
SLOG: Serializable, Low-latency, Geo-replicated
Transactions

Kun Ren
eBay Inc

kuren@ebay.com

Dennis Li
UMD College Park

dli12348@umd.edu

Daniel J. Abadi
UMD College Park

abadi@cs.umd.edu

ABSTRACT
For decades, applications deployed on a world-wide scale have
been forced to give up at least one of (1) strict serializability (2)
low latency writes (3) high transactional throughput. In this pa-
per we discuss SLOG: a system that avoids this tradeoff for work-
loads which contain physical region locality in data access. SLOG
achieves high-throughput, strictly serializable ACID transactions
at geo-replicated distance and scale for all transactions submitted
across the world, all the while achieving low latency for transac-
tions that initiate from a location close to the home region for data
they access. Experiments find that SLOG can reduce latency by
more than an order of magnitude relative to state-of-the-art strictly
serializable geo-replicated database systems such as Spanner and
Calvin, while maintaining high throughput under contention.

PVLDB Reference Format:
Kun Ren, Dennis Li, and Daniel J. Abadi. SLOG: Serializable, Low-latency,
Geo-replicated Transactions. PVLDB, 12(11): 1747-1761, 2019.
DOI: https://doi.org/10.14778/3342263.3342647

1. INTRODUCTION
Many modern applications replicate data across geographic re-

gions in order to (a) achieve high availability in the event of region
failure and (b) serve low-latency reads to clients spread across the
world. Existing database systems that support geographic replica-
tion force the user to give up one at least one of the following essen-
tial features: (1) strict serializability (2) low-latency writes (3) high
throughput multi-region transactions — even under contention.

(1) Strict serializability [16, 17, 41, 64], in the context of dis-
tributed database systems, implies both strong isolation (one-copy
serializable [10]) and real-time ordering guarantees. More pre-
cisely, concurrent transaction processing must be equivalent to exe-
cuting transactions in a one-copy serial order, S, such that for every
pair of transactions X and Y, if X starts after Y completes, then X
follows Y in S. This implies that all reads within a transaction must
see the value of any writes that committed before the transaction
began, no matter where that write was performed world-wide. Fur-
thermore, if a transaction, A, begins after (in real time) transaction
B completes, no client can see the effect of A without the effect

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342647

of B. Strict serializability reduces application code complexity and
bugs, since it behaves like a system that is running on a single ma-
chine processing transactions sequentially [4, 5].

By giving up strict serializability, it is straightforward to achieve
the other two properties mentioned above (low-latency writes and
high multi-region transactional throughput). If reads are allowed
to access stale data, then reads can be served by any replica (which
improves read latency) and replication can be entirely asynchronous
(which improves write latency) . Furthermore, avoiding the multi-
region coordination necessary to enforce strict serializability facil-
itates throughput scalability of distributed database systems [11].

Much research effort has been spent in designing systems that
reduce the consistency level below strict serializability, while still
providing useful guarantees to the application. For example, Dy-
namo [26], Cassandra [47], and Riak [3] use eventual consistency;
PNUTs [20] supports timeline consistency; COPS [51], Eiger [52],
and Contrarian [27] support a variation of causal consistency; Lynx
(Transaction Chains) [95] supports non-strict serializability with
read-your-writes consistency [81]; Walter [77], Jessy [8], and Blot-
ter [56] support variations of snapshot consistency.

(2) Low latency writes. Despite the suitability of these weaker
consistency models for numerous classes of applications, they often
expose applications to potential race condition bugs, and typically
require skilled application programmers. Thus, the demand for sys-
tems that support strict serializability has only increased. Many
recent geo-replicated data stores, including from two of the three
major cloud vendors (Google with several systems [12, 22, 76]
and Microsoft with Cosmos DB) support strong consistency mod-
els at least under some configurations. Spanner [22] is widely used
throughout Google, and is now available in the Google Cloud for
anybody to use. Other examples in industry include comdb2, Fau-
naDB, and (with a few caveats) CockroachDB and YugaByte. Ex-
amples from the research community include Helios [59], MDCC
[46], Calvin [87], Carousel [93], and TAPIR [94].

Every single one of these above cited strictly serializable systems
pays at least one cross-region round trip (coordination) message to
commit a write transaction. This type of coordination enables strict
serializability, but increases the latency of every write. The farther
apart the regions, the longer it takes to complete a write.

(3) High transaction throughput Cross-region coordination on
every write is not necessary to guarantee strict serializability. If ev-
ery read of a data item is served from the location of the most recent
write to that data item, then there is no need to synchronously repli-
cate writes across regions. For example, if one region is declared
as the master region for a data item ([20, 23, 38, 61, 66, 67]), and
all writes and consistent reads of that data item are directed to this
region, such as done by NuoDB [66, 67] and G-Store [23], then it
is possible to achieve strict serializability along with low latency

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 1 5 10 20 50 100

th
ro

u
g

h
p

u
t

(t
x
n

s/
se

c)

% cross-region transactions

Low contention

High contention

Figure 1: Single-master throughput under contention.

reads and writes — as long as those reads and writes initiate from
a region near the master region for the data being accessed.

Many workloads have a locality in their access patterns. For
example, for applications that revolve around users, the data as-
sociated with a user is heavily skewed to being accessed from the
physical location of that user. Thus, for these workloads, it is possi-
ble to achieve strict serializability and low latency writes. However,
arbitrary transactions may access multiple data items, where each
data item is mastered at a different region. For such transactions,
achieving strict serializability requires coordination across regions.
Existing approaches prevent conflicting transactions from running
during this coordination. Cross-region coordination is time con-
suming since messages must be sent over a WAN. Thus, the time
window that conflicting transactions cannot run is large, which re-
duces system throughput. For example, we implemented a version
of NuoDB1, and ran some benchmarks (see Section 4) where we
varied the contention level and percentage of multi-region transac-
tions. As shown in Figure 1, under high contention, the through-
put of the system dropped dramatically at even low percentages
of multi-region transactions, and also fell (although less dramati-
cally) at low contention. For this reason, many systems that allow
different data to be controlled by different regions do not support
multi-region transactions, such as PNUTS [20] and DPaxos [58].

In this paper, we present the design of a system, SLOG, that is
the first (to the best of our knowledge) to achieve all three: (1)
strict serializability (2) low-latency reads and writes (on at least
some transactions) and (3) high throughput. SLOG uses locality in
access patterns to assign a home region to each data granule. Reads
and writes to nearby data occur rapidly, without cross-region com-
munication. However, reads and writes to remote data, along with
transactions that access data from multiple regions, must pay cross-
region communication costs. Nonetheless, SLOG uses a determin-
istic architecture to move most of this communication outside of
conflict boundaries, thereby enabling these transactions to be pro-
cessed at high throughput, even for high contention workloads.

SLOG supports two availability levels: one in which the only
synchronous replication is internally within a home region (which
is susceptible to unavailability in the event of an entire region fail-
ure), and one in which data is synchronously replicated to one or
more nearby regions (or availability zones) to achieve an availabil-

1NuoDB declined to give us their software, so we implemented our
own version. NuoDB uses a MVCC protocol that is susceptible to
write skew anomalies. Our version used locking instead in order to
guarantee strict serializability.

ity similar to Amazon Aurora [89, 90] where the system remains
available even in the event of a failure of an entire region. Unlike
Spanner, Cosmos DB, Aurora, or the other previously cited systems
that support synchronous cross-region replication, SLOG’s deter-
ministic architecture ensures that its throughput is unaffected by
the presence of synchronous cross-region replication.

2. BACKGROUND
SLOG supports strictly serializable transactions that access data

mastered in multiple regions. Unlike systems such as L-Store [49]
and G-Store [23], which remaster data on the fly so that all data
accessed by a transaction becomes mastered at the same physical
location, SLOG does not remaster data as part of executing a trans-
action. Instead, it utilizes a coordination protocol across regions to
avoid data remastership. One important technique used by SLOG
to overcome the scalability and throughput limitations caused by
coordination across partitions is to leverage a deterministic execu-
tion framework. Our technique is inspired by the work on Lazy
Transactions [30], Calvin [87, 88], T-Part [92], PWV [31], and Fau-
naDB [1] which use determinism to move coordination outside of
transactional boundaries, thereby enabling conflicting transactions
to run during this coordination process.

In the above-cited deterministic systems, all nodes involved in
processing a transaction — all replicas and all partitions within a
replica — run an agreement protocol prior to processing a batch
of transactions that plans out how to process the batch. This plan
is deterministic in the sense that all replicas that see the same plan
must have only one possible final state after processing transactions
according to this plan. Once all parties agree to the plan, processing
occurs (mostly) independently on each node, with the system rely-
ing on the plan’s determinism in order to avoid replica divergence.
This approach prevents the dramatic reductions in throughput under
data contention that are observed in systems such as NuoDB [66,
67] and the strictly serializable transaction implementation on top
of FuzzyLog [53] that perform coordination inside transactional
boundaries, and G-Store and L-Store which prevent contended data
access during the remastering operations.

Determinism also reduces latency and improves throughput by
eliminating any possibility of distributed and local deadlock [7, 70,
78, 79, 87], and reducing (or eliminating) distributed commit pro-
tocols such as two-phase commit [7, 83, 84, 86, 87].

Unfortunately, in order to create a deterministic plan of execu-
tion, more knowledge about the transaction is needed prior to pro-
cessing it relative to traditional nondeterministic systems. Most
importantly, the entire transaction must be present during this plan-
ning process. This makes deterministic database systems a poor fit
for ORM tools and other applications that submit transactions to
the database in pieces.

Second, advanced planning usually requires knowledge regard-
ing which data will be accessed by a transaction [33, 34, 83, 87].
Most deterministic systems do not require the client to specify this
information when the transaction is submitted. Instead they at-
tempt to statically derive this knowledge from inspecting the trans-
action code [87], make conservative estimates [31], and/or specu-
latively execute parts of the transaction, such as the OLLP protocol
in Calvin or the multi-stage execution process in FaunaDB.

SLOG’s use of determinism causes it to inherit both of these re-
quirements. As we will describe in Section 4, we implement SLOG
inside the open source version of Calvin’s codebase. Since Calvin
uses a combination of static analysis and OLLP to determine read
and write sets prior to transaction execution, our implementation
also uses these techniques.

One important challenge in the design of SLOG is the lack of
information about all transactions running in the system during the
planning process. In Calvin, every transaction, no matter where
it originates from, is sequenced by a global Paxos process. This
enables Calvin to have complete knowledge of the input to the sys-
tem while planning how a batch of transactions will be executed.
However, this comes at the cost of requiring every transaction to
pay the cross-region latency to run Paxos across regions. SLOG re-
moves the global Paxos process in order to reduce latency, but this
causes unawareness of transactions submitted to replicas located in
different regions during the planning of transaction processing.

3. SLOG
In order to achieve low latency writes, replication across geo-

graphic regions must be performed either entirely asynchronously,
or synchronously only to nearby regions; otherwise every write
must pay a round trip network cost across the geographic diame-
ter of the system [6]. In order to maintain strong consistency in
the face of asynchronous replication, SLOG uses a master-oriented
architecture, where every data item is mastered at a single “home”
replica. Writes and linearizable reads of a data item must be di-
rected to its home replica.

A region in SLOG is a set of servers that are connected via a
low-latency network, usually within the same data center. Trans-
actions are classified into two categories: if all data that will be
accessed have their master replica in the same region, it is single-
home. Otherwise, it is multi-home. Single-home transactions are
sent to its home and are confirmed as completed either (a) after the
region completes the transaction (SLOG-B) or (b) after the region
completes the transaction AND it has been replicated to a config-
urable number of nearby regions (SLOG-HA). Either way, transac-
tions that initiate near the home region of the data being accessed
will complete without global coordination. In contrast, multi-home
transactions, and even single-home transactions that initiate physi-
cally far from that home, will experience larger latency. SLOG does
not require any remastering of data to process multi-home transac-
tions, but does perform dynamic data remastering as access fre-
quency from particular locations changes over time (Section 3.4).

The most technically challenging problem in the design of SLOG
is the execution of multi-home transactions. The goal is to main-
tain strict serializability guarantees and high throughput in the pres-
ence of potentially large numbers of multi-home transactions, even
though they may access contended data, and even though they re-
quire coordination across physically distant regions.

3.1 High-level overview
Each SLOG region contains a number of servers over which data

stored at that region is partitioned (and replicated). Some of this
data is mastered by that region (it is the home region for that data)
and the rest is a replica of data from a different home region. The
partitioning of the data across servers within a region is indepen-
dent of the home status of data — each partition will generally have
a mix of locally-mastered and remotely-mastered data.

Each region maintains a local input log which is implemented via
Paxos across its servers. This local log only contains transactions
that are expected to modify data mastered at that region. This input
log is sent to all other regions in batches. Each batch is labeled with
a sequence number, and the other regions use this sequence number
to ensure that they have not missed any batches from that region.
Thus, each region is eventually able to reconstruct the complete
local log from every other region, potentially with some delay in the
event of a network partition. Regions use deterministic transaction
processing (see Section 2) to replay the local log from other regions

in parallel (at the same speed as the original processing), while
ensuring that their copy of the data ends up in the same final state
as the original region that sent this log.

Data replication across regions is not strictly necessary in SLOG
since the master region for a data item must oversee all writes and
linearizable reads to it. However, by continuously replaying local
logs from other regions, the system is able to support local snapshot
reads of data mastered at other regions at any desired point in the
versioned history. Furthermore, by keeping the replicas close to
up to date, the process of dynamically remastering a data item is
cheaper (see Section 3.4).

If there are n regions in the system, each region must process its
own input log, in addition to the (n − 1) input logs of the other
regions2. If all transactions are single-home, then it is impossible
for transactions in different logs to conflict with each other, and the
processing of these input logs can be interleaved arbitrarily without
risking violations of strict serializability or replica non-divergence
guarantees. However, achieving strict serializability in the presence
of multi-home transactions is not straightforward, since coordina-
tion is required across regions.

In Sections 3.2 and 3.3, we explain how SLOG processes trans-
actions in more detail. We start by discussing single-home transac-
tions, and then discuss multi-home transactions.

3.2 (Assumed) Single-home transactions
Data is assigned home regions in granules which can either be

individual records, or a sorted range of records. SLOG associates
two pieces of metadata with each granule: the identifier of its mas-
ter region at the time it was written, and a count of the total number
of times its master has (recently) changed. This metadata is stored
in the granule header and replicated with the data granule. The
counter is used to ensure correctness of remastering (Section 3.4)
and never needs to exceed the number of regions in the deployment.
The counter cycles back to 0 after it reaches a max count, and an ex-
tra bit is used to detect wrap-around, so the number of bits needed
for the counter is always one more than the number of bits needed
for the region identifier. Thus, these two pieces of metadata can be
combined into a single 8 bit integer for deployments across 8 re-
gions or fewer. Each region contains a distributed index called the
“Lookup Master” which maintains a mapping of granule ids to this
8-bit value in the granule header. This index is asynchronously up-
dated after a metadata change and thus may return stale metadata.

Clients can send transactions to the nearest region whether or not
it is the home for the data accessed by the transaction. As described
in Section 2, we assume that a region can determine the precise set
of granules that will be accessed by a transaction, before processing
it, either directly or through the advanced techniques we cited.

When a region receives a transaction to process, it sends a mes-
sage to its Lookup Master to obtain its cached value for the home
of each granule accessed by the transaction. The returned locations
are stored inside the transaction code. If every granule is currently
mapped to the same home region, the transaction becomes initially
assumed to be a single-home transaction, and is shipped to that
region. Otherwise, it is assumed to be multi-home, and handled
according to the algorithm described in Section 3.3. This function-
ality is shown in the ReceiveNewTxn pseudocode in Figure 2.

Once the (assumed) single-home transaction reaches its home
region, it is appended into an in-memory batch of transactional in-
put on the server at which it arrives, and this server appends this
batch to that region’s input log via Paxos. This corresponds to the

2For ease of exposition, we will assume that each region contains a
complete copy of all data stored across the system. SLOG can also
work correctly with incomplete replication.

function ReceiveNewTxn(txn):
masterInfo = ∅
foreach granule in txn.readSet

⋃
txn.writeSet

masterInfo = masterInfo
⋃

LookupMaster.Lookup(granule)
txn.masterInfo = masterInfo
if (num of unique regions in txn.masterInfo == 1)

txn.singleHome = true
send txn to InsertIntoLocalLog(txn) of that home region

else
txn.singleHome = false
send txn to the multi-home txn ordering module
//ordering module orders all multi-home txns and calls
//InsertIntoLocalLog(txn) at every region in this order

function InsertIntoLocalLog(txn):
if (txn.singleHome == true)

append txn at end of localLogBatch
else

accessSet = ∅
foreach <granule,granule.homeRegionID> in txn.masterInfo

if (granule.homeRegionID == this.regionID)
accessSet = accessSet

⋃
granule

if (accessSet 6= ∅)
t = new LockOnlyTxn(txn.ID,accessSet)
append t at end of localLogBatch

if (isComplete(localLogBatch))
batchID = insert localLogBatch into Paxos-managed local log
call ReceiveBatch(localLogBatch, batchID) at each region
init new localLogBatch

function ReceiveBatch(batch, batchID):
localLogs[batch.regionID][batchID] = batch
prevID = largest batch ID in global log from batch.regionID
while (localLogs[batch.regionID][prevID+1] 6= null)

append localLogs[batch.regionID][prevID+1] into global log
prevID = prevID + 1

Lock manager thread code that continuously runs:
txn = getNextTxnFromGlobalLog() //block until exists
if (txn.isSingleHome == false and txn.lockOnlyTxn == false)

ExecutionEngine.process(txn) //don’t request locks yet
else

Call RequestLocks(txn) //pseudocode in Figure 6

Code called after all locks for single-home txn acquired:
ExecutionEngine.process(txn)

Execution engine code called prior to read/write of granule:
if (don’t have lock on granule) //can happen if txn is multi-home

Block until have lock //wait for needed lockOnlyTxn
//will always eventually get lock since SLOG is deadlock-free

if (txn.masterInfo[granule] 6= granule.header.masterInfo)
RELEASE LOCKS AND ABORT TRANSACTION

Execution engine code run at end of every transaction:
ReleaseLocks(txn)

Figure 2: Pseudocode for core SLOG functionality

beginning and end of InsertIntoLocalLog in Figure 2. A separate
Paxos process interleaves batches from the local log with batches
from the local logs that are received from other regions in order to
create that region’s view of the global log. This is shown in the Re-
ceiveBatch function. The pseudocode for InsertIntoLocalLog and
ReceiveBatch in Figure 2 are written as if they are being called
on the region as a whole. The details of how these functions are
mapped to individual machines at a region are not shown, to make
the pseudocode easier to read.

Processing of transactions by the different servers within that re-
gion works similarly to distributed deterministic database systems

	

	

				A						B					C	

				A						B					C	

				A						B					C	

			Region		0	

			Region		1	

			Region		2	

		T1		T2	

		T3			 		T4			

T1:		A	
T2:		A	
T3:		B	
T4:		B	

					
		T1		T2	 		T3			 		T4			

		Batch		0-1		 		Batch		1-1		 Batch	1-2		

					
		T1		T2			T3			 		T4			

		Batch		1-1		 		Batch		0-1		 Batch	1-2		

					
		T1		T2			T3			 		T4			

		Batch		1-1		 Batch		1-2		 Batch	0-1		

						global	log:	

		Region	0：	

						Region	1：	

					
		T1		T2	

					
		T3			 		T4			

					
		Region	2：	

						local	log:	

Figure 3: Single-home transactions in SLOG.

such as Calvin: data is partitioned across servers, and each server
reads transactions from the same global log and requests locks on
any data present in its local partition in the order that the transac-
tions making those requests appear in the log [69, 71, 87] (see the
lock manager code in Figure 2). Locks are granted in the order
they are requested, which, when also ordering lock requests by the
order in which transactions appear in the global log, makes dead-
lock impossible [68]. The only difference relative to traditional
deterministic database systems is that prior to reading or writing
a data granule, the metadata associated with that granule must be
checked for the current home and counter values. If the counter
that is found is different than the counter that was returned from
the Lookup Master when the transaction was originally submitted
to the system, then the transaction is aborted and restarted.

Deterministic systems ensure that all data progress through the
same sequence of updates at every replica, without runtime coordi-
nation. Since home metadata is part of the data granule, the meta-
data is updated at the same point within the sequence of updates of
that granule at every region. Therefore, any assumed single-home
transaction that is not actually single-home will be exposed as non-
single-home independently at each region (i.e., each region will
independently, without coordination, observe that it is not single-
home, and will all agree to abort the transaction without any cross-
region communication). The transaction is then restarted as a multi-
home transaction. Similarly, if an assumed single-home transac-
tion is indeed single-home, but the assumed home is incorrect, all
regions will see the incorrect home and counter annotation and in-
dependently agree to abort the transaction.

In SLOG-B, the client is notified that a transaction has commit-
ted as soon as the first region commits it. For SLOG-HA, the client
cannot be notified of the commit until the batch of the input log that
contains this transaction has been replicated to a configurable num-
ber of nearby regions. Since only the input is replicated, replication
latency can be overlapped with transaction processing.

Figure 3 shows an example of this process. Each region contains
a complete copy of the database, with its “home” granule shown

	

	

				A						B					C	

				A						B					C	

				A						B					C	

			Region		0	

			Region		1	

			Region		2	

		T1			

		T3			 		T2			

T1:		A	
T2:		A,	B	
T3:		B	
T4:		B	

				T1-T20-T3-T21-T4				Region	0:	

		Region	1:	

		Region	2:	

		T3-T21-T4-T1-T20	

		T3-T1-T20-T21-T4	

		Global	serializable	Order:	
T1	
T3	

		T2		 		T4	

								global	log:	

				T1-T20	

		T3-T21-T4	

								local	log:	

		T2			

		T4			

	T2	
..	

Global	multi-home	log	

Figure 4: Multi-home transactions in SLOG.

in red and underlined. T1 and T2 update granule A and therefore
are sent to region 0 (batch 0-1 is created that contains T1 and T2);
T3 and T4 update granule B and are sent to region 1 (which places
them in separate batches — T3 is in batch 1-1, and T4 in batch 1-
2). Region 0 sends batch 0-1 to the other two regions, and region
1 sends batch 1-1 and batch 1-2 to the other two regions. Thus all
three batches appear in the global log of all three regions. How-
ever, the order in which these batches appear in the three respective
global logs is different. The only guarantee is that 1-2 will appear
after 1-1, since they originated from the same region.

If all transactions are single-home, then it is guaranteed that each
region’s local log will access a disjoint set of database system gran-
ules (i.e., transactions across local logs do not conflict with each
other). Therefore, the limited degree to which the global logs are
ordered differently across different regions will not cause replica
divergence. However, if there exist multi-home transactions in the
workload, these differences may result in replica divergence. For
example, if T2 accessed both A and B (instead of just A in our
example above), the order of processing T2 and T3 now makes a
difference since they both access B. Since T2 and T3 may appear
in different orders in the global logs, there is a risk of region diver-
gence. We will now discuss how SLOG deals with this problem.

3.3 Multi-home transactions
All multi-home transactions, no matter where they originate, must

be ordered with respect to each other. A variety of global order-
ing algorithms could be used, such as (1) Using a single ordering
server [19], (2) Running Paxos across all regions [87], or (3) Send-
ing all multi-home transactions to the same region to be ordered
by the local log there. Our current implementation uses the third
option for simplicity; however, the second option is more robust to
failure or unavailability of an entire region. The last line of Re-
ceiveNewTxn in Figure 2 is vague enough to allow for either op-
tion. Either way, all regions receive the complete set of multi-home
transactions in their proper order via calls to InsertIntoLocalLog.

Recall that the assumed home information for each granule is
stored inside the transaction by ReceiveNewTxn. InsertIntoLocal-

Log checks to see if the region at which the code is running is the
assumed home for any of the granules that will be accessed. If so,
it generates a special kind of transaction, called a LockOnlyTxn,
that consists only3 of locking the local reads and local writes of the
multi-home transaction.

A LockOnlyTxn is similar to a single-home transaction – it only
involves local granules, and it is placed in the local log of its home
region (alongside regular single-home transactions) which is repli-
cated (eventually) into the global log of every other region. The
only difference is that they do not have to include executable code.
The code for the multi-home transaction can arrive separately —
as part of the local log from the multi-home transaction ordering
module, which eventually gets integrated into the global log at ev-
ery region. LockOnlyTxns exist to specify how the multi-home
transaction should be ordered relative to single-home transactions
at that region. Depending on where the LockOnlyTxn gets placed
in the local log of that region, it will ensure that the multi-home
transaction will observe the writes of all transactions earlier than it
in the local log, and none of the writes from transactions after it.

This leads to a difference in execution of single-home vs. multi-
home transactions. Single-home transactions appear once in a re-
gion’s global log. The lock manager thread reads the single-home
transaction from the global log and acquires all necessary locks be-
fore handing over the transaction to an execution thread for process-
ing. In contrast, a multi-home transaction exists in several different
locations in a region’s global log. There could be an entry contain-
ing the code for that transaction, and then separately (usually later
in the log), several LockOnlyTxns — one from each region that
houses data expected to be accessed by that transaction. The code
can start to be processed as soon as it is reached in the global log.
However, the code will block whenever it tries to access data for
which the corresponding LockOnlyTxn has yet to complete. The
bottom half of Figure 2 shows the pseudocode for this process.

Figure 4 shows an example of multi-home transaction process-
ing. The home information and set of transactions submitted to
the system are the same as in Figure 3. The only difference is
that T2 now accesses A and B and is thus multi-home. Whichever
region receives T2 from the client annotates it with the assumed
home information (which, in this example, is correct) and sends it
to the multi-home ordering module. At Region 0, InsertIntoLocal-
Log(T2) is called after it has placed single-home T1 into its local
log. It therefore places its generated LockOnlyTxn for T2 after
T1. LockOnlyTxns for a given multi-home transaction are shown
in the figure with the subscript of the region that generated it4. In-
sertIntoLocalLog(T2) is called at Region 1 between placing single
home transactions T3 and T4 into its local log and thus places the
LockOnlyTxn for T2 it generates there. InsertIntoLocalLog(T2) is
also called at Region 2 but no LockOnlyTxn is generated since it
was not listed as the home for any data accessed by that transac-
tion. The local logs are replicated to every other region and are
interleaved differently, which results in T2’s LockOnlyTxns being
ordered differently at each region. This is not problematic since
LockOnlyTxns always access disjoint data and thus commute.

Regions do not diverge since (1) the global log at each region
maintains the original order of the local logs that it interleaves, (2)
local logs from different regions access disjoint data (unless the

3In some cases, a LockOnlyTxn may include a limited amount of
code, such as non-dependent reads/writes of the locked data.
4The global log entries that contain T2’s code are not shown in
the figure, since the code blocks anyway until the LockOnlyTxns
are reached. Furthermore, in some cases, code can be included in
LockOnlyTxns, which makes the separate shipping of transaction
code unnecessary.

home for a data granule has moved – see Section 3.4), and (3) the
deterministic processing engine ensures that transactions are pro-
cessed such that the final result is equivalent to the result of pro-
cessing them in the serial order present in that region’s global log.

3.3.1 Proof of strict serializability
Serializability theory analyzes the order in which reads and writes

occur to data in a database. This order is usually called a sched-
ule [29], history [63], or log [16]. Serializability proofs take the
form of proving that a given schedule, in which read and writes
from different transactions may be interleaved with each other, is
equivalent to a serial schedule. In replicated systems, the equiva-
lence must be to a 1-copy serial schedule [10].

Define the relationship Ti reads-x-from Tj as done by Bernstein
and Goodman [14]: Ti reads-x-from Tj holds if transaction Tj

writes to x, and no other transaction writes to it before Ti reads
from it. Two schedules are equivalent if they have the same set of
reads-from relationships — for all i, j, and x, Ti reads-x-from Tj in
one schedule iff this relationship holds in the other [14].

A serial schedule is one-copy equivalent (1-serial) if for all i, j,
and x, if Ti reads-x-from Tj then Tj is the last transaction prior to
Ti that writes to any copy of x [10, 14].

SLOG has one global log per region. Even though each global
log contains the same set of transactions, each region may process
its global log according to a different schedule.

LEMMA 3.1. All region schedules are equivalent
A SLOG region requests and acquires locks in the order that trans-
actions appear in its global log. Therefore, when a transaction Ti

reads x, the Tj for which Ti reads-x-from Tj will hold is the clos-
est previous transaction to Ti in the global log that writes x. Since
there is only one master region for a given x, and all reads and
writes to x are found in the local log for its master region, this Tj

will come from the same local log as Ti. Thus, the Tj for which Ti

reads-x-from Tj will hold will be the same in all global logs, since
each global log orders batches from any given local log identically.

LEMMA 3.2. All serializable schedules in SLOG are 1-copy
serializable. We already explained in Lemma 3.1 that if Ti reads-
x-from Tj holds, then Ti and Tj are in the same local log and Tj is
the closest previous transaction to Ti in that local log that writes x.
It is impossible for any other local log to contain a transaction that
writes to x since only the master region for a data item can include
transactions that write to x in its local log.

Less formally: a 1-serial schedule represents a serial execution of
transactions in which the replicated copies of each data item behave
like a single logical copy of that data item [10]. In SLOG, this is
enabled by ensuring that all writes and reads (excluding read-only
snapshot transactions running at a reduced consistency level) to a
data item (granule) are managed by its master.

Since all region schedules are equivalent and all serializable sched-
ules in SLOG are 1-copy serializable, all we have to prove is that
the schedule from any region is strictly serializable. This is straight-
forward since any schedule produced by a 2PL implementation, if
locks are held until after the transaction commits, and all reads read
the value of the most recent write to that data item, then the result-
ing schedule is strictly serializable [16, 64]. SLOG’s deterministic
locking scheme acquires all locks prior to processing a transaction
and releases all locks after commit. Thus it is a form of 2PL.

SLOG actually guarantees external consistency [37] which is
slightly stronger than strict serializability. External consistency en-
forces an ordering of all transactions — even concurrent ones —
such that the execution is equivalent to executing the transactions

serially in commit time order. SLOG commits conflicting transac-
tions in the order they appear in each local log (but does not order
commit times across local logs). Since all conflicting transactions
appear in the same local log, the order in the log specifies their
equivalent serial order.

3.4 Dynamic remastering
As access patterns change, it may become desirable to move the

home of a data granule, which we refer to as a “remaster” operation.
Previous work has shown that simple algorithms are sufficient for
deciding when to remaster data. For example, PNUTS changes a
data item’s master region if the last 3 accesses to it were from a
region other than its master [20]. Tuba similarly uses a simple cost
model based on recent accesses to decide when to remaster [9]. The
challenge in SLOG is not when to remaster (SLOG uses the PNUTS
heuristic). Rather the challenge is how to remaster data without
bringing the system offline, while maintaining strict serializability
and region non-divergence guarantees and high throughput.

As specified in Section 3.2, SLOG stores two metadata values
with each data granule: the identifier of its master region at the time
it was written, and a count of the number of times its master has
changed. A remaster request modifies both parts of this metadata,
and can, for the most part, be treated similarly to any other write
request. The request is sent to the home region for that granule,
which will insert the request in its local log, which will eventually
cause the request to appear in the global logs of all regions. When
each region processes this request in its global log, it updates the
granule metadata. The Lookup Master of that region is also asyn-
chronously updated to reflect the new mastership information.

A remaster request writes to a single data granule and is thus a
single-home transaction. It is sent to its current home region po-
tentially concurrently with other requests to access data within the
granule. The order that these requests are placed in the local log of
this home region determines which ones will be successful. Trans-
actions that are placed in the local log after the remaster request
will see the new granule metadata when they access it, and will
abort and resubmit to the new master.

Remastering causes a particular danger to the non-divergence
guarantees of SLOG. As mentioned in Section 3.2, the first SLOG
region to receive a transaction annotates it with the (home,counter)
metadata that was returned from its LookupMaster cache for every
granule that it accesses, and stores this cached metadata inside the
transaction code. Regions use this cached information to decide
whether they are responsible for handling it entirely (if it is single-
home) or creating a LockOnlyTxn for it (multi-home). Once the
LookupMaster at a region is updated after the region has processed
the remaster request, it will start annotating transactions with the
new master information, even though other regions may not have
processed the remaster request yet. These (up-to-date) annotations
will cause the transaction to be placed into the local log of the new
home region for that granule. However, the remaster request itself
is processed by the local log of the old home region. This leads to
a potential race condition across the local logs. For example, as-
sume a transaction, T, accesses the remastered granule and is sent
to the new master region. Some regions may place the log batch
that contains T before the log batch that contains the remaster re-
quest, while other regions may place it afterwards. This is possible
because the local logs from different regions can be interleaved dif-
ferently in the global log at different regions. As long as T and the
remaster request are in different local logs, no assumptions can be
made about their relative order in each region’s global log. It is true
that the remaster request was submitted to SLOG first, and must be
completed by at least one region before T can possibly come into

 A B C

 A B C

 A B C

 Region 0

 Region 1

 Region 2

 T1

 T2 Tremaster

T1: B
T2: B
T3: B

 T1-T2-Tremaster-T3-T3new Region 0:

 Region 1:

 Region 2:

T2
Tremaster
T3

 Global serializable Order: T2 T3

 T3

 T3new

 T1

 T1-T2-Tremaster-T3-T3new

 T1- T3new-T2-Tremaster-T3

 T1

 global log: local log:

 T3new

 T1-T2-Tremaster-T3

Figure 5: Data remastering in SLOG.

existence, so most of the time T will appear after the remaster re-
quest in every global log. However, this cannot be guaranteed. If
the commit or abort decision of T is dependent on how a region
interleaves local logs, replica divergence may occur.

An example of this divergence danger is shown in Figure 5. In
this example, replica 0 receives transaction T1, and annotates the
transaction with the current home for the accessed granule B — re-
gion 1 — and sends it there. After replica 1 executes T1, the thresh-
old necessary to remaster granule B to replica 0 is reached, and a
remaster transaction Tremaster is generated and sent to replica 1.
Tremaster is thus inserted into replica 1’s local log. Meanwhile,
replica 1 receives two other transactions that also access B: T2 and
T3. The relative location of the Tremaster transaction in replica 1’s
local log is after T2 but before T3. After execution of Tremaster ,
the home for B will have changed, and T3 is now in the wrong local
log. Since all regions see transactions from the same local log in
the same order, all regions will see T3 after Tremaster and inde-
pendently decide to abort it. The end result is that T3 gets aborted
and resubmitted to SLOG as T3new, which gets placed into the
local log of B’s new home: region 0. The problem is: local logs
from different regions may be interleaved differently. Regions 0
and 1 place the local log from region 0 that contains T3new after
the local log entry from region 1 that contains T2. Thus, they see
the serial order: T1, T2, and then T3. However, region 2 places the
local log from region 0 that contains T3new before the local log
entry from region 1 that contains T2. Thus, it sees a different serial
order: T1, T3, T2. This leads to potential replica divergence.

The counter part of the metadata is used to circumvent this dan-
ger. Prior to requesting a lock on a granule, SLOG compares the
counter that was written into the transaction metadata by the Lookup-
Master at the region the transaction was submitted to with the cur-
rent counter in storage at that region. If the counter is too low, it
can be certain that the LookupMaster that annotated the transac-
tion had out of date mastership information, and the transaction is
immediately aborted (every region will independently come to this
same conclusion). If the counter is too high, the transaction blocks
until the region has processed a number of remaster requests for
that data granule equal to the difference between the counters.

Performing counter comparisons prior to lock acquisition instead
of afterwards ensures that the lock is available for the remaster re-
quest, which needs the lock to update the header. However, the

Lock manager thread: RequestLocks(txn):
bool can execute now = true;
foreach granule in txn.readSet

⋃
txn.writeSet

if (inLocalPartition(granule)) //a region may have >1 partition
if (granule.counter > storage.getCounter(granule))

can execute now = false;
else if (granule.counter < storage.getCounter(granule))

RELEASE LOCKS AND ABORT TRANSACTION
else //counters are the same

can execute now = can execute now & Lock(granule)
//Lock(granule) returns true if lock acquired

if (can execute now == true) Send txn to execution thread
else Queue txn until locks are acquired and counters are correct

Lock manager thread: after releasing locks for txn:
if (txn was a remaster request)

Wake up txns that are waiting for this remaster request;
else

Wake up txns that are waiting on locks that were released;

Figure 6: Pseudocode for dynamic remastering

checks must be repeated after lock acquisition. The pseudocode
presented in Figure 6 outlines how counter checks are performed
prior to requesting locks, and the end of the pseudocode in Figure
2 shows how these checks are performed again during execution.

4. EXPERIMENTAL RESULTS
Since SLOG relies on deterministic processing to avoid two phase

commit and achieve high throughput even when there are many
multi-home transactions in a workload, we implemented SLOG via
starting with the open source Calvin codebase [2], adding the two
Paxos logs per region and the Lookup Master index, and processing
transactions according to the specification outlined in Section 3.

As described in Section 1, SLOG is the first system to achieve
(1) strict serializability (2) low latency writes (on at least some
transactions and (3) high throughput transactions even under high
conflict workloads. Throughput and latency are performance mea-
sures, which we investigate in this section. We only compare SLOG
to other systems that achieve strict serializability. Our two primary
comparison points are architectures that achieve low latency writes
or high throughput, but not both. More specifically, we built a non-
deterministic system that is based on the design of NuoDB: differ-
ent data is mastered in different regions (NuoDB calls this “chair-
manship”) and all writes and reads to data are controlled by the
chairman. Transactions that access data chaired by different ma-
chines require coordination across these machines. NuoDB uses an
MVCC algorithm that is susceptible to write skew anomalies (and
thus is not serializable). In order to guarantee strict serializability,
we use instead a traditional distributed 2PL algorithm where the
lock manager for a granule is located in its home partition. We
will call this implementation 2PL-coord. We expect 2PL-coord to
achieve low-latency writes (reads and writes to data that are mas-
tered nearby can complete without coordination), but poor through-
put (as explained in Section 1).

Since we started with the original Calvin codebase, we use Calvin
as our second comparison point. By moving almost all commit and
replication coordination outside of transactional boundaries, Calvin
achieves high throughput even for high conflict workloads [70, 87].
However, the latency of every transaction is at least equal to the la-
tency of multi-region Paxos that is run prior to every transaction
processed by the system. We do not expect SLOG to achieve the

 0

 20000

 40000

 60000

 80000

 100000

0% mh 0% mp

50% mh 0% mp

100% mh 0% mp

0% mh 50% mp

50% mh 50% mp

100% mh 50% mp

0% mh 100% mp

50% mh 100% mp

100% mh 100% mp

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

Calvin
SLOG-B

SLOG-HA
2PL-coord

(a) Low contention(HOT = 10,000)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

0% mh 0% mp

50% mh 0% mp

100% mh 0% mp

0% mh 50% mp

50% mh 50% mp

100% mh 50% mp

0% mh 100% mp

50% mh 100% mp

100% mh 100% mp

Calvin
SLOG-B

SLOG-HA
2PL-coord

(b) High contention(HOT = 30)

Figure 7: YCSB throughput experiments.

same throughput as Calvin for two reasons: (1) Multi-home trans-
actions cause the conflicting intermediate transactions between two
of its LockOnlyTxns to potentially block. (2) The ability of the
system to remaster granules dynamically causes more checks and
potential aborts for each transaction. On the other hand, SLOG is
expected to yield much better latency than Calvin for workloads
containing many single-home transactions. We thus ran some ex-
periments to more precisely explore these differences in throughput
and latency between Calvin and SLOG.

As a third comparison point, we use Cloud Spanner. Cloud Span-
ner is an entirely separate code base than Calvin, and is far more
production-ready and feature-complete. Thus, this is not an apples-
to-apples comparison, and raw magnitude performance differences
mean little. Nonetheless, information can be gleaned from the per-
formance trends of each system relative to itself as experimental
variables are varied, which shed light on the performance conse-
quences of the architectural differences between the systems.

For these experiments, we used system deployments that repli-
cated all data three ways across data-centers. All experiments (ex-
cept for the Cloud Spanner experiments which we will discuss later)
were run on EC2 x1e.2xlarge instances (each instance contains 244
GB of memory, and 8 CPU cores) across six geographical regions:
US-East (Virginia), US-East (Ohio), US-West (Oregon), US-West
(California), EU (Ireland) and EU (London). The database system
was partitioned across 4 machines within each region. For SLOG-
HA (the HA mode from Section 3 that is tolerant to failure of an
entire region), the US-East(Virginia) region is synchronously repli-
cated to US-East (Ohio); US-West (Oregon) to US-West (Califor-
nia); and EU (Ireland) to EU (London).

We use a version of the Yahoo Cloud Serving Benchmark (YCSB)
[21] adapted for transactions, and also the TPC-C New Order trans-
action to benchmark these systems. In both cases, each record (tu-
ple) is stored in a separate SLOG granule, and we therefore use
the terms “record” and “granule” interchangeably in this section.
We vary the important parameters that can affect system perfor-
mance relative to each other: likelihood of transactions to lock the
same records (i.e., conflict ratio between transactions), percentage
of transactions that are multi-partition within a region, and the ratio
of single-home to multi-home transactions.

For YCSB, we use a table of 8.8 billion records, each 100 bytes.
Since we have 4 EC2 instances per region, each instance contains

a partition consisting of 2.2 billion records. Each region contains a
complete replica of the data. Each transaction reads and updates 10
records. In order to carefully vary the contention of the workload,
we divide the data set into “hot records” and “cold records”. Each
transaction reads and writes at (uniformly) random two hot records,
and all remaining reads and writes are to cold records. Cold record
accesses have negligible contention, so the contention of an exper-
iment can be finely tuned by varying the size of the hot record set.

For the TPC-C dataset, each of the 4 EC2 instances per region
contain 240 warehouses (960 warehouses in total), and each ware-
house contains 10 districts. In addition to serving as a natural par-
titioning attribute, warehouses also make for a natural “housing”
attribute — the home for a record associated with a particular ware-
house should be at the region closest to the physical location of that
warehouse (we spread the TPC-C warehouses evenly across the re-
gions in our deployment). Thus, unlike our YCSB experiments, for
TPC-C, only multi-partition transactions can be multi-home.

4.1 Throughput experiments
Throughout this section we use the abbreviations sp and mp to

refer to single- and multi-partition transactions, and sh and mh for
single-home and multi-home. For YCSB data, it is possible for
a single partition to contain records that are mastered at different
regions. Therefore, it is possible for a transaction to be both single-
partition (sp) and multi-home (mh).

We compare SLOG to our primary comparison points: 2PL-
coord and Calvin in this section, and to Spanner in Section 4.3.
Our first experiment, shown in Figure 7, varies the % mp and %
mh parameters. Calvin is unaffected by % mh since it has no con-
cept of a “home” for data. The performance of 2PL-coord is only
presented at 0% mp (which is its best case scenario).

Figure 7(a) shows the results of our YCSB experiment under low
contention (each partition has 10,000 hot records). When running
SLOG with 0% mh, the overhead of multi-home transactions is not
present in the workload, and, as expected, all systems perform the
same. As more multi-home transactions are added to the work-
load, the throughput of SLOG and 2PL-coord deteriorates relative
to Calvin. In SLOG, the reason is two-fold: first, extra compu-
tational resources are consumed by generating the LockOnlyTxns
and processing their associated log entries. Second, whenever a
LockOnlyTxn appears in the global log of a region prior to a differ-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100 200 300 400 500 600

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

number of clients

Calvin

SLOG-B

SLOG-HA

2PL-coord

Figure 8: Throughput while varying client count

ent LockOnlyTxn from the same original multi-home transaction,
that LockOnlyTxn and all transactions that conflict with it (includ-
ing single-home transactions) must block until the later LockOn-
lyTxn is processed. Under low contention, the percentage of trans-
actions that are blocked is low; however, under high contention
(Figure 7(b)), the contention and reduction of throughput caused
by multi-home transactions is higher.

The throughput drop for multi-home transactions is much larger
for 2PL-coord than for SLOG. This is because 2PL-coord has a
longer window during which contending transactions cannot run.
Once a transaction acquires a lock on a remote master, this lock is
held for the entire duration of transaction processing, including the
time to acquire other locks, execute transaction logic, and perform
the commit protocol. In contrast, SLOG only prevents conflicting
transactions from running during the window between placing the
first and last LockOnlyTxn into its global log. The difference be-
tween 2PL-coord and SLOG is more extreme at high contention
(Figure 7(b)) where 2PL-coord’s throughput is so low at 50% and
100% multi-home that the bars are not visible on the graph. [See
Figure 1 for a line graph version of 2PL-coord for this experiment.]

Multi-partition transactions require coordination across the par-
titions in any ACID-compliant distributed database system. Tradi-
tional database systems use 2PC to ensure that all partitions com-
mit. In contrast, deterministic database systems like Calvin reduce
this to a single phase that can be overlapped with transaction pro-
cessing. Nonetheless, this coordination is not zero-cost in Calvin,
and throughput decreases with more multi-partition transactions.
In SLOG, part of the blocking that is imposed by the multi-home
transaction processing code of SLOG is overlapped with the wait-
ing that is necessary anyway because of multi-partition coordina-
tion. Therefore, the relative cost of multi-home transactions in
SLOG is reduced as the % mp parameter increases.

This also explains why the throughput drop from Calvin to SLOG
is more significant when the entire workload is single-partition.
However, when there are multi-partition transactions in the work-
load, the difference between Calvin and SLOG is much smaller,
since Calvin also must pay the extra coordination cost for multi-
partition transactions. In general, we have found that in practice,
when every transaction is multi-partition, then no matter the con-
tention level, and no matter the % multi-home level, the perfor-
mance of Calvin and SLOG is similar.

Under high contention (Figure 7(b)), SLOG increases in through-
put from 50% mh to 100% mh as a result of how the high contention

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

Calvin 10% mw

SLOG-B 10% mw

SLOG-HA 10% mw

Calvin 100% mw

SLOG-B 100% mw

SLOG-HA 100% mw

th
ro

u
g
h
p
u
t
(t

x
n
s
/s

e
c
)

0% of mw are mh
50% of mw are mh

100% of mw are mh

Figure 9: TPC-C New Order throughput experiments

workload is generated. We have 6 regions in this experiment, and
each region is the master of 1/6 of all database records, which in-
cludes 1/6 of the hot records, and 1/6 of the cold records. For a
single-home transaction, both hot records in the transaction come
from the same pool of one sixth of all the hot records in the ta-
ble. However, for a multi-home transaction, the two hot records
from the transaction come from different pools — 5/6 of all the hot
records. By expanding the pool of hot records that the transaction
can draw from, this actually reduces the contention.

The throughput of SLOG-HA is similar to SLOG since deter-
ministic database systems do not need to hold locks during repli-
cation, so the synchronous replication to a different region does
not cause additional contention, and there is no reduction in con-
currency. Furthermore, the computing overhead of managing the
replication itself on a per batch basis is negligible.

Figure 8 shows the results of the same experiment as Figure 7(a)
at the worst case scenario of SLOG relative to Calvin: 100% multi-
home and 0% multi-partition transactions. Each client continu-
ously sends 200 transactions per second to the system. 2PL-coord
saturates much earlier than the other systems.

The results of the experiment on New Order transactions on the
TPC-C dataset is shown in Figure 9. In TPC-C, warehouse and
district records are “hot records”, and each New Order transaction
needs to read one or two warehouse records, and update one dis-
trict record. TPC-C specification requires that 10% of New Order
transactions need to access two separate warehouses, which may
become multi-partition and/or multi-home transactions if those two
warehouses are located in separate partitions (which is greater than
75% probability in our 4-partition set-up) or have different home
regions. We ran this experiment using both this default TPC-C
requirement, and also with 100% of transactions touching multi-
ple warehouses (in order to increase the number of multi-partition
and multi-home transactions in the workload). Since only trans-
actions that touch multiple warehouses can be multi-home for this
dataset, we have less flexibility in our ability to experiment with
multi-home transactions. Thus, for the default TPC-C specification
of 10% multi-warehouse transactions, the lines in the figure labeled
as “0%/50%/100% of mw are mh” correspond to 0%, 5%, and 10%
of all total transactions that are multi-home. However, when we
make 100% of transactions multi-warehouse, 0%, 50%, and 100%
mh correspond to 0%, 50%, and 100% of all total transactions.

For the 10% multi-warehouse experiment (TPC-C’s required con-
figuration), the performance of Calvin and SLOG are similar. These

 0

 20000

 40000

 60000

 80000

 100000

SLOG-B no-checks SLOG-B + remaster checks

0%mh 0%mp low contention

0%mh 100%mp low contention

100%mh 100%mp low contention
0%mh 0%mp high contention

0%mh 100%mp high contention

100%mh 100%mp high contention

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Figure 10: Overhead of dynamic remastering checks

results resemble the YCSB experiment: when there are small num-
bers of multi-home transactions (a maximum of 10% in this case),
the extra overhead in SLOG to process multi-home transactions is
less noticeable. At 100% multi-warehouse transactions, Calvin per-
forms slightly better than SLOG when there were 50% or 100%
multi-home transactions. These results again resemble the YCSB
experiment when there are large numbers of multi-partition and
multi-home transactions. Once again, the reason why the differ-
ence between Calvin and SLOG is not larger is because SLOG is
able to overlap the coordination required for multi-partition trans-
actions with the coordination required for multi-home transactions.

4.1.1 Dynamic Remastering
We now investigate the overhead of dynamic remastering of data

in SLOG. We first ran an experiment where there are guaranteed to
be no actual remastering operations in the workload, so SLOG does
not have to perform the checks to see if mastership annotations at
transaction submit time remain correct at runtime. As shown in
Figure 10, we found that the savings achieved by avoiding these
checks is negligible. This is because the home and counter infor-
mation are stored inside the granule header. Since the granule has
to be brought into cache anyway in order to be accessed, the extra
CPU overhead of the two extra if-statements is not noticeable.

We also ran an experiment to investigate the actual overhead of
record remastering. In this experiment, we measured the temporary
throughput reduction during the remastering process of a single
record. In order to isolate the throughput effects of just the remas-
tering operation itself, and ignore the throughput benefits that arise
from the reduction of multi-home transactions as a result of this re-
mastering, the access-set of each transaction was reduced from 10
to 1. In this experiment, each region has one machine, and we vary
the HOT set size as 10, 50 and 1000 records. The remaster opera-
tion is initiated approximately five seconds into the experiment.

The experimental results are in Figure 11. Once the remaster
transaction is reached and processed in the local log of the region at
which it was appended, throughput begins to drop because all sub-
sequent transactions that access the same data are annotated with
the old master information and will be aborted and resubmitted. At
lower contention, this drop is small because there are fewer trans-
actions that update the same record and must be aborted. Only at
very high levels of contention is the drop noticeable. We magnified
the size of the drop in the figure by having the y-axis labels not start
at 0, but the actual percentage drop is no more than 3% even when

 23400

 23500

 23600

 23700

 23800

 23900

 24000

 24100

 24200

 24300

 0 2 4 6 8 10 12

th
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

time (seconds)

HOT=1000
HOT=50
HOT=10

Figure 11: Throughput reduction during remastering

the HOT set size is 10. The reason why the overhead is small is
because transactions are aborted and resubmitted prior to their ex-
ecution, so the amount of resources wasted on aborted transactions
is small. Throughput returns to normal once the Lookup Master
cache at each region has been updated to reflect the correct new
master, and no new transactions submitted to the system have in-
correct annotations and have to be aborted.

4.1.2 Throughput Experiments Conclusions
Of the two expected sources of throughput reduction of SLOG

relative to Calvin, we found that only one is significant: the pres-
ence of multi-home transactions in the workload. However, the
throughput reduction caused by multi-home transactions is soft-
ened by the presence of multi-partition transactions in a workload.

There are two categories of workloads: those that are easy to par-
tition by data access and those that are hard to partition. Workloads
that are easy to partition also tend to have location locality using
the same partitioning function (as we found in our TPC-C exper-
iment). For example, a partitioning scheme based on a group of
users, group of products, or group of accounts usually have associ-
ated locations with each of these groups. Thus, different partitions
will be mastered at different regions based on the access affinity of
that partition to a location. Therefore, we expect most workloads to
be in one of two categories: either it is mostly single-partition and
mostly-single-home, or otherwise both multi-partition and multi-
home transactions are common. For both these categories, our ex-
periments resulted in Calvin and SLOG achieving similar through-
put even though Calvin has access to all transactions submitted to
the system during pre-planning, while SLOG does not. Meanwhile,
under high contention, SLOG’s throughput is an order of magni-
tude higher than nondeterministic systems such as 2PL-coord (and,
as will be discussed in Section 4.3, also Spanner).

4.2 Latency experiments
Figure 12 shows the cumulative distribution function (CDF) of

transaction latency for SLOG-B, SLOG-HA, and Calvin with 0%,
1%, 10% and 100% multi-home transactions for the same exper-
imental setup as Figure 7(a). Figure 13 looks deeper at the 10%
multi-home case, showing 50%, 90%, and 99% latency as the num-
ber of clients sending 200 transactions per second to the system is
varied. In these experiments, single-home transactions originate
from a location near their home.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

Latency (ms)

Calvin

SLOG-B 0% mh

SLOG-B 1% mh

SLOG-B 10% mh

SLOG-B 100% mh

SLOG-HA 0% mh

SLOG-HA 1% mh

SLOG-HA 10% mh

SLOG-HA 100% mh

SL
O

G
-B

 0
&1

%
 m

h
SL

O
G

-B
 1

0%
 m

h

SL
O

G
-B

 &
 S

LO
G

-H
A

10
0%

 m
h

SL
O

G
-H

A
0&

1%
 m

h
SL

O
G

-H
A

10
%

 m
h

Calvin

Figure 12: CDF of transaction latency

As described above, Calvin places every strictly serializable trans-
action into a multi-region Paxos log, and thus its latency is domi-
nated by the WAN round-trip times necessary for insertion into this
log [32, 87]. To reduce the size of this log, Calvin only stores the
batch identifiers in the log. The contents of each batch are repli-
cated separately. Thus, Calvin generally incurs more than 200 ms
latency for each transaction.

As expected, SLOG’s ability to commit single-home transactions
as soon as they are processed at their home region allows SLOG to
dramatically reduce its latency relative to Calvin. When the en-
tire workload consists of such transactions (0% mh), almost every
transaction achieves less than 10 ms latency — more than an order
of magnitude faster than Calvin. The latency of SLOG is domi-
nated by the batch delay prior to transaction processing, as each
SLOG machine batches received transactions for 5ms prior to in-
serting the batch into the Paxos-maintained intra-region local log.
In addition, communication with the distributed Lookup Master of
a region usually requires network communication, and adds several
milliseconds to the transaction latency.

A multi-home transaction being processed at a region cannot
complete until all the component LockOnlyTxns arrive from the
relevant regions. The farther away the relevant regions, the longer
the latency. This delay is potentially longer than the global Paxos
delay of Calvin, since Paxos only requires a majority of messages
to be received, whereas multi-home transactions require messages
from specific (potentially remote) regions. If any region runs be-
hind in its log processing module, this delay gets magnified in the
latency of other regions that wait for specific LockOnlyTxn log
records from it. This effect is best observed in the 99% latency
lines in Figure 13. In addition to the message delay, multi-home
transactions also experience log queuing delay at both the remote
and local regions, which further increases their latency.

SLOG-HA has a higher latency than SLOG-B since a region’s in-
put log is synchronously replicated to another region prior to com-
mit. However, this additional latency is less noticeable for higher
% mh since replication of log records in deterministic systems can
begin prior to transaction execution (since only the input is repli-
cated) and thus the replication latency is overlapped with the other
latency caused by multi-home transactions discussed above.

Section 3.1 mentioned that SLOG also supports snapshot read-
only transactions (which run at serializable isolation instead of strict
serializable). The latency of such queries are similar to the 0% mh
line in Figure 12 since they are processed at a single region.

 0

 200

 400

 600

 800

 1000

 100 200 300 350 400

la
te

n
c
y
 (

m
s
)

number of clients

Calvin 50%

Calvin 90%

Calvin 99%

SLOG-B 50%

SLOG-B 90%

SLOG-B 99%

SLOG-HA 50%

SLOG-HA 90%

SLOG-HA 99%

Figure 13: Latency (10% mh) while varying client count

4.3 Comparison to Spanner
Spanner is similar to SLOG in that it also supports strictly se-

rializable transactions on top of geo-replicated storage. However,
the performance profile of Spanner is substantially different. To in-
vestigate these differences, we ran the same YCSB benchmark on
Cloud Spanner. As mentioned above, Spanner is a different (and
more production-ready) codebase relative to SLOG, and runs on
a different cloud platform than our SLOG codebase, so comparing
the absolute performance numbers has little meaning. However, the
differences in performance trends can yield insight into the conse-
quences of the architectural differences between the systems.

Since Google’s cloud does not have equivalent regions as AWS,
we experimented with two different region-sets for Spanner: (1)
nam3 where replicas are in Northern Virginia and South Carolina
(and thus closer together than our Amazon regions) and (2) nam-
eur-asia1 where replicas are more globally distributed (US, Bel-
gium, and Taiwan). However, Cloud Spanner currently refuses to
allow remote regions to be able to accept writes and participate
in the Paxos protocol (due to the latency increase and throughput
reduction this entails). Thus, the regions in Europe and Asia in
nam-eur-asia1 are read-only and stale, and writes require commu-
nication only within a 1000 mile radius in the US. Therefore, we
found nam3 and nam-eur-asia1 to have similar performance, and
we report only nam3 in the figures (they are slightly more favor-
able to Spanner). We generated the workload for Spanner from 6
n1-standard-8 machines in Northern Virginia, each machine with 8
vCPUs and 30GB of RAM. We deployed SLOG on the most similar
type of instance available on EC2: c4.2xlarge instances with 15GB
RAM and 8 CPU cores. Spanner performed poorly on the large
YCSB dataset from the previous experiments in a 4-node configu-
ration, so we reduced the size of the YCSB dataset for both Spanner
and SLOG to 40,000,000 records.

Cloud Spanner did not allow us to control how data was parti-
tioned across the four nodes in each region. However, since our
workload accessed 10 random tuples from the dataset, it must be
assumed that virtually all transactions are multi-partition (since the
chance that all 10 tuples come from the same 1 out of 4 partitions
is very low). Thus, we compare Spanner against the 100% mp ver-
sions of SLOG. Figure 14 presents normalized results where the
throughput of SLOG and Spanner at different contention levels is
displayed as a fraction of their throughput at the lowest contention.

Figure 14 shows that Spanner’s throughput decreases rapidly as
contention increases. At the highest contention, Spanner’s through-

 0

 0.2

 0.4

 0.6

 0.8

 1

HOT=10000 HOT=999 HOT=99 HOT=60 HOT=30 HOT=15 HOT=9

SLOG-B 100% mp 0% mh
SLOG-B 100% mp 100% mh

Spanner

Figure 14: SLOG/Spanner normalized throughput

put decreased by a factor of 37 relative to its throughput at low con-
tention. This is because Spanner does not allow conflicting transac-
tions to run during two phase commit and Paxos-implemented geo-
replication. As contention increases, the number of transactions
that can run concurrently decreases. If Cloud Spanner allowed syn-
chronous replication over a larger diameter than their current 1000
mile limit, Paxos would take much longer, and Spanner’s through-
put reduction would be even more severe. In contrast, SLOG main-
tains strict serializability despite doing replication asynchronously,
and does not require two phase commit. Thus, SLOG blocks con-
tending transactions for a much shorter period relative to Spanner5.
It still experiences decreasing throughput as contention increases,
but this decrease is less than a factor of 5 at the highest contention,
as opposed to Spanner’s factor of 37.

Spanner’s latency was similar to Calvin’s for the same experi-
ment from Figure 12. This is because write transactions in both
Calvin and Spanner run Paxos over the geographic diameter of the
deployment. Thus, SLOG has a significant latency advantage over
Spanner for write transactions. However, read-only transactions do
not require Paxos in Spanner and, if they originate near the Paxos
leader, can complete in the same order of magnitude as single-home
transactions in SLOG.

5. RELATED WORK
Asynchronous replication is widely used in geo-replicated dis-

tributed systems [3, 20, 26, 47, 48, 51, 52, 65, 82], and single-
master replication [25, 60] is a popular implementation of asyn-
chronous replication. Most of these systems use weak consistency
models which are able to achieve low latency and high throughput,
but do not support strictly serializable transactions. In order to sup-
port strict serializability, reads and writes must only be processed
by the master copy in such “active-passive” architectures. We dis-
cussed examples of systems that do this in Section 1 and Section 4.
Existing work (prior to SLOG) either do not support transactions
that access data at multiple masters [18, 20, 38, 58, 61, 72], rely
on physical clock synchronization [62], or otherwise yield poor la-
tency for such transactions (see Section 4).

The challenges of supporting general serializable ACID trans-
actions over a globally-replicated and distributed system has been
discussed in detail in prior work [38, 40, 42, 91]. The MDCC [46],

5Spanner’s absolute throughput numbers are also significantly
lower than SLOG’s.

TAPIR [94], Replicated Commit [54], and Carousel [93] protocols
reduce WAN round-trips; however, they still all incur cross-region
latency to commit transactions.

SLOG supports online data remastering which is related to a
large body of work in this area [9, 28, 55, 73, 80]. Unlike G-
Store [23] and L-Store [49], SLOG’s core protocol does not require
remastering. Rather, it is an optimization that handles situations
where data locality access patterns change. Nonetheless, it is an
important feature that is inspired by previous work. SLOG applies
these ideas within the particular deterministic system environment
in which SLOG is built.

SLOG decomposes transactions into multiple LockOnlyTxns in
order to handle multi-region transactions. This approach is related
to other research on transaction decomposition [13, 17, 31, 35, 36,
39, 57, 74, 75]. However, LockOnlyTxns in SLOG do not neces-
sarily include transaction code. Rather, their primary purpose is to
order deterministic processing of a particular transaction relative to
other transactions that may access overlapping datasets. LockOn-
lyTxns in SLOG only include code when it is straightforward to
automatically generate this code from the original transaction. Un-
like other transaction decomposition approaches, the LockOnlyTxn
approach does not result in SLOG placing any kind of restrictions
on the transactions that are being decomposed, and SLOG fully
supports ad-hoc transactions.

Transaction Chains [95] achieves low latency geo-replication by
chopping transactions into pieces, and using static analysis to de-
termine if each hop can execute separately. In contrast, SLOG
does not require any static analysis or independence requirements
of transactions. Furthermore, SLOG supports strict serializability,
whereas Transaction Chains supports only serializability with read-
your-writes consistency.

Previous work explores merging or synchronizing multiple logs
to generate a global serialization order for partitioned systems [15,
24, 50]; however, this work does not support geo-replicated config-
urations. ConfluxDB [18] uses log merging to implement a multi-
replica scheme, but does not support multi-master transactions, and
only supports snapshot isolation.

There have been several proposals for deterministic database sys-
tem designs [43, 44, 45, 69, 78, 79, 83, 84, 85, 87]. These papers
also make the observation that deterministic database systems fa-
cilitate replication since the same input can be independently sent
to two different replicas without concern for replica divergence.
However, none of those deterministic database systems are able to
achieve low-latency geo-replicated transactions.

6. CONCLUSION
Current state-of-the-art geo-replicated systems force their users

to give up one of: (1) strict serializability (2) low latency writes (3)
high transactional throughput. Some widely-used systems force
their users to give up two of them. For example, Spanner ex-
periences poor throughput under data contention, while also pay-
ing high-latency cross-region Paxos for each write. SLOG lever-
ages physical region locality in an application workload in order to
achieve all three, while also supporting online consistent dynamic
“re-mastering” of data as application patterns change over time.

7. ACKNOWLEDGMENTS
We are grateful to Cuong Nguyen, Tasnim Kabir, Jianjun Chen,

Sanket Purandare, Jose Faleiro, Tarikul Papon, and the anonymous
reviewers for their feedback on this paper. We also thank the pa-
per’s shepherd: Phil Bernstein. This work was sponsored by the
NSF under grants IIS-1718581 and IIS-1763797.

8. REFERENCES
[1] https://fauna.com/.
[2] https://github.com/kunrenyale/calvindb.
[3] Riak. http://wiki.basho.com/riak.html.
[4] D. Abadi. Correctness Anomalies Under Serializable

Isolation.
http://dbmsmusings.blogspot.com/2019/06/correctness-
anomalies-under.html.

[5] D. Abadi and M. Freels. Serializability vs Strict
Serializability: The Dirty Secret of Database Isolation
Levels. https://fauna.com/blog/serializability-vs-strict-
serializability-the-dirty-secret-of-database-isolation-levels.

[6] D. J. Abadi. Consistency Tradeoffs in Modern Distributed
Database System Design: CAP is Only Part of the Story.
IEEE Computer, 45(2), 2012.

[7] D. J. Abadi and J. M. Faleiro. An Overview of Deterministic
Database Systems. Communications of the ACM (CACM),
61(9):78–88, September 2018.

[8] M. S. Ardekani, P. Sutra, and M. Shapiro. Non-monotonic
Snapshot Isolation: Scalable and Strong Consistency for
Geo-replicated Transactional Systems. In Proceedings of the
2013 IEEE 32nd International Symposium on Reliable
Distributed Systems, SRDS ’13, pages 163–172, 2013.

[9] M. S. Ardekani and D. B. Terry. A Self-Configurable
Geo-Replicated Cloud Storage System. In Symposium on
Operating Systems Design and Implementation (OSDI),
pages 367–381, 2014.

[10] R. Attar, P. A. Bernstein, and N. Goodman. Site
Initialization, Recovery, and Backup in a Distributed
Database System. IEEE Transactions on Software
Engineering, 10(6):645–650, Nov. 1984.

[11] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination Avoidance in
Database Systems. PVLDB, 8(3):185–196, 2014.

[12] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. In Proceedings of the Conference on
Innovative Data system Research (CIDR), pages 223–234,
2011.

[13] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Concurrency
Control for Step-decomposed Transactions. Information
Systems, 24(9):673–698, December 1999.

[14] P. Bernstein and N. Goodman. A Proof Technique for
Concurrency Control and Recovery Algorithms for
Replicated Databases. Distributed Computing, 2(1):32–44,
Mar 1987.

[15] P. A. Bernstein and S. Das. Scaling Optimistic Concurrency
Control by Approximately Partitioning the Certifier and Log.
IEEE Data Engineering Bulletin, Jan-38(1):32–49, March
2015.

[16] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal
Aspects of Serializability in Database Concurrency Control.
IEEE Transactions on Software Engineering, 5(3):203–216,
May 1979.

[17] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of Multidatabase Transaction Management. The
VLDB Journal, 1(2):181–240, Oct. 1992.

[18] P. Chairunnanda, K. Daudjee, and M. T. Ozsu. ConfluxDB:
Multi-Master Replication for Partitioned Snapshot Isolation
Databases. PVLDB, 7(11):947–958, 2014.

[19] J. Chen, Y. Chen, Z. Chen, A. Ghazal, G. Li, S. Li, W. Ou,
Y. Sun, M. Zhang, and M. Zhou. Data Management at
Huawei: Recent Accomplishments and Future Challenges. In
IEEE International Conference on Data Engineering
(ICDE), pages 13–24, 2019.

[20] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving
Platform. PVLDB, 1(2):1277–1288, 2008.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 143–154, 2010.

[22] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford.
Spanner: Google’s Globally Distributed Database. ACM
Transactions on Computer Systems (TOCS), 31(3):8:1–8:22,
Aug. 2013.

[23] S. Das, D. Agrawal, and A. El Abbadi. G-Store: A Scalable
Data Store for Transactional Multi Key Access in the Cloud.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 163–174, 2010.

[24] K. Daudjee and K. Salem. Inferring a Serialization Order for
Distributed Transactions. In IEEE International Conference
on Data Engineering (ICDE), 2006.

[25] K. Daudjee and K. Salem. Lazy Database Replication with
Snapshot Isolation. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2006.

[26] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, 2007.

[27] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel.
Causal Consistency and Latency Optimality: Friend or Foe?
PVLDB, 11(11):1618–1632, 2018.

[28] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and
A. El Abbadi. Squall: Fine-grained live reconfiguration for
partitioned main memory databases. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 299–313, 2015.

[29] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
Notions of Consistency and Predicate Locks in a Database
System. Communications of the ACM (CACM),
19(11):624–633, Nov. 1976.

[30] J. Faleiro, A. Thomson, and D. J. Abadi. Lazy Evaluation of
Transactions in Database Systems. In Proceedings of the
2014 International Conference on Management of Data,
SIGMOD ’14, 2014.

[31] J. M. Faleiro, D. Abadi, and J. M. Hellerstein. High
Performance Transactions via Early Write Visibility.
PVLDB, 10(5):613–624, 2017.

[32] J. M. Faleiro and D. J. Abadi. FIT: A Distributed Database
Performance Tradeoff. IEEE Data Engineering Bulletin,
38(1): 10-17, 2015.

[33] J. M. Faleiro and D. J. Abadi. Rethinking Serializable
Multiversion Concurrency Control. PVLDB,
8(11):1190–1201, 2015.

[34] J. M. Faleiro and D. J. Abadi. Latch-free Synchronization in
Database Systems: Silver Bullet or Fool’s Gold? In
Proceedings of the Conference on Innovative Data system
Research (CIDR), 2017.

[35] H. Garcia-Molina. Using Semantic Knowledge for
Transaction Processing in a Distributed Database. ACM
Transactions on Database Systems (TODS), 8(2):186–213,
June 1983.

[36] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of
the 1987 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’87, pages 249–259, 1987.

[37] D. K. Gifford. Information Storage in a Decentralized
Computer System. PhD thesis, Stanford, CA, USA, 1981.
AAI8124072.

[38] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers
of Replication and a Solution. In Proceedings of the 1996
International Conference on Management of Data, SIGMOD
’96, 1996.

[39] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. In Morgan Kaufmann Publishers Inc., 1993.

[40] P. Helland. Life Beyond Distributed Transactions: An
Apostate’s Opinion. In Proceedings of the Conference on
Innovative Data system Research (CIDR), 2007.

[41] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Transactions on
Programming Languages and Systems (TOPLAS),
12(3):463–492, July 1990.

[42] C. Humble and F. Marinescu. Trading consistency for
scalability in distributed architectures.
http://www.infoq.com/news/2008/03/ebaybase, 2008.

[43] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo.
Deterministic scheduling for transactional multithreaded
replicas. In IEEE SRDS, 2000.

[44] E. P. C. Jones, D. J. Abadi, and S. R. Madden. Concurrency
control for partitioned databases. In Proceedings of the 2010
International Conference on Management of Data, SIGMOD
’10, 2010.

[45] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication.
In Proceedings of the International Conference on Very
Large Data Bases (VLDB), 2000.

[46] T. Kraska, G. Pang, M. Franklin, S. Madden, and A. Fekete.
MDCC: Multi-data center consistency. In European
Conference on Computer Systems, 2013.

[47] A. Lakshman and P. Malik. Cassandra: A Decentralized
Structured Storage System. SIGOPS Operating Systems
Review, 44(2):35–40, April 2010.

[48] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguica, and
R. Rodrigues. Making Geo-Replicated Systems Fast as
Possible, Consistent when Necessary. In Operating Systems
Design and Implementation (OSDI), 2012.

[49] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan, and
Z. Wang. Towards a Non-2PC Transaction Management in
Distributed Database Systems. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
’16, pages 1659–1674, 2016.

[50] C. Liu, B. G. Lindsay, S. Bourbonnais, E. Hamel, T. C.
Truong, and J. Stankiewitz. Capturing Global Transactions
from Multiple Recovery Log Files in a Partitioned Database
System. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2003.

[51] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS. In
Proceedings of the Symposium on Operating Systems
Principles, SOSP ’11, 2011.

[52] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger Semantics for Low-Latency
Geo-Replicated Storage. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’13, pages 313–328, 2013.

[53] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaram, D. J.
Abadi, J. Aspnes, S. Siddhartha, and M. Balakrishnan. The
FuzzyLog: A Partially Ordered Shared Log. In 13th USENIX
Symposium on Operating Systems Design and
Implementation, pages 357–372, Oct. 2018.

[54] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. E.
Abbadi. Low-latency Multi-datacenter Databases using
Replicated Commit. PVLDB, 6(9):661–672, 2013.

[55] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and
S. Robertson. Elastic Scale-Out for Partition-Based Database
Systems. In IEEE International Conference on Data
Engineering Workshops, ICDEW ’12, pages 281–288, 2012.

[56] H. Moniz, J. a. Leitão, R. J. Dias, J. Gehrke, N. Preguiça, and
R. Rodrigues. Blotter: Low Latency Transactions for
Geo-Replicated Storage. In Proceedings of the 26th
International Conference on World Wide Web, WWW ’17,
pages 263–272, 2017.

[57] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
More Concurrency from Distributed Transactions. In
Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[58] F. Nawab, D. Agrawal, and A. El Abbadi. DPaxos:
Managing Data Closer to Users for Low-Latency and Mobile
Applications. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages
1221–1236, 2018.

[59] F. Nawab, V. Arora, D. Agrawal, and A. E. Abbadi.
Minimizing Commit Latency of Transactions in
Geo-Replicated Data Stores. In Proceedings of the 2015
International Conference on Management of Data, SIGMOD
’15, 2015.

[60] E. Pacitti, P. Minet, , and E. Simon. Fast Algorithms for
Maintaining Replica Consistency in Lazy Master Replicated
Databases. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), 1999.

[61] E. Pacitti, P. Minet, and E. Simon. Replica Consistency in
Lazy Master Replicated Databases. In Kluwer Academic,
9(3), May 2001.

[62] E. Pacitti, M. T. zsu, and C. Coulon. Preventive Multi-Master
Replication in a Cluster of Autonomous Databases. In
Proceedings of Euro-Par, 2003.

[63] C. Papadimitriou, P. Bernstein, and J. Ronthie. Some
Computational Problems Related to Database Concurrency
Control. In Proceedings of the Conference on Theoretical
Computer Science, pages 275–282, 1977.

[64] C. H. Papadimitriou. The Serializability of Concurrent
Database Updates. Journal of the ACM, 26(4):631–653, Oct.
1979.

[65] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible Update Propagation for Weakly
Consistent Replication. In Proceedings of the Symposium on
Operating Systems Principles, SOSP ’97, 1997.

[66] S. Proctor. Exploring the Architecture of the NuoDB
Database, Part 1. Blog Post.
https://www.infoq.com/articles/nuodb-architecture-1.

[67] S. Proctor. Exploring the Architecture of the NuoDB
Database, Part 2. Blog Post.
https://www.infoq.com/articles/nuodb-architecture-2.

[68] K. Ren, J. Faleiro, and D. J. Abadi. Design Principles for
Scaling Multi-core OLTP Under High Contention. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1583–1598,
2016.

[69] K. Ren, A. Thomson, and D. J. Abadi. Lightweight Locking
for Main Memory Database Systems. PVLDB, 6(2):145–156,
2012.

[70] K. Ren, A. Thomson, and D. J. Abadi. An Evaluation of the
Advantages and Disadvantages of Deterministic Database
Systems. PVLDB, 7(10):821–832, 2014.

[71] K. Ren, A. Thomson, and D. J. Abadi. VLL: A Lock
Manager Redesign for Main Memory Database Systems.
VLDB Journal 24(5): 681-705, October 2015.

[72] J. Runkel. Active-Active Application Architectures with
MongoDB. https://www.mongodb.com/blog/post/active-
active-application-architectures-with-mongodb.

[73] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq,
and U. F. Minhas. Accordion: Elastic Scalability for
Database Systems Supporting Distributed Transactions.
PVLDB, 7(12):1035–1046, 2014.

[74] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez.
Transaction Chopping: Algorithms and Performance Studies.
ACM Transactions on Database Systems (TODS),
20(3):325–363, September 1995.

[75] D. Shasha, E. Simon, and P. Valduriez. Simple Rational
Guidance for Chopping up Transactions. In Proceedings of
the 1992 ACM SIGMOD International Conference on
Management of Data, pages 298–307, 1992.

[76] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A Distributed SQL Database That Scales. PVLDB,
6(11):1068–1079, 2013.

[77] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
Storage for Geo-replicated Systems. In Proceedings of the
Symposium on Operating Systems Principles, SOSP ’11,
pages 385–400, 2011.

[78] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The End of an Architectural Era
(It’s Time for a Complete Rewrite). In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
2007.

[79] M. Stonebraker and A. Weisberg. The VoltDB Main Memory
DBMS. IEEE Data Engineering Bulletin, 36(2):21–27, June
2013.

[80] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store:
Fine-grained Elastic Partitioning for Distributed Transaction
Processing Systems. PVLDB, 8(3):245–256, 2014.

[81] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session Guarantees for
Weakly Consistent Replicated Data. In Proceedings of the
Third International Conference on Parallel and Distributed
Information Systems, PDIS ’94, pages 140–149, 1994.

[82] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
Proceedings of the Symposium on Operating Systems
Principles, SOSP ’95, 1995.

[83] A. Thomson and D. J. Abadi. The case for determinism in
database systems. PVLDB, 3(1):70–80, 2010.

[84] A. Thomson and D. J. Abadi. Modularity and Scalability in
Calvin. In IEEE Data Engineering Bulletin, 36(2): 48-55,
2013.

[85] A. Thomson and D. J. Abadi. Deterministic database
systems. US Patent 8700563, 2014.

[86] A. Thomson and D. J. Abadi. CalvinFS: Consistent WAN
Replication and Scalable Metadata Management for
Distributed File Systems. In FAST, pages 1–14, 2015.

[87] A. Thomson, T. Diamond, P. Shao, K. Ren, S.-C. Weng, and
D. J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In Proceedings of the 2012
International Conference on Management of Data, SIGMOD
’12, 2012.

[88] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Fast Distributed Transactions and Strongly
Consistent Replication for OLTP Database Systems. ACM
Transactions on Database Systems (TODS),
39(2):11:1–11:39, 2014.

[89] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design
considerations for high throughput cloud-native relational
databases. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages
1041–1052, 2017.

[90] A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta,
M. Brahmadesam, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvilli, and X. Bao. Amazon aurora: On avoiding
distributed consensus for i/os, commits, and membership
changes. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, pages
789–796, 2018.

[91] W. Vogels. Eventually Consistent. Queue, 6(6):14–19, Oct.
2008.

[92] S.-H. Wu, T.-Y. Feng, M.-K. Liao, S.-K. Pi, and Y.-S. Lin.
T-Part: Partitioning of Transactions for Forward-Pushing in
Deterministic Database Systems. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
’16, pages 1553–1565, 2016.

[93] X. Yan, L. Yang, H. Zhang, X. C. Lin, B. Wong, K. Salem,
and T. Brecht. Carousel: Low-latency transaction processing
for globally-distributed data. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD
’18, pages 231–243, 2018.

[94] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. K. Ports. Building consistent transactions with
inconsistent replication. ACM Transactions on Computer
Systems (TOCS), 35(4), Dec. 2018.

[95] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction chains: achieving serializability with low
latency in geo-distributed storage systems. In Proceedings of
the Symposium on Operating Systems Principles, SOSP ’13,
2013.

