
Materialization Strategies in a Column-Oriented DBMS

Daniel J. Abadi Daniel S. Myers David J. DeWitt Samuel R. Madden
MIT MIT UW Madison MIT

dna@csail.mit.edu dsm@csail.mit.edu dewitt@cs.wisc.edu madden@csail.mit.edu

Copyright Notice:

Copyright 2007 IEEE. Reprinted from Proceedings of ICDE 2007, Istanbul, Turkey.

This material is posted here with permission of the IEEE. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Materialization Strategies in a Column-Oriented DBMS

Daniel J. Abadi
MIT

dna@csail.mit.edu

Daniel S. Myers
MIT

dsm@csail.mit.edu

David J. DeWitt
UW Madison

dewitt@cs.wisc.edu

Samuel R. Madden
MIT

madden@csail.mit.edu

Abstract

There has been renewed interest in column-oriented
database architectures in recent years. For read-mostly
query workloads such as those found in data warehouse
and decision support applications, “column-stores” have
been shown to perform particularly well relative to “row-
stores.” In order for column-stores to be readily adopted
as a replacement for row-stores, however, they must present
the same interface to client applications as do row stores,
which implies that they must output row-store-style tuples.

Thus, the input columns stored on disk must be converted
to rows at some point in the query plan, but the optimal
point at which to do the conversion is not obvious. This
problem can be considered as the opposite of the projection
problem in row-store systems: while row-stores need to de-
termine where in query plans to place projection operators
to make tuples narrower, column-stores need to determine
when to combine single-column projections into wider tu-
ples. This paper describes a variety of strategies for tuple
construction and intermediate result representations and
provides a systematic evaluation of these strategies.

1 Introduction
Vertical partitioning has long been recognized as a valu-

able tool for increasing the performance of read-intensive
databases. Recent years have seen the emergence of sev-
eral database systems that take this idea to the extreme by
fully vertically partitioning database tables and storing them
as columns on disk [8, 9, 12, 13, 14]. Research on these
column-stores has shown that for certain read-mostly work-
loads, this approach can provide substantial performance
benefits over traditional row-oriented database systems.

Column-stores are essentially a modification only to
the physical data structures of a database: at the logical
and view level, a column-store looks identical to a row-
store. For this reason, most column-stores choose to of-
fer a standards-compliant relational database interface (e.g.,
ODBC, JDBC, etc). As such, separate columns must ulti-
mately be stitched together into tuples of data to be output.
Determining when to do this stitching together in a query
plan is the inverse of the problem of applying projections

in a row-oriented database, since rather than deciding when
to project an attribute out of an intermediate result flowing
through the query plan, the system must decide when to add
it in. Lessons from row-oriented databases (where projec-
tions are almost always performed as soon as an attribute is
no longer needed) suggest a natural tuple construction pol-
icy: at each point at which a column is accessed, add the
column to an intermediate tuple representation if that col-
umn is needed by some later operator or is included in the
set of output columns. At the top of the query plan, these
intermediate tuples can be directly output to the user. We
call this process of adding columns to intermediate results
materialization and call the simple scheme described above
early materialization, since it seeks to form intermediate tu-
ples as early as possible.

Surprisingly, we have found that early materialization is
not always the best strategy to employ in a column store.
Consider a simple example: suppose a query consists of
three selection operators σ1, σ2, and σ3 over three columns,
R.a, R.b, and R.c (all sorted in the same order and stored in
separate files), where σ1 is the most selective predicate and
σ3 is the least selective. An early materialization strategy
could process this query as follows: read in a block of R.a,
a block of R.b, and a block of R.c from disk. Stitch them
together into (likely more than one) block(s) of row-store
style triples (R.a, R.b,R.c). Apply σ1, σ2, and σ3 in turn,
allowing tuples that match the predicate to pass through.

There is another strategy that can be more efficient, how-
ever. We call this second approach late materialization, be-
cause it does not form tuples until after some part of the
plan has been processed. It works as follows: first scan R.a
and output the positions (ordinal offsets of values within
the column) in R.a that satisfy σ1 (these positions can take
the form of ranges, lists, or a bitmap). Repeat with R.b
and R.c, outputting positions that satisfy σ2 and σ3 respec-
tively. Next, use position-wise AND operations to intersect
the position lists. Finally, re-access R.a, R.b, and R.c and
extract the values of the records that satisfy all predicates
and stitch these values together into output tuples. This late
materialization approach can potentially be more CPU ef-
ficient because it requires fewer intermediate tuples to be
stitched together (which is a relatively expensive operation
as it can be thought of as a join on position), and position

lists are small, highly-compressible data structures that can
be operated on directly with very little overhead. For exam-
ple, 32 (or 64 depending on processor word size) positions
can be intersected at once when ANDing together two posi-
tion lists represented as bit-strings. Note, however, that one
problem with this late materialization approach is that it re-
quires re-scanning the base columns to form tuples, which
can be slow (though they are likely to still be in memory
upon re-access if the query is properly pipelined).

The main contribution of this paper is not to introduce
new materialization strategies (as described in the related
work, many of these strategies have been used in other
column-stores). Rather, it is to systematically explore the
trade-offs between different strategies and provide a foun-
dation for choosing a strategy for a particular query. We
focus on standard warehouse-style queries: read-only work-
loads with selections, aggregations, and joins. We extended
the C-Store column-oriented DBMS [14] with a variety of
materialization strategies, and experimentally evaluate the
effects of varying selectivities, compression techniques, and
query plans on these strategies. Further, we provide a model
that can be used (for example) in a query optimizer to se-
lect a materialization strategy. Our results show that, on
some workloads, late materialization can be an order of
magnitude faster than early-materialization, while on other
workloads, early materialization outperforms late material-
ization.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the C-Store query executor.
We illustrate the trade-offs between materialization strate-
gies in Section 3 and then present both pseudocode and an
analytical model for example query plans using each strat-
egy in Section 4. We validate our models experimentally
(using a version of C-Store we extended) in Section 5. Fi-
nally, we describe related work in Section 6 and conclude
in Section 7.

2 The C-Store Query Executor
We chose to use C-Store as the column-oriented DBMS

to extend and experiment with since we were already famil-
iar with the source code. Since this is the system in which
the various materialization strategies were implemented for
this study, we now provide a brief overview of the relevant
details of the C-Store query executor, which is more fully
described in previous work [4, 14] and available in an open
source release [2]. The components of the query execu-
tor most relevant are the on-disk layout of data, the access
methods provided for reading data from disk, the data struc-
tures provided for representing data in the DBMS, and the
operators for manipulating data.

Each column is stored in a separate file on disk as a se-
ries of 64KB blocks and can be optionally encoded using a
variety of compression techniques. In this paper we exper-
iment with column-specific compression techniques (run-

length encoding and bit-vector encoding) and with uncom-
pressed columns. In a run-length encoded file, each block
contains a series of RLE triples (V, S, L), where V is the
value, S is the start position of the run, and L is the length
of the run.

A bit-vector encoded file representing a column of size
n with k distinct values consists of k bit-strings of length n,
one per unique value, stored sequentially. Bit-string k has a
1 in the ith position if the column it represents has the value
k in the ith position.

C-Store provides an access method (or data source) for
each encoding type. All C-Store data sources support two
basic operations: reading positions from a column and read-
ing (position, value) pairs from a column. Additionally,
all C-Store data sources accept predicates to restrict the set
of results returned. In order to minimize CPU overhead, C-
Store data sources and operators are block-oriented. Data
sources return data from the underlying files as blocks
of encoded data, wrapped inside a C++ object that pro-
vides iterator-style (hasNext() and getNext() methods) and
vector-style [8] (asArray()) access to the data.

In Section 4.1 we give pseudocode for the C-Store op-
erators relevant to this paper: DataSource (Select), AND,
and Merge. These operators are used to construct the query
plans we experiment with. We also describe the Join op-
erator in Section 5.3. The DataSource operator reads in a
column of data and produces the column values that pass
a predicate. AND accepts input position lists and pro-
duces an output position list representing their intersec-
tion. Finally, the n-ary Merge operator combines n lists
of (position, value) pairs into a single output list of n-
attribute tuples.

3 Materialization Strategy Trade-offs
In this section we present some of the trade-offs that are

made between materialization strategies. A materialization
strategy needs to be in place whenever more than one at-
tribute from any given relation is accessed (which is the case
for most queries). Since a column-oriented DBMS stores
each attribute independently, it must have some mechanism
for stitching together multiple attributes from the same log-
ical tuple into a physical tuple. Every proposed column-
oriented architecture accomplishes this by attaching either
physical or virtual tuple identifiers or positions to column
values. To reconstruct a tuple from multiple columns of
a relation, the DBMS simply needs to find matching po-
sitions. Modern column-oriented systems [7, 8, 14] store
columns in position order; i.e., to reconstruct the i’th tuple,
one uses the i’th value from each column. This accelerates
the tuple reconstruction process.

As described in the introduction, tuple reconstruction
can occur at different points in a query plan. Early materi-
alization (EM) constructs tuples as soon as (or sometimes
before) tuple values are needed in the query plan. Late

materialization (LM) constructs tuples as late as possible,
sometimes even at the query output. Each approach has a
set of advantages.

3.1 Late Materialization Advantages
The primary advantages of late materialization are that it

allows the executor to use high-performance operations on
compressed, column-oriented data and to defer tuple con-
struction to later in the query plan, possibly allowing it to
construct fewer tuples.

3.1.1 Column-Oriented Data Structures
One advantage of late materialization is that column

values can be stored together contiguously in memory in
column-oriented data structures. This has two performance
advantages: First, the column can be kept compressed in
memory using the same column-oriented compression tech-
niques as were used to store the column on disk. Previous
work [4] has showed that techniques such as run length en-
coding (RLE) of column values and bit-vector encoding are
well suited for column stores and can easily be operated on
directly. For example, an entire run of RLE-encoded val-
ues can be processed in a single operator loop. Tuple con-
struction requires decompressing RLE data, since generally
repeats are of values in a single column, not entire tuples.

Second, looping through values from a column-oriented
data structure tends to be much faster than looping through
values using a tuple iterator interface. First, entire cache
lines are filled with values from the same column. This
maximizes the efficiency of the memory bandwidth bottle-
neck [5] as the cache prefetcher only fetches relevant data.
Second, high IPC (instructions-per-cycle) vector processing
code can be written for column block access by taking ad-
vantage of modern super-scalar CPUs [6, 7, 8].

3.1.2 Construct Only Relevant Tuples
In many cases, a query outputs fewer tuples than are ac-

tually processed. Predicates usually reduce the number of
tuples output, and aggregations combine tuples into sum-
mary tuples. Thus, if the executer waits long enough before
constructing a tuple, it might be able to avoid constructing
it altogether.

3.2 Early Materialization Advantages
The fundamental problem with delaying tuple construc-

tion is that in some cases columns may need to be accessed
multiple times in the query plan. For example, suppose a
column is accessed once to retrieve positions matching a
predicate and a second time (later in the plan) to retrieve its
values. If the matching positions cannot be determined from
an index, then the column values will be accessed twice.
Assuming proper query pipelining, the reaccess will incur
no disk costs (the disk block will be in the buffer cache),
but there will be a CPU cost in scanning the block to extract
the values corresponding to the given positions. This cost

can be substantial if the positions are not in sorted order
(e.g., they were reordered by a join, as discussed in Section
5.3).

In early materialization, as soon as a column is accessed,
its values are added to an intermediate-result tuple, elimi-
nating the need for future reaccesses. Thus, the fundamen-
tal trade-off between early materialization and late mate-
rialization is the following: while late materialization en-
ables several performance optimizations (operating directly
on position data, constructing only relevant tuples, operat-
ing directly on column-oriented compressed data, and high
value iteration speeds), if the column reaccess cost at tuple
reconstruction time is high, a performance penalty is paid.

4 Query Processor Design
Having described the fundamental trade-offs between

early and late materialization, we now present both pseu-
docode and an analytical model for component operators
of each materialization strategy and give detailed examples
of how these strategies are translated into query plans in a
column-oriented system.

4.1 Operator Analysis
To better illustrate the trade-offs between early and late

materialization, in this section we present an analytical
model of the two strategies. The model is composed of three
basic types of operators:

• Data source (DS) operators that read columns from
disk, filtering on one or more single-column predicates
or a position list as they go, and producing either vec-
tors of positions or vectors of positions and values.

• AND operators that merge several position lists into a
single position list in which positions are present only
if they were present in all input position lists.

• Tuple construction operators that combine multiple
narrow tuples of positions and values into wider tuples.

These operators are sufficient to express simple selection
queries using each strategy. We omit the model of operators
needed for more complex queries. We use the notation in
Table 1 to describe the costs of the different operators.

4.2 Data Sources
In this section, we consider the cost of accessing a col-

umn on disk via a data source operator. We consider four
cases (the first and third used by LM strategies, the second
and fourth used by EM):

Case 1: A column Ci of |Ci| blocks is read from disk
and a predicate with selectivity SF is applied to each tuple.
The output is a column of positions. The pseudocode and
cost analysis of this case is shown in Figure 1.

Case 2: A column Ci of |Ci| blocks is read from disk
and a predicate with selectivity SF is applied to each tuple.
The output is a column of (position, value) pairs.

|Ci| Number of disk blocks in Coli
||Ci|| Number of “tuples” in Coli
||POSLIST || Number of positions in POSLIST
F Fraction of pages of a column in buffer pool
SF Selectivity factor of predicate
BIC CPU time in ms of getNext() call in block iterator
TICTUP CPU time for getNext() call in tuple iterator
TICCOL CPU time for getNext() call in column iterator
FC Time for a function call
PF Prefetch size (in number of disk blocks)
SEEK Disk seek time
READ Time to read a block from disks
RL Avg. run-length in RLE encoded columns (RLc) or

position lists (RLp) (equal to one if uncompressed)
Table 1. Notation used in analytical model

DS_Scan-Case1(Column C, Pred p)
1. for each block b in C
2. read b from disk (if necessary)
3. for each tuple t in b (or RLE triple in b)
4. apply p to t
5. output positions from t

CPU =

|Ci| ∗BIC+ (1)

||Ci|| ∗ (TICCOL + FC)/RLc+ (3, 4)

SF ∗ ||Ci|| ∗ FC (5)

IO =(
|Ci|
PF

∗ SEEK + |Ci| ∗READ) ∗ (1− F) (2)

Figure 1: Pseudocode and cost formulas for data sources,
Case 1. Numbers in parentheses in cost formula indicate
corresponding steps in the pseudocode.

The cost of Case 2 is identical to Case 1 except for step
(5) which becomes SF ∗ ||Ci|| ∗ (TICTUP + FC). The
slightly higher cost reflects the cost of gluing positions and
values together for the output.

Case 3: A column Ci of |Ci| blocks is read from disk
or memory and filtered with a list of positions, POSLIST .
The output is a column of the values corresponding to those
positions. The pseudocode and cost analysis of this case is
shown in Figure 2.

Case 4: A column Ci of |Ci| blocks is read from disk
and a set of tuples EMi of the form (pos,< a1, . . . , an >
) is input to the operator. The operator jumps to position
pos in the column and applies a predicate with selectivity
SF . Tuples that satisfy the predicate are merged with EMi

to create tuples of the form (pos,< a1, . . . , an, an+1 >)
that contain only the positions that were in EMi and that
satisfied the predicate over Ci. The pseudocode and cost
analysis of this case is shown in Figure 3.

4.3 Multicolumn AND
The AND operator takes in k position lists,

inpos1 . . . inposk and produces a new list of posi-
tions representing the intersection of these input lists,
outpos. Since operating directly on positions is fast,
the cost of the AND operator in query plans tends to be
insignificant relative to the other operators. We present the
AND analysis in our full technical report [3] and omit it

DS_Scan-Case3(Column C, POSLIST pl)
1. for each block b in C
2. read b from disk (if necessary)
3. iterate through pl, for each pos. (range)
4. jump to pos (range) in b & output value(s)

CPU =

|Ci| ∗BIC+ (1)

||POSLIST ||/RLp ∗ (TICCOL)+ (3)

||POSLIST ||/RLp ∗ (TICCOL + FC) (4)

IO =(
|Ci|
PF

∗ SEEK + SF ∗ |Ci| ∗READ) ∗ (1− F) (2)

/* F=1 and IO → 0 if col already accessed */

/* SF ∗ |Ci| is a lower bound for the blocks needed to

be read in. For highly localized data (like the semi-sorted

data we will work with), this is a good approximation*/

Figure 2: Pseudocode and cost formulas DS-Case 3.
DS_Scan-Case4(Column C, Pred p, Table EM)
1. for each block b in C
2. read b from disk (if necessary)
3. iterate through tuples e in EM, extract pos
4. use pos to jump to correct tuple t in C

and apply predicate
5. if predicate succeeded, output <e, t>

CPU =

|Ci| ∗BIC+ (1)

||EMi|| ∗ TICTUP + (3)

||EMi|| ∗ ((FC + TICTUP) + FC) (4)

SF ∗ ||EMi|| ∗ (TICTUP) (5)

IO =(
|Ci|
PF

∗ SEEK + SF ∗ |Ci| ∗READ) ∗ (1− F) (2)

/* SF ∗ |Ci| is a lower bound for the blocks needed to

be read in, as in Figure 2 */

Figure 3: Pseudocode and cost formulas for DS-Case 4.

here to save space.

4.4 Tuple Construction Operators
The final two operators we consider are tuple construc-

tion operators. The first, the MERGE operator, takes k sets
of values V AL1 . . . V ALk and produces a set of k-ary tu-
ples. This operator is used to construct tuples at the top of
an LM plan. The pseudocode and cost of this operation is
shown in Figure 4. The analysis assumes the k sets of values
are resident in main memory, since they are produced by a
child operator, and that each set has the same cardinality.

The second tuple construction operator is the SPC
(Scan, Predicate, and Construct) operator which can sit
at the bottom of EM plans. SPC takes a set of columns
V AL1 . . . V ALk, reads them off disk, optionally takes a set
of predicates to apply on the column values, and constructs
tuples if all predicates pass. The pseudocode and cost of
this operation is shown in Figure 5.

4.5 Example Query Plans
The use of the above presented operators is illustrated in

Figures 6 and 7 for the query:

Merge(Col s1,..., Col sk)
1. iterate through all k cols of len. ||VAL_i||
2. produce output tuples

COST =

// Access values as vector (don’t use iterator)

||V ALi|| ∗ k ∗ FC+ (1)

// Produce tuples as array (don’t use iterator)

||V ALi|| ∗ k ∗ FC) (2)

Figure 4: Pseudocode and cost formulas for Merge.
SPC(Col c1,..., Col ck, Pred p1,..., Pred pk)
1. for each column, C_i
2. for each block b in C_i
3. read b from disk
4. call Merge sub-routine
5. check predictates
6. output matching tuples

CPU =

|Ci| ∗BIC+ (2)

Merge(c1, ..., ck)+ (4)

||Ci|| ∗ FC ∗
Y

j=1...(i−1)

(SFj)+ (5)

||Ck|| ∗ FC ∗
Y

j=1...k

(SFj)+ (6)

IO =(
|Ci|
PF

∗ SEEK + |Ci| ∗READ) (3)

Figure 5: Pseudocode and cost formulas for SPC.

(1) SELECT shipdate, linenum FROM lineitem
WHERE shipdate < CONST1 AND linenum < CONST2

where lineitem is a table taken from TPC-H [1], a bench-
mark that models data typically found in decision support
and data warehousing applications.

One EM query plan, shown in Figure 6(a), uses a DS2
operator (Data Scan Case 2) operator to scan the shipdate
column, producing a stream of (pos, shipdate) tuples that
satisfy the predicate shipdate < CONST1. This stream is
used as one input to a DS4 operator along with the linenum
column and the predicate linenum < CONST2 to pro-
duce a stream of (shipdate, linenum) result tuples.

Another possible EM query plan, shown in Figure 6(b),
constructs tuples at the very beginning of the plan - merg-
ing all needed columns at the leaf node as it applies the
predicates using a SPC operator. The key difference be-
tween these early materialization strategies is that while the
latter strategy has to scan and process all blocks for all in-
put columns, the former plan applies each predicate in turn
and constructs tuples incrementally, adding one attribute per
operator. For non-selective predicates this is more work,
but for selective predicates only subsets of blocks need to
be processed (or in some cases the entire block can be
skipped). We call the former strategy EM-pipelined and
the latter strategy EM-parallel. The choice of which EM
plan to use depends on the selectivity of the predicates; EM-

(a) (b)

Figure 6: Query plans for EM-pipelined (a) and EM-
parallel (b) strategies. DS2 is shorthand for DS Scan-
Case2. (Similarly for DS4).

pipelined is likely better if there are highly selective predi-
cates.

As in EM, there are both pipelined and parallel late ma-
terialization strategies. LM-parallel is shown in Figure 7(a)
and LM-pipelined is shown in Figure 7(b). LM-parallel
begins with two DS1 operators, one for the shipdate and
linenum columns. Each DS1 operator scans its column, ap-
plying the appropriate predicate to produce a position list
of those values that satisfy the predicate. The two position
lists are streamed into an AND operator which intersects
the two lists. The output position list is then streamed into
two DS3 operators to obtain the corresponding values from
the shipdate and linenum columns. As these values are ob-
tained they are streamed into a merge operator to produce a
stream of (shipdate, linenum) result tuples.

(a) (b)

Figure 7: Query plans for LM-parallel (a) and LM-
pipelined (b) strategies.

LM-pipelined works similarly to LM-parallel, except
that it applies the DS1 operators one at a time, pipelining
the positions of the shipdate values that passed the shipdate
predicate to a DS3 operator for the linenum column which
produces the column values at these input set of positions

and sends these values to the linenum DS1 operator which
only needs to apply its predicate to this value subset (rather
than at all linenum positions). As a side effect, the need for
the AND operator is eliminated.

4.6 LM Optimization: Multi-Columns
Note that in DS Case 3, used in LM strategies to produce

values from positions, the I/O cost is assumed to be zero if
the column has already been accessed earlier in the plan,
even if the column size is larger than available memory.
This is made possible through a specialized data structure
for representing intermediate results, designed to facilitate
query pipelining, that allows blocks of column data to re-
main in user memory space after the first access so that they
can be easily reaccessed again later on. We call this data
structure a multi-column.

A multi-column contains a memory-resident, horizontal
partition of some subset of attributes from a particular rela-
tion. It consists of:

A covering position range indicating the virtual start po-
sition and end position of the horizontal partition (for ex-
ample, a position range could indicate that rows numbered
1000-2000 are covered in this multi-column).

An array of mini-columns. A mini-column is the set of
corresponding values for a specified position range of a par-
ticular attribute (MonetDB [8] calls this a vector, PAX [5]
calls this a mini-page). Using the previous example, a
mini-column for column X would contain 1001 values - the
1000th-2000th values in this column. The degree of a multi-
column is the size of the mini-column array which is the
number of included attributes. Each mini-column is kept
compressed the same way as it was on disk.

A position descriptor indicating which positions in the
position range remain valid. Positions are made invalid as
predicates are applied on the multi-column. The position
descriptor may take one of three forms:

• Ranged positions: All positions between a specified
start and end position are valid.

• Bit-mapped positions: A bit-vector of size equal to the
multi-column covering position range is given, with a
’1’ at a corresponding position if that position is valid.
For example, for a position coverage of 11-20, a bit-
vector of 0111010001 would indicate that positions 12,
13, 14, 16, and 20 are valid.

• Listed positions A list of valid positions inside the cov-
ering position range is given. This is particularly use-
ful when few positions inside a multi-column are valid.

When a page from a column is read from disk (e.g., by
a DS1 operator), a mini-column is created (which is essen-
tially just a pointer to the page in the buffer pool) with a
position descriptor indicating that all positions are valid.

The DS1 operator then iterates through the column, apply-
ing the predicate to each value and produces a new list of
valid positions. The multi-column then replaces its posi-
tion descriptor with the new position list (the mini-column
remains untouched).

An AND operator takes two multi-columns with over-
lapping covering position ranges and creates a new multi-
column where the covering position range and position de-
scriptor are equal to the intersection of the position range
and position descriptors of the input multi-columns and
the set of mini-columns is equal to the union of the in-
put set of mini-columns. Thus, ANDing multi-columns is
in essence the same operation as ANDing normal position
lists. The only difference is that in addition to perform-
ing the intersection of the position lists, ANDing multi-
columns requires copying pointers to mini-columns to the
output multi-column, but this is a low cost operation.

If the AND operator produces multi-columns rather than
just positions as an input to a DS3 operator, then the oper-
ator does not need to reaccess the column, but rather can
work directly on one multi-column block at a time – iter-
ating through the appropriate mini-column to produce only
those values whose positions are valid according to the po-
sition descriptor. Single multi-column blocks are worked
on in each operator iteration, so that column-subsets can be
pipelined up the query tree. With this optimization, there is
no DS3 I/O cost for a reaccessed column.

0
1
1
0
0
1
1

Position
descriptor

Start 47
End 53

LINENUM
values

(encoded)

RLE
val = 5

start = 47
len = 7

RETFLAG
values

(encoded)

Bit-vector
1 0 0
0 1 0
0 0 0
1 0 0
0 0 1
0 0 1
1 0 0

start = 47
values

(65,78,82)

SHIPDATE
values

Uncomp.
8040
8041
8042
8043
8044
8044
8046

Figure 8: An example multi-column block containing
values for the SHIPDATE, RETFLAG, and LINENUM
columns. The block spans positions 47 to 53; within this
range, positions 48, 49, 52, and 53 are active.

4.7 Predicted versus Actual Behavior
To gauge the accuracy of the analytical model, we com-

pared the predicted execution time for the selection query
(1) in Section 4.5 above with the actual execution time
obtained using the C-Store prototype and a TPC-H scale
10 version of the lineitem projection primarily and secon-
darily sorted by returnflag and shipdate, respectively.

BIC 0.020 microsecs
TICTUP 0.065 microsecs
TICCOL 0.014 microsecs
FC 0.009 microsecs
PF 1 block
SEEK 2500 microsecs
READ 1000 microsecs

Table 2. Constants used for Analytical Models

The results obtained are presented in Figures 9(a) and 9(b),
which plot response time as a function of the selectivity of
the predicate shipdate < CONST2 for the the late and
early materialization strategies, respectively. For these re-
sults, we encoded the shipdate column (into one block) us-
ing RLE encoding and kept the linenum column uncom-
pressed (the 60,000,000 linenum tuples occupy 3696 64KB
blocks). Table 2 contains the constant values used by the an-
alytical model. These constants were obtained from micro-
benchmarks on the C-Store system; they were not reverse-
engineered to make the model match the experiments. Both
the model and the experiments incurred an additional cost
at the end of the query to iterate through the output tuples
(numOutTuples ∗ TICTUP). We assume a two thirds
overlap of I/O and CPU (which is what we have generally
found when running C-Store on our testbed machines).

Here, the important observation is that the models’ pre-
dictions are quite accurate (at least for this query), which
helps validate our understanding of the two strategies. The
actual results will be further discussed in Section 5. Ad-
ditionally, we tested our model on several other cases, in-
cluding the same query presented here but using an RLE-
compressed linenum column (occupying only 7 disk blocks)
as well as additional queries in which both the shipdate and
linenum predicates were varied. We consistently found the
model to reasonably predict our experimental results.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(m
s)

Selectivity (fraction)

LM-Parallel Real
LM-Pipelined Real

LM-Pipelined Model
LM-Parallel Model

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Selectivity (fraction)

EM-Parallel Real
EM-Pipelined Real

EM-Pipelined Model
EM-Parallel Model

(a) (b)
Figure 9: Predicted and observed performance for late (a)
and early (b) materialization strategies on selection queries.

5 Experiments
To evaluate the trade-offs between the early materializa-

tion and late materialization strategies, we ran two queries

under a variety of configurations. These queries were run
over data generated from the TPC-H dataset. Specifically,
we generated an instance of the TPC-H data at scale 10,
which yields a total database size of approximately 10GB
with the biggest table (lineitem) containing 60,000,000 tu-
ples. We then created a C-Store projection (which is a
subset of columns from a table all sorted in the same or-
der) of the SHIPDATE, LINENUM, QUANTITY, and RE-
TURNFLAG columns; the projection was primarily sorted
on RETURNFLAG, secondarily sorted on SHIPDATE, and
tertiarily sorted on LINENUM. The RETURNFLAG and
SHIPDATE columns were compressed using run-length en-
coding, the LINENUM column was stored redundantly us-
ing uncompressed, RLE, and bit-vector encodings, and the
QUANTITY column was left uncompressed.

We ran the two queries on these data. First, we ran the
selection query from Section 4.5:

SELECT SHIPDATE, LINENUM FROM LINEITEM
WHERE SHIPDATE < X AND LINENUM < Y

where X and Y are both constants. Second, we ran an ag-
gregation version of this query:

SELECT SHIPDATE, SUM(LINENUM) FROM LINEITEM
WHERE SHIPDATE < X AND LINENUM < Y
GROUP BY SHIPDATE

again with X and Y as constants. While these queries are
simpler than those that one would expect to see in a pro-
duction environment, their simplicity aids in distilling the
essential differences in performance between the material-
ization strategies. We consider joins separately in Section
5.3.

To explore the performance of the strategies as a function
of the selectivity of the query, we varied X across the entire
shipdate domain and kept Y constant at 7 (96% selectivity).
In other experiments (not presented in this paper) we varied
Y and kept X constant and observed similar results (unless
otherwise stated).

Additionally, at each point in this sample space, we var-
ied the encoding of the LINENUM column among uncom-
pressed, RLE, and bit-vector encodings (SHIPDATE was
always RLE encoded). We experimented with the four dif-
ferent query plans described in Section 4.5: EM-pipelined,
EM-parallel, LM-pipelined, and LM-parallel. Both LM
strategies were implemented using the multi-column opti-
mization.

Experiments were run on a Dell Optiplex GX620 DT
with a 3.8 GHz Intel Pentium 4 processor 670 with Hyper-
Threading, 2MB of cache, and a 800 MHz FSB. The system
had 4GB of main memory installed, of which 3.5GB were
available to the database. The hard drive used was a 250GB
Western Digital WD2500JS-75N.

5.1 Simple Selection Query
For this set of experiments, we consider the simple se-

lection query presented both in Section 4.5 and in the intro-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(s
ec

on
ds

)

Selectivity (fraction)

EM-Pipelined
LM-Parallel
EM-Parallel

LM-Pipelined

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Selectivity (fraction)

EM-Pipelined
LM-Parallel
EM-Parallel

LM-Pipelined

(a) (b)
Figure 10: Run-times for four materialization strategies
on selection queries with uncompressed (a) and RLE com-
pressed (b) LINENUM column.

duction to this section above. Figures 10 (a) and (b) show
the total end-to-end query time for the four materialization
strategies when the LINENUM column is stored uncom-
pressed and RLE encoded, respectively.

For the uncompressed LINENUM experiment (Figure 10
(a)), the pipelined strategies are the clear winners at low
selectivities. The pipelined algorithm reduces the I/O and
CPU costs of reading in and applying the predicate to the
large (250 MB) uncompressed LINENUM column because
the first predicate is highly selective and the matching tu-
ples are sufficiently localized (since the SHIPDATE col-
umn is secondarily sorted) that entire LINENUM blocks
can be completely skipped. At high selectivities, however,
pipelined strategies perform poorly since the CPU cost of
jumping to each matching position is more expensive than
simply iterating through the block one position at a time,
and this additional CPU cost eventually dominates query
time. At high selectivities, immediately making complete
tuples at the bottom of the query plan (EM-parallel) is the
best option; almost all tuples will need to be materialized,
and EM-parallel has the lowest per-tuple construction cost
of any of the strategies.

In other experiments (not shown), we varied the
LINENUM predicate across the LINENUM domain and ob-
served that if both the LINENUM and the SHIPDATE pred-
icate have medium selectivities, LM-parallel can beat EM-
parallel (this is due to the LM advantage of waiting until
the end of the query to construct tuples and thus it can avoid
creating tuples that will ultimately not be output).

For the RLE-compressed LINENUM experiment (Fig-
ure 10 (b)), the I/O cost for all materialization strategies is
negligible (the RLE encoded LINENUM column occupies
only seven 64k blocks on disk). At low query selectivi-
ties, the CPU cost is also low for all strategies. However,
as the query selectivity increases, we observe the differ-
ence in costs of the strategies. Both EM strategies under-

perform the LM strategies since tuples are constructed at
the beginning of the query plan and tuple construction re-
quires the RLE-compressed data to be decompressed (Sec-
tion 3.1.1), precluding the performance advantages of oper-
ating directly on compressed data discussed in [4]. In fact,
the CPU cost of operating directly on compressed data is so
small that almost the entire query time for the LM strategies
is the construction of tuples and subsequent iteration over
the results; hence both LM strategies perform similarly.

We also ran experiments when the LINENUM column
column was bit-vector compressed. The dominant cost fac-
tor for these sets of experiments was decompression, so EM
and LM performed similarly. The graphs and analysis of
these experiments are presented in our technical report [3].

5.2 Aggregation Queries

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(s
ec

on
ds

)

Selectivity (fraction)

EM-Pipelined
LM-Parallel
EM-Parallel

LM-Pipelined

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Selectivity (fraction)

EM-Pipelined
LM-Parallel
EM-Parallel

LM-Pipelined

(a) (b)

Figure 11: Run-times for four materialization strategies on
aggregation queries with uncompressed (a) and RLE com-
pressed (b) LINENUM column.

For this set of experiments, we consider adding an aggre-
gation operator on top of the selection query plan (the full
query is presented in the introduction to this section above).
Figure 11 (a) and (b) shows the total end-to-end query time
for the four materialization strategies when the LINENUM
column is stored uncompressed and RLE encoded, respec-
tively.

In each of these graphs, the EM strategies perform sim-
ilarly to their counterparts in Figure 10: the CPU cost of
producing and iterating through the early-materialized tu-
ples easily dominates the cost of producing and iterating
through the aggregate result. By contrast, the LM strate-
gies all perform significantly better than before. In both the
uncompressed and compressed cases (Figure 11(a) and (b),
respectively), delaying tuple construction allows the plan to
construct only those few tuples produced as output by the
aggregator and to skip constructing the tuples correspond-
ing to its inputs. Additionally, in the compressed case, the
cost of aggregation is also reduced because the aggrega-
tor is able to operate extremely efficiently on compressed

data [4].

5.3 Joins
We now look at the effect of materialization strategy on

join performance. If an early materialization strategy is
used relative to a join, tuples have already been constructed
before reaching the join operator, so the join functions as
it would in a standard row-store system and outputs tuples.
An alternative algorithm can be used with a late materializa-
tion strategy, however. In this case, only the columns that
compose the join predicate are input to the join. The output
of the join is a set of pairs of positions in the two input re-
lations for which the predicate succeeded. For example, the
figure below shows the results of a join of a column of size
5 with a column of size 3.

42
36
42
44
38

on
38
42
46

=
1 2
3 2
5 1

For many join algorithms, the output positions for the
left (outer) input relation will be sorted while the output
positions of the right (inner) input relation will not. This
is because the positions in the left column are usually iter-
ated through in order, while the right relation is probed for
join predicate matches. This asymmetric nature of join po-
sitional output implies that restricting other columns from
the left input relation using the join output positions will be
relatively fast, since the standard merge join of positions can
be used to extract column values. Restricting other columns
from the right input relation using the join output positions
can be significantly more expensive, however, as the out-of-
order positions preclude the use of a merge-join on position
to retrieve column values.

Of course, a hybrid approach could be used in which the
right relation sends tuples to the join operator while the left
relation sends only the single join predicate column. The
join result would then be a set of tuples from the right re-
lation and an ordered set of positions from the left rela-
tion; the positions from the left relation could easily be used
to retrieve additional columns from that relation and com-
plete the tuple construction process. This approach has the
advantage of only materializing values in the left relation
corresponding to tuples that pass the join predicate while
avoiding the penalty of materializing values from the right
relation using unordered positions.

Multi-columns provide another option for the representa-
tion of the right (inner) relations. All relevant columns (i.e.,
columns to be materialized after the join plus the predicate
column) are input to the join operator as a multi-column.
As inner table values match the join predicate, the position
of the value is used to retrieve the values for other columns,

and tuples are constructed on the fly. This hybrid technique
is useful when the join selectivity is low and few tuples need
to be constructed, but is otherwise expensive, since it poten-
tially requires a particular tuple from the inner relation to be
constructed multiple times.

To further examine the differences between these three
materialization approaches for the inner table in a join
operator (send just the unmaterialized join predicate col-
umn, send the unmaterialized relevant columns in a multi-
column, or send materialized tuples), we ran a standard star
schema join query on our TPC-H data between the orders
table and the customers table on customer key (customer
key is a foreign key in the orders table and the primary key
for the customers table), where the less-than predicate on
customer key is varied to obtain the desired selectivity:
SELECT Orders.shipdate

Customer.nationcode
FROM Orders, Customer
WHERE Orders.custkey=Customer.custkey

AND Orders.custkey < X

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nt

im
e

(m
s)

Selectivity (fraction)

Right Table Materialized
Right Table Multi-Column

Right Table Single Column

Figure 12: Run-times for three different materialization
strategies for the inner table of a join query. Late materi-
alization is used for the outer table.

For TPC-H scale 10 data, the orders table contains
15,000,000 tuples and the customer table 1,500,000 tuples.
Since this is a foreign key-primary key join, the join result
will also have at most 15,000,000 tuples (the actual num-
ber is determined by the Orders predicate selectivity). The
results of this experiment can be found in Figure 12. Send-
ing either early materialized tuples or multi-columns as the
right-side input of the join operator results in similar per-
formance, as the multi-column advantage of only material-
izing relevant tuples is not helpful for a foreign key-primary
key join where there are exactly as many join results as join
inputs. Sending just the join predicate column performs
poorly due to the overhead of subsequent materialization us-
ing unordered positions. If the entire set of positions were
not able to be kept in memory, late materialization would
have performed even more poorly.

We do not present results for varying the materialization
strategy of the left-side input table to the join operator since
the trade-offs are identical to those discussed in previous ex-
periments: if the join is highly selective or if the join results
will be aggregated, a late materialization strategy should be
used. Otherwise, EM-parallel should be used.

6 Related Work
To the best of our knowledge, this paper contains the

only study of multiple tuple creation strategies in a column-
oriented system. C-Store [14] used LM-parallel only (until
we extended it with additional strategies). Published de-
scriptions of Sybase IQ [12] seem to indicate that it also
uses LM-parallel. Papers by Halverson et al. [10] and Hari-
zopoulos et al. [11] that further explore the trade-offs be-
tween row- and column-stores use early materialization ap-
proaches for the column-store they implemented (the for-
mer uses EM-parallel, the latter uses EM-pipelined). Mon-
etDB/X100 [8] uses late materialization implemented us-
ing a similar multi-column approach; however, their version
of position descriptors (they call them selection vectors)
is kept separately from column values and data is decom-
pressed in the cache, precluding the potential performance
benefits of operating directly on compressed data both on
position descriptors and on column values. Thus, previous
work has tended to choose a materialization strategy a pri-
ori without justification and has not examined trade-offs be-
tween these choices.

The multi-column optimization of combining chunks of
columns covering the same position range together into one
data structure is similar to the PAX [5] idea of taking a row-
store page and splitting it into multiple mini-pages where
each tuple attribute is stored contiguously. PAX does this
to improve cache performance by maximizing inter-record
spatial locality within a page. Multi-columns build on
PAX in the following ways: first, multi-columns are an in-
memory data structure only and are created on the fly from
different columns stored separately on disk (where pages
for the different columns on disk do not necessarily match-
up position-wise). Second, positions are first class citizens
in multi-columns and may be accessed and processed sepa-
rately from attribute values. Finally, mini-columns are kept
compressed inside multi-columns in their native compres-
sion format throughout the query plan, encapsulated in spe-
cialized data structures that facilitate direct operation on
compressed data.

7 Conclusion
The optimal point at which to perform tuple construction

in a column-oriented database is not obvious. This paper
provides a systematic evaluation of a variety of strategies
for when tuple construction should occur. We showed that
late materialization has many advantages, but potentially
incurs additional costs due to re-processing disk blocks,

and hence early materialization is sometimes preferable. A
good heuristic to use is that if output data is aggregated, or
if the query has low selectivity (highly selective predicates),
or if input data is compressed using a light-weight com-
pression technique, a late materialization strategy should
be used. Otherwise, for high selectivity, non-aggregated,
non-compressed data, early materialization should be used.
Further, the right input table to a join should be material-
ized before (or during if a multi-column is input) the join
operation. We are also optimistic that our analytical model
can be used to predict query performance and help choose a
materialization strategy at query planning and optimization
time.

8 Acknowledgements
We would like to thank the C-Store team for their helpful

feedback and ideas. This work was supported by the Na-
tional Science Foundation under grants IIS-048124, CNS-
0520032, IIS-0325703 and an NSF Graduate Research Fel-
lowship.

References
[1] TPC-H. http://www.tpc.org/tpch/.
[2] C-store code release under bsd license. http://db.

csail.mit.edu/projects/cstore/, 2005.
[3] D. Abadi, D. Myers, D. DeWitt, and S. Madden. Material-

ization strategies in a column-oriented dbms. MIT CSAIL
Technical Report. MIT-CSAIL-TR-2006-078.

[4] D. J. Abadi, S. Madden, and M. Ferreira. Integrating com-
pression and execution in column-oriented database sys-
tems. In SIGMOD, pages 671–682, 2006.

[5] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB ’01,
pages 169–180, San Francisco, CA, USA, 2001.

[6] P. Boncz. Monet: A next-generation dbms kernel for query-
intensive applications. Phd thesis, Universiteit van Amster-
dam, 2002.

[7] P. A. Boncz and M. L. Kersten. MIL primitives for querying
a fragmented world. VLDB Journal: Very Large Data Bases,
8(2):101–119, 1999.

[8] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In CIDR, pages 225–237,
2005.

[9] G. Copeland and S. Khoshafian. A decomposition storage
model. In SIGMOD, pages 268–279, 1985.

[10] A. Halverson, J. Beckmann, and J. Naughton. A comparison
of c-store and row-store in a common framework. Technical
Report, UW Madison Department of CS, TR1566, 2006.

[11] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Per-
formance tradeoffs in read-optimized databases. In VLDB,
pages 487–498, 2006.

[12] R. MacNicol and B. French. Sybase IQ multiplex - designed
for analytics. In VLDB, pages 1227–1230, 2004.

[13] R. Ramamurthy, D. Dewitt, and Q. Su. A case for fractured
mirrors. In VLDB, 2002.

[14] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cher-
niack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil,
P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-store:
A column-oriented dbms. In VLDB, pages 553–564, 2005.

