
78 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

FOR DECADES, THE strongest guarantee that database
systems users could expect from their system was
“serializability.” This guarantee ensured that even
though the system would process many transactions
concurrently, the final state of the database system
would be equivalent to as if it had processed all
transactions serially, one after another. However, the
database system would make no guarantee about
which serial order that processed transactions would be
equivalent to—arbitrary nondeterministic events such
as operating system thread scheduling, deadlock, or
server failure could change this equivalent serial order.

Research from the past decade has discovered
a number of advantages to architecting database
systems with a stronger set of guarantees. Instead of
promising equivalence to any arbitrary serial order,

the system instead guarantees equiva-
lence to processing transactions in
a single predetermined serial order.
Furthermore, there is only one pos-
sible state the system may end up in,
despite the presence of potential non-
deterministic code in transaction log-
ic. Research has shown many benefits
from this stronger set of guarantees,
from simpler and higher performance
database replication, to improved
system scalability, to removing dis-
tributed commit protocols. Further-
more, while the early work assumed
the increased set of guarantees would
decrease the ability of the system to
process transactions concurrently,
more recent research has shown the
total opposite result: transaction con-
currency has increased. This article
describes these benefits of determin-
istic database systems in more detail,
along with a discussion of the primary
disadvantages: the lack of support of
interactive transactions in the sys-
tem, and the need for transaction pre-
processing prior to execution.

Principles and Properties
Modern deterministic database sys-
tems are built on top of nondetermin-
istic operating systems, nondetermin-
istic networking, and machines that
may fail in arbitrary ways. Nonetheless,

An Overview of
Deterministic
Database
Systems

DOI:10.1145/3181853

Deterministic database systems show great
promise, but their deployment may require
changes in the way developers interact with
the database.

BY DANIEL J. ABADI AND JOSE M. FALEIRO

 key insights
˽˽ Every major commercial database system

available today is nondeterministic.
This has led to headaches for
practitioners concerning database
replication, scale-out, and concurrency.

˽˽ Deterministic database systems make
database replication trivial—the same
input is sent to every replica and they
are guaranteed not to diverge.
By reducing the cost of replication,
they facilitate higher replica consistency
levels (albeit constrained by CAP
trade-offs) and provide a high-performance,
scalable, but strongly consistent
alternative to NoSQL systems.

˽˽ Deterministic database systems have
shown promise to remove expensive
commit protocols in scalable
distributed deployments, and enable
higher amounts of transactional
throughput and concurrency. I

M
A

G
E

 B
Y

 D
A

N
 C

O
M

A
N

I
C

I
U

http://dx.doi.org/10.1145/3181853

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 79

80 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

˲˲ Recovery from the input log. Data-
base state recovery is typically much
simpler in deterministic database sys-
tems relative to traditional nondeter-
ministic database systems. Determin-
istic database systems can simply load
a checkpoint23 and play the input log
forward from there in order to recover
state at the time of the failure (and
continue from there).19,26,31 In con-
trast, the input request log is not suf-
ficient to recover state in non-deter-
ministic systems. Instead, they have to
replay history, which typically involves
physically reloading every page that
was modified from a “redo log.”20

˲˲ Do not rely on the OS for help en-
forcing determinism. Enforcing de-
terminism at the level of abstraction
of the database system avoids over-
heads associated with determinism
at the level of an operating system
or language runtime. Lower levels
of abstraction cannot exploit appli-
cation-specific semantics to enforce
determinism, and must therefore
impose more severe restrictions
during processing (such as deter-
ministic mutex acquisition) that
are expensive and unnecessary. In
contrast, deterministic database
systems can exploit the application-
specific fact that the order of non-
conflicting transactions does not
need to be constrained, even if they
acquire the same mutex(es) internal-
ly, because reordering them does not
affect externally visible state.

Implementation Techniques
Despite the complexity of building a
deterministic system on top of non-
deterministic components, there are
many different ways to implement
deterministic database systems. The
easiest solution is to not support con-
current transaction execution.28 This
eliminates any nondeterminism aris-
ing from OS thread scheduling, and
other sources of nondeterminism can
be side-stepped using the techniques
described earlier (for example, replace
nondeterministic code in the prepro-
cessor or recreate transactional state
after a hardware failure). Unfortunate-
ly, not supporting concurrency would
result in extremely poor transactional
throughput and scalability. Therefore,
this section discusses three approach-
es to supporting concurrent transac-

given an initial state and a defined in-
put to the system, they must end up
in only one possible final state. They
therefore must be architected accord-
ing to the following principles:

˲˲ Input preprocessing. Existing non-
deterministic database systems are
typically architected such that a client
communications layer receives trans-
actional input from clients and hands
them directly to the database system
execution layer for processing. Usually,
different communications threads
will work independently from each
other, receiving transactions from
different clients and passing them to
execution threads. This architecture is
not viable for deterministic database
systems because deterministic guar-
antees can only be made when there is
a clear, universally agreed-upon input.
When multiple threads are receiving
input without any coordination with
each other, there is no systemwide
agreement on input.

Therefore, some component of
the system must create a canonical
record of the input to the system. On
a single-machine architecture, this is
often done by feeding all transactions
through a single thread that records
the input transactions in the order it
observes them. This thread sits be-
tween the client communications
threads and the database execution
threads. At the other extreme, geo-
replicated, highly scalable, shared-
nothing systems such as Calvin33,34
implement a distributed, replicated
append-only log via Paxos, and all
transactions are fed through this log
before processing.

The preprocessing layer also re-
places nondeterministic code inside
transaction logic with deterministic
code. For example, code that makes
system calls to get the current time or
to generate a random number must
be executed by the preprocessor and
be replaced by a fixed value. Note
that this recording of input and pre-
execution of nondeterministic code
assumes that the preprocessing layer
has access to the entire transaction
logic prior to execution. We will dis-
cuss this assumption and correspond-
ing limitation of deterministic data-
base systems later.

˲˲ Nondeterministic failures do not
cause transaction failure. Widely used

database system recovery protocols
such as ARIES20 abort all in-process
transactions upon a server failure.
Since server failures are fundamen-
tally nondeterministic events, deter-
ministic database systems cannot al-
low the commit status of transactions
(and their effect on the final state of
the database system) to be affected by
such nondeterministic events. Thus,
deterministic database systems typi-
cally recover by recreating state at the
time of a nondeterministic failure,
and continuing all in-process transac-
tions from that point instead of abort-
ing them and restarting them later.

˲˲ Thread race conditions cannot af-
fect database state. Concurrent trans-
actions in a database system typically
run in different threads or processes
that are scheduled and managed by
the operating system. Since the op-
erating system schedules threads in
a fundamentally nondeterministic
way, many types of race conditions
that affect database state are pres-
ent in traditional database systems.
For example, in a retail application
where two transactions simultane-
ously attempt to purchase the same
last item in an inventory, only one
of them can succeed. In traditional
pessimistic, locking-based systems,
if these two transactions are run-
ning in different threads, whichever
thread requests the lock on the in-
ventory item first will be the one to
succeed. However, this is entirely
dependent on how the OS schedules
the competing threads. In tradi-
tional optimistic systems, it is the
thread that starts the validation
phase first that will succeed. This
again is entirely dependent on OS
thread scheduling. Such race con-
ditions cannot be present in deter-
ministic database systems.

˲˲ Deadlocks cannot occur in the
system. Deadlocks are typically the
outcome of nondeterministic race
conditions, and are resolved through
aborting at least one of the deadlocked
transactions. As noted, deterministic
databases systems cannot allow non-
deterministic events to lead to trans-
action failure. Therefore, either the
deterministic database system must
use non-locking concurrency control
protocols, or they must use deadlock
avoidance techniques.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 81

review articles

tion execution while still ensuring de-
terministic guarantees.

Partitioning. This simplest ap-
proach to supporting concurrent
transaction execution despite the
nondeterministic race conditions as-
sociated with multi-threaded execu-
tion on modern operating systems is
to ensure that each thread is com-
pletely independent from each other.
Such threads can be scheduled arbi-
trarily without affecting the state of
the database system. This approach is
taken by H-Store.30

H-Store partitions the database
across the number of cores in a dis-
tributed set of servers. A single thread
runs on each core, processing all
transactions that access data stored
on that core’s partition. As long as
all transactions only access data on
a single partition, then each thread
is completely independent from ev-
ery other thread. However, transac-
tions that access data from multiple
partitions require expensive coordi-
nation logic, which in some imple-
mentations results in global serial-
ization of these transactions. Thus,
H-Store supports high amounts of
concurrency for partitionable work-
loads, but limited concurrency for
workloads with large numbers of
multi-partition transactions.

Ordered locking. If the database
system is not partitioned, different
threads are capable of accessing the
same data. Therefore, race conditions
that could affect database state exist,
and arise from OS thread schedul-
ing. However, even in the absence of
needing to implement deterministic
guarantees, database systems have
always had to implement other guar-
antees that are endangered by race
conditions arising from OS thread
scheduling. Therefore, database
systems have long implemented
defensive mechanisms that prevent
these race conditions, the most preva-
lent of which involve locking data.

Locking can also be used to imple-
ment deterministic guarantees, but
more restrictive locking algorithms
are necessary relative to nondetermin-
istic locking. Several different deter-
ministic locking algorithms have been
proposed,25,27,31 but the high-level idea
is that locks must be requested in the
order that transactions appear in the

input log. If transaction X appears
before transaction Y in the input log,
then all of transaction X’s locks must
be requested before the first lock from
transaction Y is requested. Further-
more, locks must be granted in the or-
der that they are requested.

Requesting (and granting) locks
in the order they appear in the input
log is clearly deadlock-free since it
will be impossible for two (or more)
different transactions to hold locks
that the other one needs. Further-
more, it is clear the final database
state after concurrently executing
transactions in the input log will be
equivalent to what the state would
have been if it had serially executed
the transactions in the input log—one
of the fundamental principles of de-
terminism we discussed.

Unfortunately, there are situations
where this approach also can lead to
limited concurrency. In particular, if
it is unknown at the beginning of a
transaction which data it will need to
access (and therefore need to lock),
then any subsequent transaction can-
not begin until the access-set of the
previous transaction is determined,
because it cannot request any locks
until the previous transaction is fin-
ished with all of its requests. Thus,
if all transactions do not know their
access-sets in advance, they must run
approximately serially with no concur-
rency whatsoever.

In practice, deterministic database
systems that use ordered locking do
not wait until runtime for transac-
tions to determine their access-sets.

Instead, they use a technique called
OLLP33 where if a transaction does
not know its access-sets in advance,
it is not inserted into the input log.
Instead, it is run in a trial mode that
does not write to the database state,
but determines what it would have
read or written to if it was actually be-
ing processed. It is then annotated
with the access-sets determined dur-
ing the trial run, and submitted to the
input log for actual processing. In the
actual run, every replica processes the
transaction deterministically, acquir-
ing locks for the transaction based
on the estimate from the trial run. In
some cases, database state may have
changed in a way that the access sets
estimates are now incorrect. Since a
transaction cannot read or write data
for which it does not have a lock, it
must abort as soon as it realizes that
it acquired the wrong set of locks. But
since the transaction is being pro-
cessed deterministically at this point,
every replica will independently come
to the same conclusion that the wrong
set of locks were acquired, and will
all independently decide to abort the
transaction. The transaction then gets
resubmitted to the input log with the
new access-set estimates annotated.

Dependency graphs. Recent de-
terministic system implementations
neither use partitioning nor locking.
Instead, a dependency graph is gen-
erated from the transactional input
log. Each node in the graph is a trans-
action, and edges in the graph corre-
spond to conflicts between transac-
tions.8–10 The direction of each edge

Figure 1. Dependency graph scheduling.

Transactions are totally ordered by a preprocessor. This total order
is then relaxed into a partial order based on the conflicts between
transactions. Transactions are executed in an order consistent with
the dependency graph.

Determine legal schedule

Concurrency Control

Perform logic

Execution

82 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

Replication. All modern highly
available OLTP database systems rep-
licate database state in order to be ro-
bust to various failure scenarios. Fur-
thermore, replication can improve the
performance of read-only queries by
serving them from the closest replica
to the client (or from the least over-
loaded replica).

The consequence of using non-
deterministic concurrency control
protocols is that two servers running
exactly the same database software
with the same initial state and receiv-
ing identical sequences of transac-
tion requests may nonetheless yield
completely divergent final database
states. This is because the strongest
isolation guarantee available in tra-
ditional database systems is serializ-
ability that, as noted at the outset of
this article, allows multiple transac-
tions to execute in parallel, interleav-
ing their database reads and writes,
while guaranteeing equivalence be-
tween the final database state and the
state that would have resulted had
transactions been executed in some
serial order. The key modifier here is
“some.” The agnosticism of serializa-
tion guarantees to which serial order
is emulated generally means this or-
der is never determined in advance;
rather it is dependent on a vast array
of factors entirely orthogonal to the
order in which transactions may have
entered the system, including thread
and process scheduling, buffer and
cache management, hardware fail-
ures, variable network latency, and
deadlock resolution schemes.

Therefore, traditional replication
schemes must take precautions to
prevent or limit such divergence.
Commonly used replication schemes
generally fall into one of three fami-
lies, each with its own subtleties, vari-
ations, and costs:

Post-write replication. Writes are
performed by a single replica first, and
the replication occurs after the write
is completed. This category includes
traditional master-slave replication,
where all transactions are executed
by a primary “master” system, whose
write sets are then propagated to all
other “slave” replica systems, which
update data in the same order so as
to guarantee convergence of their
final states with that of the master.

is determined by the order that the
two transactions being connected by
the edge appear in the input log (see
Figure 1). Once the graph is gener-
ated, it is used to manage execution
of transactions. In particular, transac-
tions that are not connected to each
other in the dependency graph can be
processed by independent execution
threads without concern for race con-
ditions between them.

Dependency graphs avoid the need
for any centralized processing or da-
ta-structures during both graph con-
struction and execution.8 For graph
construction, the set of database keys
can be partitioned across a set of
graph construction threads. Execu-
tion threads can independently crawl
the graph to find independent trans-
actions to process.

As we will describe, multi-version-
ing can be used to take this idea a
step further and enable concurrent
execution of transactions even if they
are connected in the dependency
graph.8 Each write creates a new ver-
sion of a data item, and reads are di-
rected to the correct version based on
where the transaction that is doing
the read appears in the dependency
graph. Therefore, two transactions
that write the same data item can be
run concurrently, and a transaction
that reads a data item can be run con-
currently with another transaction
that writes the same data item if the
read-transaction appears earlier in
the input log.

In order to create the dependency
graph, the set of data accessed by a
transaction must be known prior to
processing it. The OLLP techniques dis-
cussed earlier are thus also applicable
for dependency-graph based systems.

Advantages of Determinism
The most straightforward and well-
understood advantage of determin-
istic database systems is the benefit
to database replication—as long as
all replicas receive the same input,
they are guaranteed not to diverge.
Indeed, replication was the primary
motivator behind the early determin-
istic database systems.14,15,28,31 How-
ever, recent work has shown many
other advantages to the deterministic
architecture, from scalability, to mod-
ularity, to concurrency.

The only
coordination that
needs to happen
in a deterministic
database system is
the communication
required to agree
on the input
to the system.

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 83

review articles

This is typically implemented via log
shipping16,22—the master sends out
the transaction log to be replayed at
each replica.

This category also includes
schemes where different data items
have different masters, and variations
on this theme where different nodes
can obtain “leases” to become the
master for a particular data item. In
these cases, transactions that touch
data spanning more than one master
require a network communication
protocol such as two-phase commit
to ensure consistency across replicas.
Distributed deadlock must also be de-
tected if locking-based concurrency
control protocols are used.

For both the traditional master-
slave, and variations with different
data being mastered at different
nodes, writes occur at the master
node first, and data is replicated after
the write has completed. In order to
guarantee availability and durability,
an acknowledgment from a replica
must be received by the master before
the transaction can commit. During
this waiting period, no conflicting
transaction can run, because until a
transaction commits, it still has the
possibility of aborting, and the isola-
tion guarantee of database systems re-
quire that concurrent transactions do
not see writes of aborted transactions.
Thus, in addition to the fundamental
latency cost of replication, post-write
replication also incurs a concurrency/
throughput cost.

Active replication with synchronized
locking. A quorum of replicas have to
agree on write locks granted to data
items.3 Since writes can only proceed
with an agreed upon exclusive lock,
all replicas will perform updates in a
manner equivalent to the same serial
order, guaranteeing consistency. The
disadvantage of this scheme is the ad-
ditional latency due to the network
communication for the lock synchro-
nization. For this reason, it is used
much less frequently in practice than
post-write replication schemes.

Replication with lazy synchroniza-
tion. Multiple active replicas execute
transactions independently—possibly
diverging temporarily—and reconcile
their states at a later time.5,11,21 Lazy
synchronization schemes enjoy good
performance and CAP-level availabil-

ity (availability of minority partitions
during a network partition) at the cost
of consistency.

Deterministic database systems
are able to achieve the consistency
and availability of post-write replica-
tion without paying the concurrency
and throughput costs. As long as all
replicas agree on the input to the da-
tabase system (for example, via the
preprocessing layer), each replica in-
dependently reaches a final state con-
sistent with that of every other replica
while incurring no further agreement
or synchronization overhead.a Thus,
the only coordination that needs to
happen in a deterministic database
system is the communication re-
quired to agree on the input to the
system. This coordination happens
entirely prior to transaction execu-
tion, and thus does not increase the
window for which conflicting trans-
actions cannot run.

Scalability. It is well known that
single-server database systems will
always have limited scalability. High-
ly scalable database systems must
“scale-out”—partitioning the data
across a distributed set of servers, and
coordinating transaction processing
among them. However, distributed
servers may fail independently from
each other, which risks “atomicity”
properties of transactions (where
either the entire transaction is pro-
cessed or none of it is, but nothing in
between). Therefore, traditional dis-
tributed database systems typically
run distributed commit protocols
such as “two-phase commit” that guar-
antee atomicity by ensuring all nodes
involved in processing a transaction
have not failed and are prepared to
commit, and guarantee durability by
ensuring the results of a transaction
have reached stable storage and that
a failure of a node during the protocol
will not prevent its ability to commit
the transaction upon recovery.

Due to the differences in the way
failures are handled in determin-

a	 One downside of this approach is it requires
full processing of every transaction on every
replica, which can be more compute intensive
than just replaying a log. Therefore, some de-
terministic database systems lazily process
transactions,10 opening up the possibility of
copying the values of writes from a replica in-
stead of calculating them locally.

istic systems, much of the effort of
traditional commit protocols is un-
necessary. As noted, while traditional
systems abort all in-process transac-
tions on a failed node, deterministic
systems simply delay the completion
of in-process transactions until the
failed node recovers.b

Nondeterministic failure (no mat-
ter the reason for the failure, for ex-
ample, a failed node, corrupt mem-
ory, or out-of-memory/disk) will not
result in a transaction being aborted,
since the database can always recover
its state at the time of the crash by
loading a check-pointed snapshot
of database state, and replaying the
input transaction log deterministi-
cally from that point.19,23,31,33 Since
the failure was nondeterministic,
the transaction will eventually suc-
ceed.c Therefore, a distributed com-
mit protocol does not need to worry
about ensuring that no node fails
during the commit protocol, and it
does not need to collect votes from
nodes involved in the transaction if
the only reason why they would vote
against a transaction committing is
due to node (or any other type of non-
deterministic) failure. Put a different
way: the only thing a commit protocol
must check is whether there was any
node that executed code that could
deterministically cause an abort (for
example, an integrity constraint be-
ing violated).

For transactions that do not contain
code that could cause a transaction
to deterministically abort, no com-
mit protocol whatsoever is required
in deterministic database systems.
For transactions that do contain code
that could result in a deterministic
abort, nodes involved in those transac-
tions can vote ‘yes’ as soon as they can
be sure they will not deterministically

b	 Another benefit of determinism is helpful
here: since replicas are (in parallel) progress-
ing through the same database states in the
same order, then if replicas of this failed node
remain active, then the rest of the database
nodes do not need to wait for the failed node
to recover. They can proceed with transaction
processing and if they need data stored on the
failed node as part of a distributed transac-
tion, they can reroute that request to live rep-
licas of the failed node.

c	 In the case of out-of-memory/disk, it may need
to replay this log on a new/larger database
server node.

84 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

transaction X, the system prevents
all transactions that conflict with X
(transactions that write and in some
cases even read the same data as X)
from making progress not only while
X is being processed, but also during
X’s commit protocol. In traditional
nondeterministic database systems,
the commit protocol can be a large
percentage of overall transaction
process time. Thus, by reducing the
length of the protocol, deterministic
systems reduce the time period for
which conflicting transactions can-
not run. This increases the concurren-
cy of the system under high-conflict
workloads, thereby improving both
throughput and scalability.

Concurrency. Deterministic execu-
tion requires that transactions are ex-
ecuted according to a predefined se-
rial order. This requirement is stricter
than that required for an execution to
be serializable, which only requires
that transactions execute according
to some serial order. Surprisingly, this
more restrictive requirement permits
more concurrency among conflicting
transactions at runtime.

Multi-version concurrency control.
Modern database systems increas-
ingly store data in a multi-versioned
format. Each update to a record is
associated with a unique version.
An update creates a new version
of the record and prior values of
the record are preserved in old ver-
sions. Multi-versioning is attractive
because, in principle, reads and
writes to the same data item can be
decoupled; reads can be satisfied
by old versions while writes create
new versions. Unfortunately, while
this decoupling of reads and writes
can be exploited by weaker consis-
tency levels, such as snapshot isola-
tion, it is insufficient to guarantee
serializable execution. Serializable
multi-version concurrency control
(MVCC) protocols restrict concur-
rency between conflicting reads and
writes, and are consequently un-
able to effectively exploit the pres-
ence of multiple record versions.
Indeed, recently proposed serializ-
able MVCC protocols17 bear signifi-
cant resemblance to single-version
protocols.35

As mentioned previously, deter-
ministic database systems create a

abort the transaction. Therefore, trans-
actions do not need to wait until the
end of processing before initiating the
commit protocol.

Deterministic database systems
thus dramatically reduce the latency
of the commit protocol. Instead of
taking two or three rounds of commu-
nication in traditional nondetermin-
istic systems, they take at most one
round of communication in determin-

istic systems, and sometimes no com-
munication is required at all. Further-
more, they enable the overlap of the
commit protocol with transactional
processing, thereby further reducing
the latency of the protocol.

This advantage of shortening the
commit protocol is far more signifi-
cant than the obvious latency advan-
tage discussed thus far. In general,
if a database system is processing

Figure 2. Throughput of BOHM’s deterministic MVCC protocol vs. state-of-the-art
nondeterministic single-version (which uses pessimistic locking) and multi-version
protocols.

Each transaction performs two updates and eight reads under high
contention. Records accessed come from a set of 1,000,000 records,
chosen according to a zipfian distribution with theta of 0.9.

0.0 M

0.4 M

0.8 M

1.2 M

1.6 M

2.0 M

2.4 M

 0 4 8 12 16 20 24 28 32 36 40 44

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

Number of threads

Bohm ND Single-version ND Multi-version

Figure 3. Transaction decomposition example.

(a) �Coarse-grained transaction level scheduling prevents updates
from being read until the end of a transaction’s execution.

(b) �Fine-grained piece level scheduling allows a piece’s updates
to be read even if one or more pieces remain to be executed.

(a) Updates can only be read at
 the end of transaction execution

(b) Each update can
 be read immediately

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 85

review articles

global log containing all transactions
that have been input to the system.
The system then guarantees concur-
rent execution in a fashion that is
equivalent to processing all transac-
tions serially in the order that they
appear in this log. We described how
a dependency graph can be generated
from this log that explicitly tracks the
read/write dependencies across trans-
actions. This dependency graph can
be used to precisely determine which
versions must be read and written by
transactions. Conflicting writes—and
by extension the versions correspond-
ing to those writes—are resolved ac-
cording to the direction of the edges
in this graph. The graph is also used
to determine the correct version of a
data record to read.

This technique allows for the fol-
lowing increases in concurrency in
serializable MVCC implementations:

Reads never block writes. The ver-
sion of each record that must be
read by a transaction is determined
by its position in the dependency
graph, prior to transaction execution.
Therefore, in order to satisfy a read,
a transaction must simply wait until
the version has been created by the
corresponding writing transaction.
As a consequence, a reading transac-
tion does not need to block the execu-
tion of any writing transactions. Note,
however, that reads may still have to
block for the appropriate version to be
produced by a corresponding write.

Writes do not conflict with each oth-
er. In several serializable and (non-se-
rializable) snapshot isolation MVCC
protocols, if two concurrent transac-
tions attempt to perform conflicting
writes to the same record, then one of
the transactions is aborted.2,17 These
write-write conflicts are disallowed
to prevent lost updates: a concurrency
anomaly in which one transaction’s
writes are superseded by a later trans-
action, without the later transaction
being aware of the former’s write.2
While aborting transactions on en-
countering write-write conflicts is
sufficient to prevent lost updates, it
is not necessary. For example, if the
later transaction updates the record
without reading it, then the later
transaction’s outcome is unaffected
by the former write. In a determin-
istic database system implemented

via dependency graphs, write-write
conflicts are resolved according to
the order in which they appear in the
graph. Neither transaction is abort-
ed, and lost updates are eliminated
by the waiting necessitated by write-
read conflicts.

In single-versioned concurrency
protocols and recently proposed high
performance (non-deterministic) se-
rializable MVCC protocols, neither
of these concurrency guarantees are
possible.8 Thus, this deterministic
dependency graph approach yields
a fundamental improvement in con-
currency relative to these other ap-
proaches. The higher the overlap of
the read and write sets across trans-
actions, the higher the improvement
in concurrency. For example, BOHM
is an implementation of this ap-
proach.8 Figure 2 shows an example
of how this increase in concurrency
leads to an increase in throughput
relative to state-of-the-art single-ver-
sion and multi-version concurrency
control protocols for a high conflict
workload. As the number of threads
attempting to execute concurrently
increases along the x-axis, the more
clogged the system becomes with
transactions unable to make progress
due to conflicting concurrent transac-
tions. However, BOHM becomes far
less clogged due to its ability to de-
couple conflicting reads and writes.
The experiment is described in more
detail in the BOHM paper.8

Reducing the cost of strong isolation.
Database systems execute transac-
tions as indivisible units. As a re-
sult, a transaction prevents the pro-
cessing of concurrent conflicting
transactions until its logic has been
executed in its entirety. This execu-
tion strategy is inherent to mecha-
nisms such as strict two-phase
locking and optimistic concur-
rency control, which are the basis
of transaction processing mecha-
nisms in most modern database sys-
tems. Under strict two-phase lock-
ing, transactions hold long-duration
write locks on records; any locks
acquired by a transaction are only
released at the end of its execution.
Under optimistic concurrency con-
trol, transactions perform writes in
a local buffer, and only copy these
writes to the active database after

a validation step which determines
that no conflicting transactions were
running concurrently.

Executing a transaction’s logic as
a single unit fundamentally limits
the performance of serializability as
compared to weak isolation levels,
such as read committed. Weak isola-
tion levels allow applications to trade
off consistency for performance by
permitting more interleavings be-
tween conflicting transactions. As a
rule of thumb, serializability requires
that transactions generally read the
most up-to-date value of each record
at the point at which they are serial-
ized. In contrast, read committed
only requires that a transaction read
a committed record value; record val-
ues can be arbitrarily stale. The com-
bination of exposing a transaction’s
writes at the end of its execution (a
consequence of executing its logic
as a single unit) and serializability’s
requirement that transactions gen-
erally observe the latest value of a
each record means that serializable
implementations have far less room
to interleave conflicting transac-
tions. In order to circumvent this
limitation, the system can decom-
pose a transaction into sub-trans-
actions or pieces, and then execute
pieces as indivisible units. Instead
of waiting for a transaction to fin-
ish executing in its entirety be-
fore exposing its writes, a piece’s
writes can be exposed as soon as
the piece finishes executing, even
if one or more pieces remain to be
executed. Consider the example
in Figure 3; conventional serial-
izable protocols will only allow
later transactions to observe the
item.count update after the in-
sertions into the bills_tbl and
history_tbl have finished (3a),
forcing later transactions that pur-
chase the same item to wait. In
contrast, transaction decomposi-
tion can allow the item’s count up-
date to be visible immediately (3b),
which reduces waiting due to con-
flicts to the bare minimum.

While attractive in theory, transac-
tion decomposition complicates the
mechanisms that the system can use
to guarantee serializability, atomicity,
and recoverability, which every serial-
izable protocol must provide:

86 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

can commit, even if one or more “non-
abortable” pieces remain to be execut-
ed. This guarantee yields a straight-
forward discipline to ensure atomicity
and recoverability in deterministic da-
tabase systems; a piece can commit
and expose its writes after every abort-
able piece from the same transaction
can also commit.

To guarantee serializability of de-
composed transactions, determinis-
tic database systems can extend the
dependency graph technique to allow
nodes in the graph to correspond to
pieces instead of entire transactions.
Edges are used to both represent con-
flicts between pieces and also commit
dependencies amongst pieces within
a transaction.9

Instead of using dependency
graphs, nondeterministic transaction
decomposition mechanisms must ex-
plicitly track a transaction’s preced-
ing conflicts as its pieces are executed,
and enforce this order across all fu-
ture pieces. Such a mechanism adds
non-trivial runtime overhead and, in
order to remain lightweight, requires
approximations that reduce concur-
rency among pieces.

Figure 4 shows the performance of
an implementation of a deterministic
transaction decomposition protocol,
piecewise visibility (or PWV).9 PWV
outperforms the non-deterministic
transaction decomposition protocol by
more than a factor of 5. Furthermore,
it performs comparably to a weak iso-
lation protocol (read-committed) de-
spite guaranteeing full serializability.

Logging overhead. In nondeter-
ministic systems, the final state of
the database is not known until after
transaction processing. Therefore,
they need to log all changes to data-
base state as they happen and force all
log records to stable storage prior to
committing a transaction in order to
ensure all state-changes made by com-
mitted transactions are durable under
potential node failure. In addition to
the additional latency incurred by the
write to stable storage at the end of a
transaction, past studies have indicat-
ed that generation of log records takes
approximately 11% of all CPU cycles
involved transaction processing.12 In
contrast, in deterministic systems,
the final state is determined only by
the input log. Therefore, no addition-

˲˲ Serializability. Given that trans-
actions can be decomposed into
multiple pieces, how should pieces
be scheduled such that transactions
execute in a serializable order? A se-
rializable ordering of pieces is insuf-
ficient because it does not ensure that
transactions, each of which can be
composed of several pieces, execute
in a serializable order.

˲˲ Atomicity. Database systems em-
ploy well-established techniques to
guarantee atomicity, the all-or-noth-
ing processing of a transaction’s up-
dates, but it is unclear how to achieve
atomicity when a transaction’s up-
dates are divided across several piec-
es. The fundamental issue is that a
transaction can commit only if all of
its pieces can commit, otherwise all of
its pieces must abort.

˲˲ Recoverability. Database systems
must ensure that committed transac-
tions read committed data, a property
known as recoverability.4 Like atomi-
city, this guarantee is complicated
by the fact that a transaction’s writes
may be spread across multiple piec-
es, and that an abort of even a single
piece must cause all other pieces to
abort as well.

While guaranteeing serializability
is challenging because of the granu-
larity of isolation (fine-grained piece
level isolation versus coarse-grained
transaction level isolation), guaran-
teeing atomicity and recoverability
is complicated because non-deter-
ministic database systems reserve
the right to abort a piece at any point

during its execution. If a subset of a
transaction’s pieces has finished ex-
ecuting and a later piece aborts, it
may be unacceptable to commit the
previously executed pieces (a poten-
tial atomicity violation). At the same
time, it may also be unacceptable to
abort the previously executed pieces’
if their writes were observed by an-
other transaction’s pieces (a poten-
tial recoverability violation).

Transaction aborts can broadly
be classified into state-based and
system-induced aborts. State-based
aborts arise from transaction/ap-
plication logic choosing to abort a
transaction based current database
state. For example, a transaction
may include an explicit abort state-
ment that is conditionally triggered
after reading a database record, or
the transaction may be aborted if its
updates cause a constraint violation.
System-induced aborts are triggered
by the database system, and are not
strictly the result of database state.
Examples of system-induced aborts
include aborts due to deadlock han-
dling logic, failures, and validation
errors in optimistic protocols.

As described earlier, determinis-
tic database systems eliminate any
aborts that are not strictly determined
by database state. Therefore, in a de-
terministic database system, only the
subset of pieces that might experience
state-based aborts are capable of caus-
ing a transaction to abort. A transac-
tion is thus guaranteed to commit as
soon as all such “abortable” pieces

Figure 4. Multi-core scalability of serializable transaction decomposition and read
committed on the TPC-C benchmark configured with a single warehouse.

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

 0 4 8 12 16 20 24 28 32 36 40 44

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

Number of CPU cores

PWV Read committed Non-deterministic

SEPTEMBER 2018 | VOL. 61 | NO. 9 | COMMUNICATIONS OF THE ACM 87

review articles

al logging is necessary in determinis-
tic systems aside from this input log.
Therefore, the log in deterministic
systems is much smaller, much light-
er-weight to generate, and is flushed
at the beginning of the transaction
instead of the end (and can be over-
lapped with transaction processing).

System modularity. Database man-
agement systems are notoriously
monolithic pieces of software.13 Many
attempts have been made—with vary-
ing success—to build clean interfaces
between various components, decou-
pling transaction coordination, buffer
pool management, logging/recovery
mechanisms, data storage structures,
replication coordination, query opti-
mization, and other processes from
one another.1,6,7,18,29

One major fundamental difficulty
in unbundling database components
lies in the way concurrency con-
trol protocols are traditionally de-
scribed.32 Besides being highly non-
deterministic, concurrency control
algorithms are usually framed (and
specified and implemented) in a very
procedural way. This means that sys-
tem components must often explic-
itly observe internal state of the con-
currency control module to interact
with it correctly. These internal de-
pendencies (particularly for logging
and recovery) become extremely ap-
parent in modular systems that are
otherwise successful at separating
database system components.18,29

Deterministic systems create a log
of all input to the system. Aside from
the uses of this log described already,
it also serves as a declarative specifica-
tion of concurrency control behavior.
Database system components that
traditionally interact closely with the
concurrency control manager can in-
stead gain the same information sim-
ply by reading from the (immutable)
transaction request log. This enables
clean interfaces for normally entan-
gled system components.

For example, the ordered lock-
ing mechanisms described earlier
typically have a single concurrency
control component that reads this in-
put log and requests locks on behalf
of transactions in the order that they
appear in the log. Once a transac-
tion has acquired all its needed locks,
the transaction is handed over to ex-

ecution threads for processing. These
execution threads can process the
transaction with no further commu-
nication with the concurrency control
component since they already have ac-
quired all of their locks before they be-
gin. Similarly, the dependency graph
mechanism we described creates a
dependency graph based entirely on
the information contained in the input
log, and only hands over transactions
to execution threads that are known
to be safe to run without conflicting
with concurrently running transac-
tions. Once again, once an execution
thread starts processing a transaction,
no additional oversight from the con-
currency control module is necessary.
The execution module therefore does
not need to have any knowledge of the
concurrency control mechanism or im-
plementation. Many other determinis-
tic database systems also completely
separate concurrency control from
transaction execution.8–10,24,30,33,36

The other major source of mono-
lithicity in traditional nondeterminis-
tic systems is the logging and recovery
manager that are notoriously cross-
dependent with concurrency control
managers and data storage backends.
For example, recovery managers com-
monly rely on direct knowledge of re-
cord and page identifiers in the storage
layer in order to generate log records,
and may store their own data struc-
tures (for example, LSNs) inside the
data pages themselves.

Deterministic database systems
perform recovery by loading state from
a recent checkpoint, and then deter-
ministically replaying all transactions
in the log after this point, which will
bring the recovering machine to the
same state as any non-crashed replica.
Therefore, the recovery manager in a
deterministic database system is en-
tirely agnostic to implementation de-
tails of the log, scheduler, and storage
backend—so long as they respect the
determinism invariant.

Downsides to Determinism
Input preprocessing. At the outset of
this article, we described the require-
ment of preprocessing transactions
that modify database state in order to
create a canonical log of input to the
system. Scalable implementations
of the preprocessing layer require

The recovery
manager in a
deterministic
database system
is entirely agnostic
to implementation
details of the
log, scheduler,
and storage
backend—so long
as they respect
the determinism
invariant.

88 COMMUNICATIONS OF THE ACM | SEPTEMBER 2018 | VOL. 61 | NO. 9

review articles

distributed coordination across
multiple servers that necessarily in-
creases latency of all transactions fed
through this layer. Thus determinis-
tic database systems may experience
higher latency than nondetermin-
istic systems. However, recall that
deterministic systems shorten the
commit protocol, and that they can
commit trans actions after only par-
tial execution. Thus, the latency dis-
advantage of preprocessing is often
counterbalanced (and more) by these
latency-saving techniques.

Information versus performance
trade-off. The easiest way to avoid
non-determinism arising from OS
thread scheduling to is to disallow
concurrency. This obviously would
result in poor performance. Each of
the deterministic database imple-
mentation techniques we described
earlier in this article (for example,
partitioning, ordered locking, and
dependency graphs) improves per-
formance by enabling concurrency
at the cost of requiring information
about transactions before they begin
executing: either the partitions that
they will access, or the actual records
they will access. Although the OLLP
technique can be used to eliminate
the burden on the user to either pro-
vide this information directly or to
submit transactions where it can
be derived from inspection of the
transaction, OLLP adds latency and
increases the cost of processing the
transaction.d Furthermore, the OLLP
technique can only be used if the en-
tire transaction is submitted to the
system at once, so the “trial run” can
complete. Therefore, OLLP cannot
be used in conjunction with “inter-
active transactions,” in which a cli-
ent communicates with the system
over multiple round-trips. Thus, for
interactive transactions, there is an
information vs. performance trade-
off: either the client must declare the
access set of transactions (either in
terms of partitions or records) when
they are submitted to the system, or
otherwise the system will default to
(slow) serial execution.

d	 This cost increase is usually much less than
doubling the cost of the transaction, since the
trial mode can take several short-cuts not pos-
sible during runtime processing.26

Conclusion
Deterministic database systems have
shown to be a promising direction
to improving transactional data-
base system scalability, modularity,
throughput, and replication. Howev-
er, all recent implementations have
limited or no support for interactive
transactions, thereby preventing
their use in many existing deploy-
ments. If the advantages of determin-
istic database systems will be real-
ized in the coming years, one of two
things must occur: either database
users must accept a stored procedure
interface to the system, or additional
research must be performed in order
to enable improved support for inter-
active transactions.

Acknowledgments. This work was
sponsored by the NSF under grants
IIS-1763797 and IIS-1718581. We
thank Alexander Thomson and Kun
Ren for their contributions to the re-
search described in this article.	

References
1.	 Batoory, D., Barnett, J., Garza, J., Smith, K., Tsukuda,

K., Twichell, B. and Wise, T. Genesis: An extensible
database management system. IEEE Trans. Software
Engineering, 1988.

2.	 Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil,
E. and O’Neil, P. A critique of ANSI SQL isolation
levels. In Proc. of SIGMOD, 1995, 1–10.

3.	 Bernstein, P.A. and Goodman, N. Concurrency control
in distributed database systems. ACM Comput. Surv.
13, 3 (1981), 185–221.

4.	 Bernstein, P.A., Hadzilacos, V. and Goodman, N.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

5.	 Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S.
and Silberschatz, A. Update propagation protocols for
replicated databates. In Proc. of SIGMOD, 1999.

6.	 Carey, M.J., Dewitt, D.J., Graefe, G., Haight, D.M.,
Richardson, J.E., Schuh, D.T., Shekita, E.J. and
Vandenberg, S.L. The EXODUS extensible DBMS
project: An overview. In Readings in Object-Oriented
Database Systems, 1990.

7.	 Chaudhuri, S. and Weikum, G. Rethinking database
system architecture: Towards a self-tuning risc-style
database system. In Proc. of VLDB, 2000.

8.	 Faleiro, J.M. and Abadi, D.J. Rethinking serializable
multiversion concurrency control. PVLDB 8, 11 (2015).

9.	 Faleiro, J.M., Abadi, D.J., and Hellerstein, J.M. High
performance transactions via early write visiblity.
PVLDB 10, 5 (2017).

10.	 Faleiro, J.M., Thomson, A. and Abadi, D.J. Lazy
evaluation of transactions in database systems. In
Proc. of SIGMOD, 2014, 15–26.

11.	 Gray, J., Helland, P., O’Neil, P. and Shasha, D. The
dangers of replication and a solution. In Proc. of
SIGMOD, 1996.

12.	 Harizopoulos, S., Abadi, D.J., Madden, S.R. and
Stonebraker, M. OLTP through the looking glass, and
what we found there. In Proc. of SIGMOD, 2008.

13.	 Hellerstein, J.M., Stonebraker, M. and Hamilton, J.
Architecture of a Database System, 2007.

14.	 Jimenez-Peris, R., Patino-Martinez, M. and Arevalo,
S. Deterministic scheduling for transactional
multithreaded replicas. In Proc. of SRDS, 2000.

15.	 Kemme, B. and Alonso, G. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database
replication. In Proc. of VLDB, 2000, 134–143.

16.	 King, R.P., Halim, N., Garcia-Molina, H. and Polyzois,
C.A. Management of a remote backup copy for disaster
recovery. ACM Trans. Database Syst. 16, 2 (1991),
338–368.

17.	 Larson, P.-A., Blanas, S., Diaconu, C., Freedman,
C., Patel, J.M., and Zwilling, M. High-performance
concurrency control mechanisms for main-memory
databases. PVLDB 5, 4 (Dec. 2011), 298–309.

18.	 Lomet, D., Fekete, A., Weikum, G. and Zwilling, M.
Unbundling transaction services in the cloud.
In CIDR, 2009.

19.	 Malviya, N., Weisberg, A., Madden, S., and Stonebraker,
M. Rethinking main memory OLTP recovery. In Proc. of
ICDE, 2014, 604–615.

20.	 Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and
Schwarz, P. Aries: A transaction recovery method
supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst. 17, 1 (1992), 94–162.

21.	 Pacitti, E., Minet, P., and Simon, E. Fast algorithms
for maintaining replica consistency in lazy master
replicated databases. In Proc. of VLDB, 1999, 126–137.

22.	 Polyzois, C.A. and Garcia-Molina, H. Evaluation of
remote backup algorithms for transaction-processing
systems. ACM Trans. Database Syst. 19, 3 (1994),
423–449.

23.	 Ren, K., Diamond, T., Abadi, D.J. and Thomson,
A. Low-overhead asynchronous checkpointing in
main-memory database systems. In SIGMOD, 2016,
1539–1551.

24.	 Ren, K., Faleiro, J. and Abadi, D.J. Design principles
for scaling multi-core OLTP under high contention. In
Proc. of SIGMOD, 2016.

25.	 Ren, K., Thomson, A. and Abadi, D.J. Lightweight
locking for main memory database systems. PVLDB 6,
2 (2012), 145–156.

26.	 Ren, K., Thomson, A. and Abadi, D.J. An evaluation of
the advantages and disadvantages of deterministic
database systems. PVLDB 7, 10 (2014), 821–832.

27.	 Ren, K., Thomson, A. and Abadi, D.J. Vll: A lock
manager redesign for main memory database
systems. VLDB J. 24, 5 (Oct. 2015), 681–705.

28.	 Schneider, F. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv. 22, 4 (1990).

29.	 Sears, R.C. Stasis: Flexible Transactional Storage. Ph.D.
thesis, EECS Department, UC Berkeley, 2010.

30.	 Stonebraker, M., Madden, S., Abadi, D., Harizopoulos, S.,
Hachem, N. and Helland, P. The end of an architectural
era (it’s time for a complete rewrite). In Proc. of VLDB,
2007.

31.	 Thomson, A. and Abadi, D.J. The case for determinism
in database systems. In Proc. of VLDB, 2010.

32.	 Thomson, A. and Abadi, D.J. Modularity and scalability
in Calvin. IEEE Data Engineering Bulletin 36, 2 (2013),
48–55.

33.	 Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P.
and Abadi, D.J. Calvin: Fast distributed transactions for
partitioned database systems. In SIGMOD, 2012.

34.	 Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao,
P. and Abadi, D.J. Fast distributed transactions and
strongly consistent replication for OLTP database
systems. ACM Trans. Database Syst. 39, 2 (May 2014),
11:1–11:39.

35.	 Tu, S., Zheng, W., Kohler, E., Liskov, B. and Madden,
S. Speedy transactions in multicore in-memory
databases. In Proc. of SOSP, 2013.

36.	 Wu, S.-H., Feng, T.-Y., Liao, M.-K., Pi, S.-K. and Lin,
Y.-S. T-part: Partitioning of transactions for forward-
pushing in deterministic database systems. In Proc. of
SIGMOD, 2016.

Daniel J. Abadi (abadi@umd.edu) is the Darnell-Kanal
Professor of Computer Science at the University of
Maryland, College Park, MD, USA.

Jose M. Faleiro (jose.faleiro@yale.edu) is a Ph.D. student
at Yale University, New Haven, CT, USA.

Copyright held by owners/authors.
Publication rights licensed to ACM. $15.00.

