number of simultaneously active threads as
we scale to large user populations, resulting in
large overheads for thread switching.

A more sensible approach is to create a small set
of “operator” threads that execute all operations—
for example, one thread for all registerDevice oper-
ations, one for all locateUser operations, and so on.

This approach reduces the thread-switching
overhead, but there are drawbacks. For one, the
threads package restricts the ability to optimize
scheduling, especially in time-based scheduling.
More importantly, each operator thread executes

its set of operations in sequence, which severely
limits the ability to optimally schedule the eligible
actions within an operation and across operations.
Of course, each thread could keep track of all its
eligible actions and do scheduling at the action
level, but this essentially re-creates the action model
within each thread.

We compared the performance of action-based
versus more traditional thread-based systems in
two kinds of server operations, shown in Figure 2:

• Scenario A—a computation-intensive scenario
with 10,000 processor-bound server opera-
tions, in which each server operation has three
compute blocks, interleaved with two file-
write operations. In each of these server oper-
ations, the second and third I/O compute
blocks need not await completion of the prior
file I/O write operation.

• Scenario B—an I/O-intensive scenario with
100 I/O-bound server operations, in which
each server operation has three compute
blocks, interleaved with two network I/O
operations. In each of these server operations,
the second and third compute blocks can start
only after the prior network I/O operation fin-
ishes. We use UDP to implement network I/O
interaction. Since our focus is on the compar-
ison of action-based versus thread-based sys-
tems, we avoid issues of packet loss and
retransmissions by considering only those
experiments in which no UDP packets were
lost in the network.

We used two execution platforms: M1 and M2.
M1 runs Linux on a 600-MHz Intel Pentium III
processor with 96 Mbytes of RAM. M2 runs Solaris
on a Sun Ultra 5 with a 333-MHz Sparc processor
and 128 Mbytes of RAM. For the thread-based
implementation, we used the LinuxThreads library
for the M1 platform and the Pthreads library for
the M2 platform; both are implementations of the
Posix 1003.1c threads package.

October 2002 59

Compute block A
…

Compute block A
…

Compute block A
…

Log to
disk

Database

ServerOperation A{

File I/O

File I/O

write(…);

write(…);

}

Compute block B

Compute block B

Compute block B

ServerOperation B{

Network I/O

Network I/O

}

recvfrom(…);
sendto(…);

recvfrom(…);
sendto(…);

Figure 2. Server
operations used in
the experimental
evaluation of the
action model. Sce-
nario A (left) inter-
leaves computation
with file-write oper-
ations. Scenario B
(right) interleaves
computation with
network I/O interac-
tions.

60 Computer

The total execution time for the three compute
blocks in each server operation A was 0.1518 ms
for M1 and 0.9069 ms for M2. The ping network
latency for the network I/O in server operation B
varied between 30 and 35 ms.

In the action-based scenarios, we implemented
each compute block as a separate action. In the
thread-based scenarios, we experimented with dif-
ferent numbers of threads, executing each thread
an equal number of server operations for perfect
load balancing between the different threads.

Table 1 shows the overheads obtained in each
case, where overhead is the total execution time
minus the fixed, identical, and unavoidable com-
putation and communication costs for the two sce-
narios. The results represent the mean execution
overheads of 10,000 server operations in scenario A
and 100 server operations in scenario B, which were
required to obtain low variance. The computation-
intensive server operations show little performance
gain in trying to overlap computation with file I/O
communication—not enough to justify the over-
head of a multithreaded implementation. Among
the thread-based implementations, a thread-based
system with a single thread performs best.

For the I/O-intensive server operations, a multi-
threaded implementation is useful because com-

putation and communication can overlap. Conse-
quently, the best performance for the thread-based
system occurs with the maximum number of
threads—specifically, one thread for each server
operation.

However, as Table 1 shows, the action-based
implementation in both scenarios has about an
order of magnitude lower overhead compared with
the best thread-based implementation.

COMMUNICATION INTERFACES
For the wireless interface to client devices, we

considered two link-layer technologies: IEEE
802.11 and Bluetooth. Bluetooth is power efficient
and therefore better at conserving client battery
power. According to current standards, Bluetooth
can provide bandwidths up to 2 Mbps. In contrast,
IEEE 802.11 is less power efficient but widely
deployed and currently provides bandwidths up to
11 Mbps. In areas where these high-bandwidth
alternatives are not available, Rover client devices
will use the lower bandwidth interfaces that cellu-
lar wireless technologies provide.

Figure 3 shows how Rover’s controller interacts
with other parts of the system and with the exter-
nal world. The controller uses the location inter-
face to query the location service about the

Client devices

Rover controller

Logger

User infobase

Actions

Location service

Transport
interface

Location
interface

Action
scheduler and

controller

User/device
profile

management

Instrumentation

Content
management

Security
policies

Back-end
interface

Administrator
interface

Content
interface

Billing/
e-commerce

services
Administrator Content

provider

Server
assistants’
interface

Content infobase

Figure 3. Rover’s
logical architecture.
The Rover controller
interacts with the
external world
through interfaces
for location, trans-
port, administration,
back-end services,
content, and
secondary server
assistants.

Table 1. Comparisons of overheads for action-based and thread-based systems (in milliseconds).

Figure 2 Machine Action- Thread-based (threads used)
scenario specifications based 1 5 10 50 100

A M1: Pentium/Linux 24.27 299.36 299.93 300.46 304.50 310.31
A M2: Sparc/Solaris 62.82 1,000.90 1,012.54 1,041.60 1,012.83 1,031.25
B M1 controller, 11.61 3,711.94 1,302.20 1,011.49 893.10 728.30

M2 database

positions of client devices and the transport inter-
face to identify data formats and interaction pro-
tocols for communicating with the clients. It uses
the server assistants’ interface to interact with sec-
ondary servers like the database and the streaming-
media unit and the back-end interface to interact
with external services, such as credit card autho-
rization for e-commerce purchases. Third-party
providers typically offer these external services.

System administrators can use the admin inter-
face to oversee the Rover system, including moni-
toring the Rover controller, querying client devices,
updating security policies, issuing system-specific
commands, and so on.

The content interface lets content providers
update the information and services that the Rover
controller serves to client devices. Having a separate
content interface decouples the data from the con-
trol path.

INITIAL IMPLEMENTATION
We have successfully built Rover prototype sys-

tems and tested them in both indoor and outdoor
environments at the University of Maryland, College
Park. A preliminary Windows-based test imple-
mentation ran Windows 2000 for the controller and
Windows CE for the client devices. However, the
current implementation runs under Linux.

We implemented the Rover controller on an Intel
Pentium machine running Red Hat Linux 7.1 and
the clients on Compaq iPAQ model H3650 Pocket
PCs running Familiar’s Linux distributions for PDAs
(http://familiar.handhelds.org). Wireless access is
over IEEE 802.11 wireless LANs. Each Compaq
iPAQ includes a wireless card that attaches to the
device through an expansion sleeve.

We have experimented with a set of eight client
devices and have tested various functionalities of
the system.

For our outdoor experiments, we interfaced a
Garmin e-Trex (http://www.garmin.com/products/
etrex/) GPS device to the Compaq iPAQs and
obtained device location accuracy between 3 and 4
meters. Figure 4 shows the iPAQ Rover client’s
default display, which marks different user locations
as dots on an area map.

We implemented the indoor Rover system in a
26.6 × 70-meter area on the fourth floor of the
Computer Science Department building. In this
implementation, the location service uses signal-
strength measurements from different base stations.
About 12 base stations are distributed all over the
building, and the client device can typically receive
beacons from five or six of them. We get an accu-

racy of about 2 meters in this environment, using
very simple signal-strength estimation techniques.

In both these environments, we implemented the
basic Rover system functionality, which included

• user activation and deactivation procedures;
• device registration and deregistration proce-

dures;
• periodic broadcast of events of interest from

the Rover controller to the users in specific
locations;

• unicasts from the controller according to user-
specified time, location, or context-dependent
conditions;

• both simple-text-messaging and voice-chat
interaction between users; and

• an administrator’s console, allowing a global
view of all system users and their locations.

The administrator can directly interact with all
users or a specific subset based on location or other
user attributes. Users have the option of making
their location visible to other users.

R over is currently available as a deployable sys-
tem using specified technologies, both indoors
and outdoors. Ultimately, our goal is to pro-

vide a completely integrated system that uses dif-
ferent technologies and allows a seamless experience
of location-aware computing to clients as they move
through the system. With this in mind, we have var-
ious short- and long-term projects:

• Experiment with a wider range of client
devices, both those with limited text and
graphics display capabilities and those that can

October 2002 61

Figure 4. Rover
client default
display for Compaq
iPAQ marks user
locations as dots on
an area map.

62 Computer

support richer functionality, such as location-
aware streaming video services.

• Integrate more wireless air interfaces with the
Rover system. Bluetooth is a logical next tech-
nology to experiment with. In the longer term,
we expect to work with cellular providers to
define and implement mechanisms that will let
Rover clients interact over the cellular inter-
face.

• Implement more location-determination tech-
niques. We are experimenting with new mech-
anisms for better location estimation, including
a signal propagation delay-based technique,
called PinPoint Technology, developed at the
University of Maryland.

• Implement the multi-Rover system.
• Deploy Rover campus-wide at the University

of Maryland, College Park. Initially, we expect
to deploy independent Rover systems to serve
clients of specific departments. These systems
will subsequently interact using the inter-Rover
controller protocols of a multi-Rover system.
We will colocate the Rover controllers with the
Web servers and integrate the content man-
agement for both systems.

We believe that Rover technology will greatly
enhance the user experience in many places, includ-
ing museums, amusement and theme parks, shop-
ping malls, game fields, offices, and business
centers. We designed the system specifically to scale
to large user populations and expect its benefits to
increase with them. �

References
1. S. Banerjee et al., Rover Technology: Enabling Scal-

able Location-Aware Computing, tech. reports UMI-
ACS-TR 2001-89 and CS-TR 4312, Dept. Computer
Science, Univ. of Maryland, College Park, Md., Dec.
2001.

2. P. Mockapetris, “Domain Names: Implementation
and Specification,” Internet Engineering Task Force,
RFC 1035 (Internet standard), Nov. 1987;
http://www.ietf.org/rfc/rfc1035.txt.

3. J. Mitola, “The Software Radio Architecture,” IEEE
Comm., vol. 5, May 1995, pp. 26-38.

4. B. Hofmann-Wellenhof, H. Lichtenegger, and J.
Collins, GPS: Theory and Practice, Springer-Verlag,
Wien, N.Y., 1997.

Suman Banerjee is a PhD candidate in the Depart-
ment of Computer Science at the University of
Maryland, College Park. He received an MS in

computer science from the University of Maryland,
and a BTech in computer science and engineering
from the India Institute of Technology in Kanpur.
He is a student member of the IEEE. Contact him
at suman@cs.umd.edu.

Sulabh Agarwal is a software developer with Epic
Systems Corp., Madison, Wisconsin. He received
an MS in computer science from the University of
Maryland, College Park. He received a BTech from
the India Institute of Technology, Delhi.

Kevin Kamel is a faculty research assistant at the
University of Maryland Institute for Advanced
Computer Studies, College Park. He received a BS
in computer engineering from the University of
Maryland, College Park. Contact him at kamelkev@
umiacs.umd.edu.

Andrzej Kochut is a PhD student in computer sci-
ence at the University of Maryland, College Park.
He received an MS in computer science from the
University of Warsaw, Poland. Contact him at
kochut@cs.umd.edu.

Christopher Kommareddy is a PhD student in the
Department of Electrical and Computer Engineer-
ing, University of Maryland, College Park, where
he received an MS in electrical and computer engi-
neering. Contact him at kcr@cs.umd.edu.

Tamer Nadeem is a PhD student in computer sci-
ence at the University of Maryland, College Park.
He received an MS in computer science from the
University of Maryland, and an MS and a BS in
computer science from Alexandria University,
Egypt. He is a student member of the IEEE and the
ACM. Contact him at nadeem@cs.umd.edu.

Pankaj Thakkar is a software engineer with
AskJeeves. He received an MS in computer science
from the University of Maryland, College Park, and
a BTech in computer science and engineering from
the India Institute of Technology, Delhi.

Bao Trinh is a faculty research assistant in the
Department of Computer Science at the University
of Maryland, College Park, where he received an
MS in computer science. Contact him at bao@
mindlab.umd.edu.

Adel Youssef is a PhD student in computer science
at the University of Maryland, College Park. He
received an MS in computer science from the Uni-

versity of Maryland, College Park, and an MS and
BS in computer science from Alexandria Univer-
sity, Egypt. Contact him at adel@cs.umd.edu.

Moustafa Youssef is a PhD candidate in computer
science at the University of Maryland, College
Park. He received an MS in computer science from
the University of Maryland, and an MS and a BS in
computer science from Alexandria University,
Egypt. He is a student member of the IEEE, the
IEEE Computer Society, and the IEEE Communi-
cation Society. Contact him at moustafa@cs.
umd.edu.

Ronald L. Larsen is dean of the School of Infor-
mation Sciences at the University of Pittsburgh. He
received a PhD in computer science from the Uni-
versity of Maryland. He is a member of the IEEE,
the IEEE Computer Society, and the ACM.

A. Udaya Shankar is a professor in the computer
science department and the Institute for Advanced
Computer Studies at the University of Maryland,
College Park. He received a PhD in electrical engi-
neering from the University of Texas at Austin.
Contact him at shankar@cs.umd.edu.

Ashok Agrawala is a professor in the Department
of Computer Science at the University of Maryland
and holds joint positions with the University of
Maryland Institute for Advanced Computer Stud-
ies (UMIACS) and the Department of Electrical
Engineering. He received an MS and a PhD in
applied mathematics from Harvard University and
an ME and a BE in electrical engineering from the
Indian Institute of Sciences, Bangalore. He is a Fel-
low of the IEEE and a member of the ACM, AAAS,
and Sigma Xi. Contact him at agrawala@cs.
umd.edu.

October 2002 63

