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FOR  DECADES,  THE strongest guarantee that database 
systems users could expect from their system was 
“serializability.” This guarantee ensured that even 
though the system would process many transactions 
concurrently, the final state of the database system 
would be equivalent to as if it had processed all 
transactions serially, one after another. However, the 
database system would make no guarantee about 
which serial order that processed transactions would be 
equivalent to—arbitrary nondeterministic events such 
as operating system thread scheduling, deadlock, or 
server failure could change this equivalent serial order.

Research from the past decade has discovered 
a number of advantages to architecting database 
systems with a stronger set of guarantees. Instead of 
promising equivalence to any arbitrary serial order, 

the system instead guarantees equiva-
lence to processing transactions in 
a single predetermined serial order. 
Furthermore, there is only one pos-
sible state the system may end up in, 
despite the presence of potential non-
deterministic code in transaction log-
ic. Research has shown many benefits 
from this stronger set of guarantees, 
from simpler and higher performance 
database replication, to improved 
system scalability, to removing dis-
tributed commit protocols. Further-
more, while the early work assumed 
the increased set of guarantees would 
decrease the ability of the system to 
process transactions concurrently, 
more recent research has shown the 
total opposite result: transaction con-
currency has increased. This article 
describes these benefits of determin-
istic database systems in more detail, 
along with a discussion of the primary 
disadvantages: the lack of support of 
interactive transactions in the sys-
tem, and the need for transaction pre-
processing prior to execution.

Principles and Properties
Modern deterministic database sys-
tems are built on top of nondetermin-
istic operating systems, nondetermin-
istic networking, and machines that 
may fail in arbitrary ways. Nonetheless, 
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 key insights
˽˽ Every major commercial database system 

available today is nondeterministic.  
This has led to headaches for 
practitioners concerning database 
replication, scale-out, and concurrency. 

˽˽ Deterministic database systems make 
database replication trivial—the same 
input is sent to every replica and they  
are guaranteed not to diverge.  
By reducing the cost of replication,  
they facilitate higher replica consistency 
levels (albeit constrained by CAP  
trade-offs) and provide a high-performance, 
scalable, but strongly consistent 
alternative to NoSQL systems.

˽˽ Deterministic database systems have 
shown promise to remove expensive 
commit protocols in scalable  
distributed deployments, and enable 
higher amounts of transactional 
throughput and concurrency. I
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˲˲ Recovery from the input log. Data-
base state recovery is typically much 
simpler in deterministic database sys-
tems relative to traditional nondeter-
ministic database systems. Determin-
istic database systems can simply load 
a checkpoint23 and play the input log 
forward from there in order to recover 
state at the time of the failure (and 
continue from there).19,26,31 In con-
trast, the input request log is not suf-
ficient to recover state in non-deter-
ministic systems. Instead, they have to 
replay history, which typically involves 
physically reloading every page that 
was modified from a “redo log.”20

˲˲ Do not rely on the OS for help en-
forcing determinism. Enforcing de-
terminism at the level of abstraction 
of the database system avoids over-
heads associated with determinism 
at the level of an operating system 
or language runtime. Lower levels 
of abstraction cannot exploit appli-
cation-specific semantics to enforce 
determinism, and must therefore 
impose more severe restrictions 
during processing (such as deter-
ministic mutex acquisition) that 
are expensive and unnecessary. In 
contrast, deterministic database 
systems can exploit the application-
specific fact that the order of non-
conflicting transactions does not 
need to be constrained, even if they 
acquire the same mutex(es) internal-
ly, because reordering them does not 
affect externally visible state.

Implementation Techniques
Despite the complexity of building a 
deterministic system on top of non-
deterministic components, there are 
many different ways to implement 
deterministic database systems. The 
easiest solution is to not support con-
current transaction execution.28 This 
eliminates any nondeterminism aris-
ing from OS thread scheduling, and 
other sources of nondeterminism can 
be side-stepped using the techniques 
described earlier (for example, replace 
nondeterministic code in the prepro-
cessor or recreate transactional state 
after a hardware failure). Unfortunate-
ly, not supporting concurrency would 
result in extremely poor transactional 
throughput and scalability. Therefore, 
this section discusses three approach-
es to supporting concurrent transac-

given an initial state and a defined in-
put to the system, they must end up 
in only one possible final state. They 
therefore must be architected accord-
ing to the following principles:

˲˲ Input preprocessing. Existing non-
deterministic database systems are 
typically architected such that a client 
communications layer receives trans-
actional input from clients and hands 
them directly to the database system 
execution layer for processing. Usually, 
different communications threads 
will work independently from each 
other, receiving transactions from 
different clients and passing them to 
execution threads. This architecture is 
not viable for deterministic database 
systems because deterministic guar-
antees can only be made when there is 
a clear, universally agreed-upon input. 
When multiple threads are receiving 
input without any coordination with 
each other, there is no systemwide 
agreement on input.

Therefore, some component of 
the system must create a canonical 
record of the input to the system. On 
a single-machine architecture, this is 
often done by feeding all transactions 
through a single thread that records 
the input transactions in the order it 
observes them. This thread sits be-
tween the client communications 
threads and the database execution 
threads. At the other extreme, geo-
replicated, highly scalable, shared-
nothing systems such as Calvin33,34 
implement a distributed, replicated 
append-only log via Paxos, and all 
transactions are fed through this log 
before processing.

The preprocessing layer also re-
places nondeterministic code inside 
transaction logic with deterministic 
code. For example, code that makes 
system calls to get the current time or 
to generate a random number must 
be executed by the preprocessor and 
be replaced by a fixed value. Note 
that this recording of input and pre-
execution of nondeterministic code 
assumes that the preprocessing layer 
has access to the entire transaction 
logic prior to execution. We will dis-
cuss this assumption and correspond-
ing limitation of deterministic data-
base systems later.

˲˲ Nondeterministic failures do not 
cause transaction failure. Widely used 

database system recovery protocols 
such as ARIES20 abort all in-process 
transactions upon a server failure. 
Since server failures are fundamen-
tally nondeterministic events, deter-
ministic database systems cannot al-
low the commit status of transactions 
(and their effect on the final state of 
the database system) to be affected by 
such nondeterministic events. Thus, 
deterministic database systems typi-
cally recover by recreating state at the 
time of a nondeterministic failure, 
and continuing all in-process transac-
tions from that point instead of abort-
ing them and restarting them later.

˲˲ Thread race conditions cannot af-
fect database state. Concurrent trans-
actions in a database system typically 
run in different threads or processes 
that are scheduled and managed by 
the operating system. Since the op-
erating system schedules threads in 
a fundamentally nondeterministic 
way, many types of race conditions 
that affect database state are pres-
ent in traditional database systems. 
For example, in a retail application 
where two transactions simultane-
ously attempt to purchase the same 
last item in an inventory, only one 
of them can succeed. In traditional 
pessimistic, locking-based systems, 
if these two transactions are run-
ning in different threads, whichever 
thread requests the lock on the in-
ventory item first will be the one to 
succeed. However, this is entirely 
dependent on how the OS schedules 
the competing threads. In tradi-
tional optimistic systems, it is the 
thread that starts the validation 
phase first that will succeed. This 
again is entirely dependent on OS 
thread scheduling. Such race con-
ditions cannot be present in deter-
ministic database systems. 

˲˲ Deadlocks cannot occur in the 
system. Deadlocks are typically the 
outcome of nondeterministic race 
conditions, and are resolved through 
aborting at least one of the deadlocked 
transactions. As noted, deterministic 
databases systems cannot allow non-
deterministic events to lead to trans-
action failure. Therefore, either the 
deterministic database system must 
use non-locking concurrency control 
protocols, or they must use deadlock 
avoidance techniques.
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tion execution while still ensuring de-
terministic guarantees.

Partitioning. This simplest ap-
proach to supporting concurrent 
transaction execution despite the 
nondeterministic race conditions as-
sociated with multi-threaded execu-
tion on modern operating systems is 
to ensure that each thread is com-
pletely independent from each other. 
Such threads can be scheduled arbi-
trarily without affecting the state of 
the database system. This approach is 
taken by H-Store.30

H-Store partitions the database 
across the number of cores in a dis-
tributed set of servers. A single thread 
runs on each core, processing all 
transactions that access data stored 
on that core’s partition. As long as 
all transactions only access data on 
a single partition, then each thread 
is completely independent from ev-
ery other thread. However, transac-
tions that access data from multiple 
partitions require expensive coordi-
nation logic, which in some imple-
mentations results in global serial-
ization of these transactions. Thus, 
H-Store supports high amounts of 
concurrency for partitionable work-
loads, but limited concurrency for 
workloads with large numbers of 
multi-partition transactions.

Ordered locking. If the database 
system is not partitioned, different 
threads are capable of accessing the 
same data. Therefore, race conditions 
that could affect database state exist, 
and arise from OS thread schedul-
ing. However, even in the absence of 
needing to implement deterministic 
guarantees, database systems have 
always had to implement other guar-
antees that are endangered by race 
conditions arising from OS thread 
scheduling. Therefore, database 
systems have long implemented 
defensive mechanisms that prevent 
these race conditions, the most preva-
lent of which involve locking data.

Locking can also be used to imple-
ment deterministic guarantees, but 
more restrictive locking algorithms 
are necessary relative to nondetermin-
istic locking. Several different deter-
ministic locking algorithms have been 
proposed,25,27,31 but the high-level idea 
is that locks must be requested in the 
order that transactions appear in the 

input log. If transaction X appears 
before transaction Y in the input log, 
then all of transaction X’s locks must 
be requested before the first lock from 
transaction Y is requested. Further-
more, locks must be granted in the or-
der that they are requested.

Requesting (and granting) locks 
in the order they appear in the input 
log is clearly deadlock-free since it 
will be impossible for two (or more) 
different transactions to hold locks 
that the other one needs. Further-
more, it is clear the final database 
state after concurrently executing 
transactions in the input log will be 
equivalent to what the state would 
have been if it had serially executed 
the transactions in the input log—one 
of the fundamental principles of de-
terminism we discussed.

Unfortunately, there are situations 
where this approach also can lead to 
limited concurrency. In particular, if 
it is unknown at the beginning of a 
transaction which data it will need to 
access (and therefore need to lock), 
then any subsequent transaction can-
not begin until the access-set of the 
previous transaction is determined, 
because it cannot request any locks 
until the previous transaction is fin-
ished with all of its requests. Thus, 
if all transactions do not know their 
access-sets in advance, they must run 
approximately serially with no concur-
rency whatsoever.

In practice, deterministic database 
systems that use ordered locking do 
not wait until runtime for transac-
tions to determine their access-sets. 

Instead, they use a technique called 
OLLP33 where if a transaction does 
not know its access-sets in advance, 
it is not inserted into the input log. 
Instead, it is run in a trial mode that 
does not write to the database state, 
but determines what it would have 
read or written to if it was actually be-
ing processed. It is then annotated 
with the access-sets determined dur-
ing the trial run, and submitted to the 
input log for actual processing. In the 
actual run, every replica processes the 
transaction deterministically, acquir-
ing locks for the transaction based 
on the estimate from the trial run. In 
some cases, database state may have 
changed in a way that the access sets 
estimates are now incorrect. Since a 
transaction cannot read or write data 
for which it does not have a lock, it 
must abort as soon as it realizes that 
it acquired the wrong set of locks. But 
since the transaction is being pro-
cessed deterministically at this point, 
every replica will independently come 
to the same conclusion that the wrong 
set of locks were acquired, and will 
all independently decide to abort the 
transaction. The transaction then gets 
resubmitted to the input log with the 
new access-set estimates annotated.

Dependency graphs. Recent de-
terministic system implementations 
neither use partitioning nor locking. 
Instead, a dependency graph is gen-
erated from the transactional input 
log. Each node in the graph is a trans-
action, and edges in the graph corre-
spond to conflicts between transac-
tions.8–10 The direction of each edge 

Figure 1. Dependency graph scheduling. 
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transactions. Transactions are executed in an order consistent with  
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Replication. All modern highly 
available OLTP database systems rep-
licate database state in order to be ro-
bust to various failure scenarios. Fur-
thermore, replication can improve the 
performance of read-only queries by 
serving them from the closest replica 
to the client (or from the least over-
loaded replica).

The consequence of using non-
deterministic concurrency control 
protocols is that two servers running 
exactly the same database software 
with the same initial state and receiv-
ing identical sequences of transac-
tion requests may nonetheless yield 
completely divergent final database 
states. This is because the strongest 
isolation guarantee available in tra-
ditional database systems is serializ-
ability that, as noted at the outset of 
this article, allows multiple transac-
tions to execute in parallel, interleav-
ing their database reads and writes, 
while guaranteeing equivalence be-
tween the final database state and the 
state that would have resulted had 
transactions been executed in some 
serial order. The key modifier here is 
“some.” The agnosticism of serializa-
tion guarantees to which serial order 
is emulated generally means this or-
der is never determined in advance; 
rather it is dependent on a vast array 
of factors entirely orthogonal to the 
order in which transactions may have 
entered the system, including thread 
and process scheduling, buffer and 
cache management, hardware fail-
ures, variable network latency, and 
deadlock resolution schemes.

Therefore, traditional replication 
schemes must take precautions to 
prevent or limit such divergence.  
Commonly used replication schemes 
generally fall into one of three fami-
lies, each with its own subtleties, vari-
ations, and costs:

Post-write replication. Writes are 
performed by a single replica first, and 
the replication occurs after the write 
is completed. This category includes 
traditional master-slave replication, 
where all transactions are executed 
by a primary “master” system, whose 
write sets are then propagated to all 
other “slave” replica systems, which 
update data in the same order so as 
to guarantee convergence of their 
final states with that of the master. 

is determined by the order that the 
two transactions being connected by 
the edge appear in the input log (see 
Figure 1). Once the graph is gener-
ated, it is used to manage execution 
of transactions. In particular, transac-
tions that are not connected to each 
other in the dependency graph can be 
processed by independent execution 
threads without concern for race con-
ditions between them.

Dependency graphs avoid the need 
for any centralized processing or da-
ta-structures during both graph con-
struction and execution.8 For graph 
construction, the set of database keys 
can be partitioned across a set of 
graph construction threads. Execu-
tion threads can independently crawl 
the graph to find independent trans-
actions to process. 

As we will describe, multi-version-
ing can be used to take this idea a 
step further and enable concurrent 
execution of transactions even if they 
are connected in the dependency 
graph.8 Each write creates a new ver-
sion of a data item, and reads are di-
rected to the correct version based on 
where the transaction that is doing 
the read appears in the dependency 
graph. Therefore, two transactions 
that write the same data item can be 
run concurrently, and a transaction 
that reads a data item can be run con-
currently with another transaction 
that writes the same data item if the 
read-transaction appears earlier in 
the input log.

In order to create the dependency 
graph, the set of data accessed by a 
transaction must be known prior to 
processing it. The OLLP techniques dis-
cussed earlier are thus also applicable 
for dependency-graph based systems.

Advantages of Determinism
The most straightforward and well-
understood advantage of determin-
istic database systems is the benefit 
to database replication—as long as 
all replicas receive the same input, 
they are guaranteed not to diverge. 
Indeed, replication was the primary 
motivator behind the early determin-
istic database systems.14,15,28,31 How-
ever, recent work has shown many 
other advantages to the deterministic 
architecture, from scalability, to mod-
ularity, to concurrency. 

The only 
coordination that 
needs to happen 
in a deterministic 
database system is 
the communication 
required to agree  
on the input  
to the system.
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This is typically implemented via log 
shipping16,22—the master sends out 
the transaction log to be replayed at 
each replica.

This category also includes 
schemes where different data items 
have different masters, and variations 
on this theme where different nodes 
can obtain “leases” to become the 
master for a particular data item. In 
these cases, transactions that touch 
data spanning more than one master 
require a network communication 
protocol such as two-phase commit 
to ensure consistency across replicas. 
Distributed deadlock must also be de-
tected if locking-based concurrency 
control protocols are used.

For both the traditional master-
slave, and variations with different 
data being mastered at different 
nodes, writes occur at the master 
node first, and data is replicated after 
the write has completed. In order to 
guarantee availability and durability, 
an acknowledgment from a replica 
must be received by the master before 
the transaction can commit. During 
this waiting period, no conflicting 
transaction can run, because until a 
transaction commits, it still has the 
possibility of aborting, and the isola-
tion guarantee of database systems re-
quire that concurrent transactions do 
not see writes of aborted transactions. 
Thus, in addition to the fundamental 
latency cost of replication, post-write 
replication also incurs a concurrency/
throughput cost.

Active replication with synchronized 
locking. A quorum of replicas have to 
agree on write locks granted to data 
items.3 Since writes can only proceed 
with an agreed upon exclusive lock, 
all replicas will perform updates in a 
manner equivalent to the same serial 
order, guaranteeing consistency. The 
disadvantage of this scheme is the ad-
ditional latency due to the network 
communication for the lock synchro-
nization. For this reason, it is used 
much less frequently in practice than 
post-write replication schemes.

Replication with lazy synchroniza-
tion. Multiple active replicas execute 
transactions independently—possibly 
diverging temporarily—and reconcile 
their states at a later time.5,11,21 Lazy 
synchronization schemes enjoy good 
performance and CAP-level availabil-

ity (availability of minority partitions 
during a network partition) at the cost 
of consistency.

Deterministic database systems 
are able to achieve the consistency 
and availability of post-write replica-
tion without paying the concurrency 
and throughput costs. As long as all 
replicas agree on the input to the da-
tabase system (for example, via the 
preprocessing layer), each replica in-
dependently reaches a final state con-
sistent with that of every other replica 
while incurring no further agreement 
or synchronization overhead.a Thus, 
the only coordination that needs to 
happen in a deterministic database 
system is the communication re-
quired to agree on the input to the 
system. This coordination happens 
entirely prior to transaction execu-
tion, and thus does not increase the 
window for which conflicting trans-
actions cannot run.

Scalability. It is well known that 
single-server database systems will 
always have limited scalability. High-
ly scalable database systems must 
“scale-out”—partitioning the data 
across a distributed set of servers, and 
coordinating transaction processing 
among them. However, distributed 
servers may fail independently from 
each other, which risks “atomicity” 
properties of transactions (where 
either the entire transaction is pro-
cessed or none of it is, but nothing in 
between). Therefore, traditional dis-
tributed database systems typically 
run distributed commit protocols 
such as “two-phase commit” that guar-
antee atomicity by ensuring all nodes 
involved in processing a transaction 
have not failed and are prepared to 
commit, and guarantee durability by 
ensuring the results of a transaction 
have reached stable storage and that 
a failure of a node during the protocol 
will not prevent its ability to commit 
the transaction upon recovery. 

Due to the differences in the way 
failures are handled in determin-

a	 One downside of this approach is it requires 
full processing of every transaction on every 
replica, which can be more compute intensive 
than just replaying a log. Therefore, some de-
terministic database systems lazily process 
transactions,10 opening up the possibility of 
copying the values of writes from a replica in-
stead of calculating them locally.

istic systems, much of the effort of 
traditional commit protocols is un-
necessary. As noted, while traditional 
systems abort all in-process transac-
tions on a failed node, deterministic 
systems simply delay the completion 
of in-process transactions until the 
failed node recovers.b

Nondeterministic failure (no mat-
ter the reason for the failure, for ex-
ample, a failed node, corrupt mem-
ory, or out-of-memory/disk) will not 
result in a transaction being aborted, 
since the database can always recover 
its state at the time of the crash by 
loading a check-pointed snapshot 
of database state, and replaying the 
input transaction log deterministi-
cally from that point.19,23,31,33 Since 
the failure was nondeterministic, 
the transaction will eventually suc-
ceed.c Therefore, a distributed com-
mit protocol does not need to worry 
about ensuring that no node fails 
during the commit protocol, and it 
does not need to collect votes from 
nodes involved in the transaction if 
the only reason why they would vote 
against a transaction committing is 
due to node (or any other type of non-
deterministic) failure. Put a different 
way: the only thing a commit protocol 
must check is whether there was any 
node that executed code that could 
deterministically cause an abort (for 
example, an integrity constraint be-
ing violated).

For transactions that do not contain 
code that could cause a transaction 
to deterministically abort, no com-
mit protocol whatsoever is required 
in deterministic database systems. 
For transactions that do contain code 
that could result in a deterministic 
abort, nodes involved in those transac-
tions can vote ‘yes’ as soon as they can 
be sure they will not deterministically 

b	 Another benefit of determinism is helpful 
here: since replicas are (in parallel) progress-
ing through the same database states in the 
same order, then if replicas of this failed node 
remain active, then the rest of the database 
nodes do not need to wait for the failed node 
to recover. They can proceed with transaction 
processing and if they need data stored on the 
failed node as part of a distributed transac-
tion, they can reroute that request to live rep-
licas of the failed node.

c	 In the case of out-of-memory/disk, it may need 
to replay this log on a new/larger database 
server node.
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transaction X, the system prevents 
all transactions that conflict with X 
(transactions that write and in some 
cases even read the same data as X) 
from making progress not only while 
X is being processed, but also during 
X’s commit protocol. In traditional 
nondeterministic database systems, 
the commit protocol can be a large 
percentage of overall transaction 
process time. Thus, by reducing the 
length of the protocol, deterministic 
systems reduce the time period for 
which conflicting transactions can-
not run. This increases the concurren-
cy of the system under high-conflict 
workloads, thereby improving both 
throughput and scalability.

Concurrency. Deterministic execu-
tion requires that transactions are ex-
ecuted according to a predefined se-
rial order. This requirement is stricter 
than that required for an execution to 
be serializable, which only requires 
that transactions execute according 
to some serial order. Surprisingly, this 
more restrictive requirement permits 
more concurrency among conflicting 
transactions at runtime.

Multi-version concurrency control. 
Modern database systems increas-
ingly store data in a multi-versioned 
format. Each update to a record is 
associated with a unique version. 
An update creates a new version 
of the record and prior values of 
the record are preserved in old ver-
sions. Multi-versioning is attractive 
because, in principle, reads and 
writes to the same data item can be 
decoupled; reads can be satisfied 
by old versions while writes create 
new versions. Unfortunately, while 
this decoupling of reads and writes 
can be exploited by weaker consis-
tency levels, such as snapshot isola-
tion, it is insufficient to guarantee 
serializable execution. Serializable 
multi-version concurrency control 
(MVCC) protocols restrict concur-
rency between conflicting reads and 
writes, and are consequently un-
able to effectively exploit the pres-
ence of multiple record versions. 
Indeed, recently proposed serializ-
able MVCC protocols17 bear signifi-
cant resemblance to single-version 
protocols.35 

As mentioned previously, deter-
ministic database systems create a 

abort the transaction. Therefore, trans-
actions do not need to wait until the 
end of processing before initiating the 
commit protocol.

Deterministic database systems 
thus dramatically reduce the latency 
of the commit protocol. Instead of 
taking two or three rounds of commu-
nication in traditional nondetermin-
istic systems, they take at most one 
round of communication in determin-

istic systems, and sometimes no com-
munication is required at all. Further-
more, they enable the overlap of the 
commit protocol with transactional 
processing, thereby further reducing 
the latency of the protocol.

This advantage of shortening the 
commit protocol is far more signifi-
cant than the obvious latency advan-
tage discussed thus far. In general, 
if a database system is processing 

Figure 2. Throughput of BOHM’s deterministic MVCC protocol vs. state-of-the-art 
nondeterministic single-version (which uses pessimistic locking) and multi-version 
protocols. 

Each transaction performs two updates and eight reads under high 
contention. Records accessed come from a set of 1,000,000 records, 
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global log containing all transactions 
that have been input to the system. 
The system then guarantees concur-
rent execution in a fashion that is 
equivalent to processing all transac-
tions serially in the order that they 
appear in this log. We described how 
a dependency graph can be generated 
from this log that explicitly tracks the 
read/write dependencies across trans-
actions. This dependency graph can 
be used to precisely determine which 
versions must be read and written by 
transactions. Conflicting writes—and 
by extension the versions correspond-
ing to those writes—are resolved ac-
cording to the direction of the edges 
in this graph. The graph is also used 
to determine the correct version of a 
data record to read.

This technique allows for the fol-
lowing increases in concurrency in 
serializable MVCC implementations:

Reads never block writes. The ver-
sion of each record that must be 
read by a transaction is determined 
by its position in the dependency 
graph, prior to transaction execution. 
Therefore, in order to satisfy a read, 
a transaction must simply wait until 
the version has been created by the 
corresponding writing transaction. 
As a consequence, a reading transac-
tion does not need to block the execu-
tion of any writing transactions. Note, 
however, that reads may still have to 
block for the appropriate version to be 
produced by a corresponding write.

Writes do not conflict with each oth-
er. In several serializable and (non-se-
rializable) snapshot isolation MVCC 
protocols, if two concurrent transac-
tions attempt to perform conflicting 
writes to the same record, then one of 
the transactions is aborted.2,17 These 
write-write conflicts are disallowed 
to prevent lost updates: a concurrency 
anomaly in which one transaction’s 
writes are superseded by a later trans-
action, without the later transaction 
being aware of the former’s write.2 
While aborting transactions on en-
countering write-write conflicts is 
sufficient to prevent lost updates, it 
is not necessary. For example, if the 
later transaction updates the record 
without reading it, then the later 
transaction’s outcome is unaffected 
by the former write. In a determin-
istic database system implemented 

via dependency graphs, write-write 
conflicts are resolved according to 
the order in which they appear in the 
graph. Neither transaction is abort-
ed, and lost updates are eliminated 
by the waiting necessitated by write-
read conflicts. 

In single-versioned concurrency 
protocols and recently proposed high 
performance (non-deterministic) se-
rializable MVCC protocols, neither 
of these concurrency guarantees are 
possible.8 Thus, this deterministic 
dependency graph approach yields 
a fundamental improvement in con-
currency relative to these other ap-
proaches. The higher the overlap of 
the read and write sets across trans-
actions, the higher the improvement 
in concurrency. For example, BOHM 
is an implementation of this ap-
proach.8 Figure 2 shows an example 
of how this increase in concurrency 
leads to an increase in throughput 
relative to state-of-the-art single-ver-
sion and multi-version concurrency 
control protocols for a high conflict 
workload. As the number of threads 
attempting to execute concurrently 
increases along the x-axis, the more 
clogged the system becomes with 
transactions unable to make progress 
due to conflicting concurrent transac-
tions. However, BOHM becomes far 
less clogged due to its ability to de-
couple conflicting reads and writes. 
The experiment is described in more 
detail in the BOHM paper.8

Reducing the cost of strong isolation. 
Database systems execute transac-
tions as indivisible units. As a re-
sult, a transaction prevents the pro-
cessing of concurrent conflicting 
transactions until its logic has been 
executed in its entirety. This execu-
tion strategy is inherent to mecha-
nisms such as strict two-phase 
locking and optimistic concur-
rency control, which are the basis 
of transaction processing mecha-
nisms in most modern database sys-
tems. Under strict two-phase lock-
ing, transactions hold long-duration 
write locks on records; any locks 
acquired by a transaction are only 
released at the end of its execution. 
Under optimistic concurrency con-
trol, transactions perform writes in 
a local buffer, and only copy these 
writes to the active database after 

a validation step which determines 
that no conflicting transactions were 
running concurrently.

Executing a transaction’s logic as 
a single unit fundamentally limits 
the performance of serializability as 
compared to weak isolation levels, 
such as read committed. Weak isola-
tion levels allow applications to trade 
off consistency for performance by 
permitting more interleavings be-
tween conflicting transactions. As a 
rule of thumb, serializability requires 
that transactions generally read the 
most up-to-date value of each record 
at the point at which they are serial-
ized. In contrast, read committed 
only requires that a transaction read 
a committed record value; record val-
ues can be arbitrarily stale. The com-
bination of exposing a transaction’s 
writes at the end of its execution (a 
consequence of executing its logic 
as a single unit) and serializability’s 
requirement that transactions gen-
erally observe the latest value of a 
each record means that serializable 
implementations have far less room 
to interleave conflicting transac-
tions. In order to circumvent this 
limitation, the system can decom-
pose a transaction into sub-trans-
actions or pieces, and then execute 
pieces as indivisible units. Instead 
of waiting for a transaction to fin-
ish executing in its entirety be-
fore exposing its writes, a piece’s 
writes can be exposed as soon as 
the piece finishes executing, even 
if one or more pieces remain to be 
executed. Consider the example 
in Figure 3; conventional serial-
izable protocols will only allow 
later transactions to observe the 
item.count update after the in-
sertions into the bills_tbl and  
history_tbl have finished (3a), 
forcing later transactions that pur-
chase the same item to wait. In 
contrast, transaction decomposi-
tion can allow the item’s count up-
date to be visible immediately (3b), 
which reduces waiting due to con-
flicts to the bare minimum. 

While attractive in theory, transac-
tion decomposition complicates the 
mechanisms that the system can use 
to guarantee serializability, atomicity, 
and recoverability, which every serial-
izable protocol must provide:
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can commit, even if one or more “non-
abortable” pieces remain to be execut-
ed. This guarantee yields a straight-
forward discipline to ensure atomicity 
and recoverability in deterministic da-
tabase systems; a piece can commit 
and expose its writes after every abort-
able piece from the same transaction 
can also commit.

To guarantee serializability of de-
composed transactions, determinis-
tic database systems can extend the 
dependency graph technique to allow 
nodes in the graph to correspond to 
pieces instead of entire transactions. 
Edges are used to both represent con-
flicts between pieces and also commit 
dependencies amongst pieces within 
a transaction.9

Instead of using dependency 
graphs, nondeterministic transaction 
decomposition mechanisms must ex-
plicitly track a transaction’s preced-
ing conflicts as its pieces are executed, 
and enforce this order across all fu-
ture pieces. Such a mechanism adds 
non-trivial runtime overhead and, in 
order to remain lightweight, requires 
approximations that reduce concur-
rency among pieces.

Figure 4 shows the performance of 
an implementation of a deterministic 
transaction decomposition protocol, 
piecewise visibility (or PWV).9 PWV 
outperforms the non-deterministic 
transaction decomposition protocol by 
more than a factor of 5. Furthermore, 
it performs comparably to a weak iso-
lation protocol (read-committed) de-
spite guaranteeing full serializability.

Logging overhead. In nondeter-
ministic systems, the final state of 
the database is not known until after 
transaction processing. Therefore, 
they need to log all changes to data-
base state as they happen and force all 
log records to stable storage prior to 
committing a transaction in order to 
ensure all state-changes made by com-
mitted transactions are durable under 
potential node failure. In addition to 
the additional latency incurred by the 
write to stable storage at the end of a 
transaction, past studies have indicat-
ed that generation of log records takes 
approximately 11% of all CPU cycles 
involved transaction processing.12 In 
contrast, in deterministic systems, 
the final state is determined only by 
the input log. Therefore, no addition-

˲˲ Serializability. Given that trans-
actions can be decomposed into 
multiple pieces, how should pieces 
be scheduled such that transactions 
execute in a serializable order? A se-
rializable ordering of pieces is insuf-
ficient because it does not ensure that 
transactions, each of which can be 
composed of several pieces, execute 
in a serializable order.

˲˲ Atomicity. Database systems em-
ploy well-established techniques to 
guarantee atomicity, the all-or-noth-
ing processing of a transaction’s up-
dates, but it is unclear how to achieve 
atomicity when a transaction’s up-
dates are divided across several piec-
es. The fundamental issue is that a 
transaction can commit only if all of 
its pieces can commit, otherwise all of 
its pieces must abort.

˲˲ Recoverability. Database systems 
must ensure that committed transac-
tions read committed data, a property 
known as recoverability.4 Like atomi-
city, this guarantee is complicated 
by the fact that a transaction’s writes 
may be spread across multiple piec-
es, and that an abort of even a single 
piece must cause all other pieces to 
abort as well.

While guaranteeing serializability 
is challenging because of the granu-
larity of isolation (fine-grained piece 
level isolation versus coarse-grained 
transaction level isolation), guaran-
teeing atomicity and recoverability 
is complicated because non-deter-
ministic database systems reserve 
the right to abort a piece at any point 

during its execution. If a subset of a 
transaction’s pieces has finished ex-
ecuting and a later piece aborts, it 
may be unacceptable to commit the 
previously executed pieces (a poten-
tial atomicity violation). At the same 
time, it may also be unacceptable to 
abort the previously executed pieces’ 
if their writes were observed by an-
other transaction’s pieces (a poten-
tial recoverability violation).

Transaction aborts can broadly 
be classified into state-based and 
system-induced aborts. State-based 
aborts arise from transaction/ap-
plication logic choosing to abort a 
transaction based current database 
state. For example, a transaction 
may include an explicit abort state-
ment that is conditionally triggered 
after reading a database record, or 
the transaction may be aborted if its 
updates cause a constraint violation. 
System-induced aborts are triggered 
by the database system, and are not 
strictly the result of database state. 
Examples of system-induced aborts 
include aborts due to deadlock han-
dling logic, failures, and validation 
errors in optimistic protocols.

As described earlier, determinis-
tic database systems eliminate any 
aborts that are not strictly determined 
by database state. Therefore, in a de-
terministic database system, only the 
subset of pieces that might experience 
state-based aborts are capable of caus-
ing a transaction to abort. A transac-
tion is thus guaranteed to commit as 
soon as all such “abortable” pieces 

Figure 4. Multi-core scalability of serializable transaction decomposition and read 
committed on the TPC-C benchmark configured with a single warehouse.

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

 0  4  8 12 16 20 24 28 32 36 40 44

T
h

ro
u

g
h

p
u

t 
(t

xn
s/

se
c)

Number of CPU cores

PWV Read committed Non-deterministic



SEPTEMBER 2018  |   VOL.  61  |   NO.  9  |   COMMUNICATIONS OF THE ACM     87

review articles

al logging is necessary in determinis-
tic systems aside from this input log. 
Therefore, the log in deterministic 
systems is much smaller, much light-
er-weight to generate, and is flushed 
at the beginning of the transaction 
instead of the end (and can be over-
lapped with transaction processing).

System modularity. Database man-
agement systems are notoriously 
monolithic pieces of software.13 Many 
attempts have been made—with vary-
ing success—to build clean interfaces 
between various components, decou-
pling transaction coordination, buffer 
pool management, logging/recovery 
mechanisms, data storage structures, 
replication coordination, query opti-
mization, and other processes from 
one another.1,6,7,18,29

One major fundamental difficulty 
in unbundling database components 
lies in the way concurrency con-
trol protocols are traditionally de-
scribed.32 Besides being highly non-
deterministic, concurrency control 
algorithms are usually framed (and 
specified and implemented) in a very 
procedural way. This means that sys-
tem components must often explic-
itly observe internal state of the con-
currency control module to interact 
with it correctly. These internal de-
pendencies (particularly for logging 
and recovery) become extremely ap-
parent in modular systems that are 
otherwise successful at separating 
database system components.18,29

Deterministic systems create a log 
of all input to the system. Aside from 
the uses of this log described already, 
it also serves as a declarative specifica-
tion of concurrency control behavior. 
Database system components that 
traditionally interact closely with the 
concurrency control manager can in-
stead gain the same information sim-
ply by reading from the (immutable) 
transaction request log. This enables 
clean interfaces for normally entan-
gled system components.

For example, the ordered lock-
ing mechanisms described earlier 
typically have a single concurrency 
control component that reads this in-
put log and requests locks on behalf 
of transactions in the order that they 
appear in the log. Once a transac-
tion has acquired all its needed locks, 
the transaction is handed over to ex-

ecution threads for processing. These 
execution threads can process the 
transaction with no further commu-
nication with the concurrency control 
component since they already have ac-
quired all of their locks before they be-
gin. Similarly, the dependency graph 
mechanism we described creates a 
dependency graph based entirely on 
the information contained in the input 
log, and only hands over transactions 
to execution threads that are known 
to be safe to run without conflicting 
with concurrently running transac-
tions. Once again, once an execution 
thread starts processing a transaction, 
no additional oversight from the con-
currency control module is necessary. 
The execution module therefore does 
not need to have any knowledge of the 
concurrency control mechanism or im-
plementation. Many other determinis-
tic database systems also completely 
separate concurrency control from 
transaction execution.8–10,24,30,33,36

The other major source of mono-
lithicity in traditional nondeterminis-
tic systems is the logging and recovery 
manager that are notoriously cross-
dependent with concurrency control 
managers and data storage backends. 
For example, recovery managers com-
monly rely on direct knowledge of re-
cord and page identifiers in the storage 
layer in order to generate log records, 
and may store their own data struc-
tures (for example, LSNs) inside the 
data pages themselves.

Deterministic database systems 
perform recovery by loading state from 
a recent checkpoint, and then deter-
ministically replaying all transactions 
in the log after this point, which will 
bring the recovering machine to the 
same state as any non-crashed replica. 
Therefore, the recovery manager in a 
deterministic database system is en-
tirely agnostic to implementation de-
tails of the log, scheduler, and storage 
backend—so long as they respect the 
determinism invariant.

Downsides to Determinism
Input preprocessing. At the outset of 
this article, we described the require-
ment of preprocessing transactions 
that modify database state in order to 
create a canonical log of input to the 
system. Scalable implementations 
of the preprocessing layer require 

The recovery 
manager in a 
deterministic 
database system 
is entirely agnostic 
to implementation 
details of the 
log, scheduler, 
and storage 
backend—so long 
as they respect 
the determinism 
invariant. 
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distributed coordination across 
multiple servers that necessarily in-
creases latency of all transactions fed 
through this layer. Thus determinis-
tic database systems may experience 
higher latency than nondetermin-
istic systems. However, recall that 
deterministic systems shorten the 
commit protocol, and that they can 
commit trans actions after only par-
tial execution. Thus, the latency dis-
advantage of preprocessing is often 
counterbalanced (and more) by these 
latency-saving techniques.

Information versus performance 
trade-off. The easiest way to avoid 
non-determinism arising from OS 
thread scheduling to is to disallow 
concurrency. This obviously would 
result in poor performance. Each of 
the deterministic database imple-
mentation techniques we described 
earlier in this article (for example, 
partitioning, ordered locking, and 
dependency graphs) improves per-
formance by enabling concurrency 
at the cost of requiring information 
about transactions before they begin 
executing: either the partitions that 
they will access, or the actual records 
they will access. Although the OLLP 
technique can be used to eliminate 
the burden on the user to either pro-
vide this information directly or to 
submit transactions where it can 
be derived from inspection of the 
transaction, OLLP adds latency and 
increases the cost of processing the 
transaction.d Furthermore, the OLLP 
technique can only be used if the en-
tire transaction is submitted to the 
system at once, so the “trial run” can 
complete. Therefore, OLLP cannot 
be used in conjunction with “inter-
active transactions,” in which a cli-
ent communicates with the system 
over multiple round-trips. Thus, for 
interactive transactions, there is an 
information vs. performance trade-
off: either the client must declare the 
access set of transactions (either in 
terms of partitions or records) when 
they are submitted to the system, or 
otherwise the system will default to 
(slow) serial execution.

d	 This cost increase is usually much less than 
doubling the cost of the transaction, since the 
trial mode can take several short-cuts not pos-
sible during runtime processing.26

Conclusion
Deterministic database systems have 
shown to be a promising direction 
to improving transactional data-
base system scalability, modularity, 
throughput, and replication. Howev-
er, all recent implementations have 
limited or no support for interactive 
transactions, thereby preventing 
their use in many existing deploy-
ments. If the advantages of determin-
istic database systems will be real-
ized in the coming years, one of two 
things must occur: either database 
users must  accept a stored procedure 
interface to the system, or additional 
research must be performed in order 
to enable improved support for inter-
active transactions.
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