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ABSTRACT
AnyLog is a decentralized platform for data publishing, sharing,
and querying IoT (Internet of Things) data that enables an unlim-
ited number of independent participants to publish and access the
contents of IoT datasets stored across the participants. AnyLog
provides decentralized publishing and querying functionality over
structured data in an analogous fashion to how the world wide
web (WWW) enables decentralized publishing and accessing of
unstructured data. However, AnyLog differs from the traditional
WWW in the way that it provides incentives and financial reward
for performing tasks that are critical to the well-being of the system
as a whole, including contribution, integration, storing, and pro-
cessing of data, as well as protecting the confidentiality, integrity,
and availability of that data. Another difference is how Anylog
enforces good behavior by the participants through a collection of
methods, including blockchain, secure enclaves, and state channels.

1. INTRODUCTION
The world wide web (WWW) has had an extraordinary impact

on our day-to-day lives. An enormous amount of information is
available to any participant at extremely low cost (usually this cost
is paid via one’s attention to advertisements). However, the inter-
face is fundamentally limited. A user must either have pre-existing
knowledge of the location of the needed information (e.g., the cor-
rect URL), or use a search interface which generally attempts to
match words in a search query with the natural language found on
the web. It is totally impossible to query the entire WWW with
a single SQL query (or any other structured query language), and
even if you could, the data available is not published in a format
which would be amenable to such queries.

AnyLog aims to create a new WWW for structured data (e.g.,
data that fits in rows and columns of relational tables), with an
initial focus on IoT data. Anybody can publish structured data to
AnyLog using their preferred schema, and they retain the ability to
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specify the permissions of that data. Some data will be published
with open access—in which case it will be queryable by any user of
AnyLog. Other data will be published in encrypted form, in which
case only users with access to the decryption key may access it.

AnyLog is designed to provide a powerful query interface to the
entire wealth of data produced by IoT devices. Questions such as:
“What was the maximum temperature reported in Palo Alto on June
21, 2008?” or “What was the difference in near accidents between
self-driving cars that used deep-learning model X vs. self-driving
cars that used deep-learning model Y?” or “How many cars passed
the toll bridge in the last hour?” or “How many malfunctions were
reported by a turbine of a particular model in all deployments in
the last year?” can all be expressed using clean and clearly spec-
ified SQL queries over the data published in AnyLog from many
different data sources.

We choose the Internet of Things as our initial focus for Any-
Log since the data is machine-generated and usually requires less
cleaning than human-generated data. Furthermore, there are a lim-
ited number of unique devices, with typically many instances of a
particular unique device. Each instance of a device (that is running
a particular software version) produces data according to an identi-
cal schema (for a long period of time). This reduces the complexity
of the data integration problem. In many cases, device manufactur-
ers can also include digital signatures that are sent along with any
data generated by that device. These signatures can be used to ver-
ify that the data was generated by a known manufacturer, thereby
reducing the ability of publishers to profit off of the contribution of
“fake data” to the platform. Despite this initial focus on the Internet
of Things, our long term goal is to expand AnyLog and enable any
structured data to be published and queried using the platform.

Unlike the previous generation of decentralized database sys-
tems [15, 24, 9], publishers on AnyLog receive a financial reward
every time the data that they contributed participates in a query
result. This reward accomplishes three important goals: (1) It mo-
tivates data owners to contribute their data to the platform (2) It
motivates data owners to make their data public (since public data
will be queried more often than private data) (3) It motivates data
owners to use an existing schema to publish their data (instead of
creating a new one).

The first goal is an important departure from the WWW, where
data contributors are motivated by the fame and fortune that come
with bringing people directly to their website. Monetizing this web
traffic through ad revenue disincentivizes interoperability since pro-
viding access to the data through a standardized API reduces the
data owner’s ability to serve advertisements. Instead, AnyLog en-



ables data contributors to monetize data through a SQL interface
that can answer queries from any source succinctly and directly.1

Making this data public, the second goal, increases the potential
for monetization.

The third goal is a critical one for structured data: the data inte-
gration problem is best approached at the source—at the time that
the data is generated rather than at query time [16]. AnyLog aims
to incentivize data integration prior to data publication by allowing
free market forces to generate consensus on a small number of eco-
nomically viable schemas per application domain (similar to how
market forces have resulted in SQL being the dominant interface to
most economically viable database systems). Of course, this incen-
tivization does not completely solve the data integration problem,
but we expect AnyLog to be useful for numerous application do-
mains even when large amounts of potentially relevant data must
be ignored at query time due to data integration challenges.

As a fully decentralized system, anybody can create an inter-
face to the data in AnyLog. We envision a typical interface would
look like the following: users are presented with a faceted interface
that helps them to choose from a limited number of application
domains. Once the domain is chosen, the user is presented with an-
other faceted interface that enables the user to construct selection
predicates (to narrow the focus of the data that the user is interested
in within that domain). After this is complete, one of the schemas
from all of the registered schemas for that domain is selected based
on which datasets published using that schema contain the most
relevant data based on the user’s predicates2. After the schema is
chosen, the interface aids the user in creating a static or streaming
SQL query over that schema3. The entire set of data in AnyLog
that was published using that schema, and for which the user who
issued the query has access to, is queried. The results are combined,
aggregated, and returned to the user.

AnyLog’s architecture incorporates third-party contractors and
coordinators for storing and providing query access to data. Con-
tractors and coordinators act as middlemen between data publishers
and consumers. This aims to overcome existing limitations of IoT
systems that rely on the owner or publisher to provide the resources
for storage and processing. This also facilitates managing IoT data
at the edge4.

Despite making the system easier to use for publishers, the exis-
tence of contractors and coordinators in the architecture present two
challenges: (1) How to incentivize them to participate, and (2) How
to preserve the integrity of data and query results when untrusted
and potentially malicious entities are involved in the storage and
processing. AnyLog proposes an infrastructure to solve both these
challenges.

Contractors and coordinators are incentivized similarly to pub-
lishers, by a financial reward for every query they serve. Querying
the platform requires a small payment of tokens. These payment
tokens are shared between the publishers that contributed data that
was returned by the query, along with the contractors and coordi-
nators that were involved in processing that query.

The financial reward received per query incentivizes participa-
tion of contractors and coordinators in query processing. However,

1Note that this interface does not preclude the data from ultimately
being monetized by advertisements. A website may serve adver-
tisements to subsidize the cost of querying data stored in AnyLog,
which, as described below, will be passed on to the publishers.
2Alternatively, a user can specify a desired schema from the start.
3Advanced users and machines would skip all of the previous steps
and issue static or continuous SQL queries over AnyLog directly.
4Gartner currently predicts that 75% of IoT data will be managed
at the edge by 2025 [33]

it does not ensure that the participation is honest and correct query
results are returned. In fact, without safeguards, contractors and
coordinators can make more money by avoiding wasting local re-
sources on query processing, and instead returning half-baked an-
swers to query requests.

Indeed, one of the main obstacles to building decentralized data
management systems like AnyLog is how to secure the confiden-
tiality, integrity, and availability of data, query results, and pay-
ment/incentive processing when the participants in the system are
mutually distrustful and no universally-trusted third party is likely
to exist. Until relatively recently, the security mechanisms neces-
sary for building such a system did not exist, were too inefficient, or
unable to scale. Today, we believe recent advances in secure query
processing, blockchain, byzantine agreement, and trusted execu-
tion environments put secure decentralized database systems within
reach. AnyLog’s infrastructure uses a combination of these mech-
anisms to secure data and computation within the system.

In the rest of this paper, we present the architecture of AnyLog.
Section 2 overviews the system model and security components.
Then, we present AnyLog’s decentralized compensation scheme
in Section 3. Details about normal-case operation in AnyLog and
security risks and challenges are presented in Sections 4 and 5. We
provide a discussion of other use cases for AnyLog in Section 6.
Related work is presented in Section 7 followed by a conclusion in
Section 8.

2. ARCHITECTURAL OVERVIEW

2.1 System Model and Components
Figure 1 shows five types of members of an AnyLog network:

• Clients, which produce static or continuous SQL queries,
and consume the results.

• Coordinator servers that receive SQL queries, and parse,
plan, optimize, and coordinate their parallel execution across
potentially many contractors.

• Contractor servers that store all data at rest in the Any-
Log network, and provide a query interface to access locally
stored data.

• Publisher nodes (e.g., IoT devices or hubs) that produce data
and ship it to contractors for storage and queryable access.

• Blockchain infrastructure that maintains the configuration
and bookkeeping information of the global state of AnyLog
and arbitrates disputes between participants.

AnyLog’s architecture is fully decentralized—there are no re-
strictions regarding who can join as any member type. There are
no inherent assumptions that any network member is trustworthy
or is optimizing for the best interest of the network as a whole.
However, members may take advantage of established trust rela-
tionships to reduce the overhead of security protocols and increase
performance.

A client works with its preferred coordinator (similar to how we
choose our preferred search engine on the WWW today) to gener-
ate queries over data in AnyLog. The coordinator parses, optimizes
and generates a query plan for the query. The query is then per-
formed in parallel (using standard parallel query processing tech-
niques) across all of the involved contractors. Each contractor re-
ceives a micropayment in tokens from the coordinator in return for
its effort during query processing. The coordinator then aggregates
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Figure 1: AnyLog Architecture

results and sends them to the client in return for a payment in tokens
from the client.

A Blockchain serves as a global log of configuration and meta
information. Through the blockchain component, AnyLog partici-
pants can register their existence along with verifiable promises of
their activities (such as schemas they use, service levels they guar-
antee, or contract terms with other participants). These registered
promises are used as input to automated arbitration of disputes
(Section 3.5). The blockchain is also used for registering payment
channels so that different entities on AnyLog can exchange token
micropayments quickly, without requiring reading or writing to the
chain during the micropayment (Section 3.4). In general, writing to
the blockchain is restricted to infrequent events that configure the
state of the AnyLog network. However, frequent collection, stor-
age, and querying of data is performed off-chain. This helps limit
the overhead incurred due to writing to the blockchain log.

Publishers produce data in batches. Prior to publishing data,
publishers must register a contract with one or more contractors.
This contract establishes that these contractors will be responsible
for maintaining and serving the publisher’s data. The contract may
also include storage or processing requirements, such as the level of
fault-tolerance and SLA guarantees. After a contract is registered,
the publisher can send data to the contractor(s) in the contract.

Contractors maintain and serve data that is generated by pub-
lishers. After agreeing to a contract with a publisher, the contractor
receives data from publishers and stores and provides query access
to this data. Contractors provide access to the data through standard
SQL queries, which can be used by coordinators as part of client
query processing.

Contractor and Publisher Groups. In AnyLog, many contrac-
tors can form a contractor group and many publishers can form a
publisher group. This is useful to enable multiple contractors to
collectively satisfy more stringent performance and fault-tolerance
guarantees than would be feasible for singleton contractors. Fur-
thermore, this enables publishers that belong to the same organiza-
tion to act as a single unit and reduces load on the blockchain by

allowing contracts to be registered at the group level. For unifor-
mity, we assume that any contractor is part of a contractor group
and that any publisher is part of a publisher group. A contractor or
publisher group might consist of a single node.

Groups can be centralized or decentralized. Centralized groups
are managed by a group manager node (typically the creator of
the group). The manager issues signed group credentials to each
member; other nodes authenticate membership by verifying these
credentials. To remove a node, the manager adds the node’s cre-
dentials to a revocation list it maintains for the group. The man-
ager also acts as the interface between the group and the rest of the
AnyLog network, registering contracts and processing payments on
behalf of the members.

Decentralized groups are managed by a smart contract in the
blockchain (see Section 2.2 for some background on how smart
contracts work). AnyLog nodes invoke the contract’s functional-
ity to add nodes, enter into contracts with publisher groups, and
distribute payments. For some operations, the contract may re-
quire a threshold of group members to authorize the action. Each
group management smart contract maintains a list of the current
group membership and AnyLog nodes authenticate membership
using this list. Instead of a revocation list (as used by centralized
groups), a member is removed from a decentralized group when the
contract removes it from the group list.

Coordinators are the access points to the AnyLog network. Co-
ordinators continuously monitor registrations in the blockchain, in
addition to tracking other metadata stored by the contractor groups
across AnyLog, in order to be aware of all contractor groups, pub-
lisher groups, and schemas that exist, along with the properties
of the data which is available across the network. The coordi-
nator uses this information to aid clients generate queries, deter-
mine which contractors contain potentially relevant data for a given
query, and plan and optimize queries across these contractors.

Clients are users and machines interested in querying the Any-
Log network by connecting to coordinators or contractors through
high-level user interfaces, APIs, or query languages. This is simi-



lar to how accessing the web can take various forms, such as access
through web browsers for users and APIs for automated scripts.
Like the web, access to AnyLog can start with simple, ad-hoc in-
terfaces that evolve to widely-adopted standards.

2.2 Security Components
AnyLog is designed to be a general decentralized system, provid-

ing support both for cases where publishers, contractors, and coor-
dinators are mutually distrustful, and also for cases where there are
existing trust relationships amongst these entities. AnyLog lever-
ages several security mechanisms to enforce the confidentiality, in-
tegrity, and availability of the data it stores and processes, which are
primarily applied in situations of mutual distrust. In this section we
review the basic security properties of these mechanisms.

Public-key cryptography All entities in AnyLog—publishers,
contractors, and coordinators—are identified by a public key. A
public/private key pair may be used to sign and authenticate mes-
sages between AnyLog nodes. By exchanging signed messages
containing public encryption keys, AnyLog nodes may also estab-
lish secure, authenticated channels.

Query Result Integrity AnyLog supports enforcing the integrity
of query results of untrusted nodes through a combination of trusted
hardware and authenticated data structures. Platforms such as Intel
SGX or ARM TrustZone enable a Trusted Execution Environment
(TEE). A TEE prevents the host from observing or manipulating the
memory or code of programs running in the secure enclave of the
TEE. Additionally, the TEE provides secure measurement opera-
tions that enable remote attestation protocols that help an untrusted
host prove to a remote entity that a particular program is running in
the TEE. This enforces the confidentiality and integrity of computa-
tion in the TEE (though it does not enforce availability.) Publishers
who do not trust the security of a particular TEE technology (or
whose anticipated workloads may not scale with the TEE’s avail-
able resources) may choose to utilize Authenticated Data Struc-
tures (ADSs) [12, 23]. ADSs provide another approach for authen-
ticating query results that enables remote attestation without special
hardware. Merkle trees [21] are an example of an ADS.

Data Confidentiality. We expect the vast majority of AnyLog
publishers will either publish public data, or will have existing trust
relationships with at least one contractor group that they believe is
sufficiently trustworthy to protect the confidentiality of the pub-
lisher’s data. Nonetheless, AnyLog publishers that wish to protect
the confidentiality of their data from contractors will publish en-
crypted data to contractors. Depending on the desired workload and
security guarantees, these contractors will either answer queries us-
ing encrypted query-processing techniques similar to CryptDB [28],
or process queries within a TEE.

To release query results to clients without revealing the keys
of the publisher’s entire dataset, these publishers also deploy re-
encryption enclaves that reveal results to clients (or coordinators)
based on authorization tokens. A re-encryption enclave may be
deployed in a number of ways: on contractors, coordinators, or
clients. The enclaves receive an encrypted result set and an au-
thorization token as input and then output a result set that is re-
encrypted to the recipient specified by the token. Using an enclave
to re-encrypt result sets is a flexible way to enforce the publisher’s
access control policies without imposing additional hardware or
trust requirements on contractors, whose resources are most in de-
mand. Queries processed within TEEs could potentially encrypt re-
sults directly to the intended recipient, but doing so would require
additional key management mechanisms.

Smart Contracts and State Channels. A smart contract is
simply code that “runs on a blockchain.” Specifically, blockchain

protocols such as Ethereum and (to a lesser extent) Bitcoin, sup-
port transactions that publish programs to the blockchain, as well
as transactions that invoke these programs and send data or funds
to them for processing. Because the semantics of the program is
defined by the blockchain protocol, all miners in the blockchain
network are incentivized to execute the code honestly or risk their
blocks being rejected by the network (and thus forfeiting their min-
ing reward).

There are several drawbacks to using smart contracts in a dis-
tributed system protocol. The first drawback is cost: each invo-
cation of the smart contract involves a blockchain transaction that
include a transaction fee to incentivize miners to include the trans-
action in their next mined block. The second drawback is latency:
because smart contracts are invoked via transactions, the system
must wait on a new block to arrive to receive the results of a call.
The third drawback is throughput: blockchain protocols typically
place an upper limit on block sizes, limiting the number of transac-
tions that can be included in each block.

AnyLog avoids these drawbacks whenever possible by using “off-
chain” protocols like state-channels (e.g., [22]) to avoid the cost,
latency, and throughput limitations of blockchain protocols. At
a high level, most AnyLog protocols can be conducted via direct
peer-to-peer interactions between nodes. By signing and authenti-
cating messages, nodes maintain evidence of the agreed-upon state
of a protocol. As long as nodes continue to interact in accordance
with the AnyLog protocol, no interaction with the blockchain is
necessary. If a node fails to send an expected response, or sends an
invalid response, only then will a blockchain transaction be needed
to arbitrate between the participants. We discuss in more depth
how smart contracts and state channels are used in AnyLog in Sec-
tion 3.5 and Section 5.

3. DECENTRALIZED COMPENSATION
A key contribution of AnyLog is the development of decentral-

ized compensation. We believe that a misaligned incentive model
was an important impediment of prior peer-to-peer structured data
sharing systems. AnyLog’s decentralized compensation enables an
incentive model that overcomes previous shortcomings. While us-
ing blockchain transactions to compensate nodes for their resources
plays a role in this scheme, a primary concern is ensuring those
transactions are made correctly and in a timely manner without
introducing performance bottlenecks. In this section, we provide
an overview of how incentives are assigned and propagated across
the AnyLog network (Sections 3.1 and 3.2). Then, we present
the main three design components of decentralized compensation:
metadata maintenance including registration and contracts (Sec-
tion 3.3), compensation processing (Section 3.4) and handling dis-
putes (Section 3.5).

3.1 Overview
In the AnyLog network, a node is compensated for each of the

four following activities:

1. Data publishing: a publisher is compensated for the data it
publishes every time it is accessed at a contractor. The source
of the compensation is either the client (if the data access is
direct from the client to the contractor) or the coordinator (if the
data access is performed through a coordinator). In both cases,
the payment arrives at the publisher through the contractor.

2. Data storage: a contractor may be compensated by a publisher
for storing and maintaining the publisher’s data. The amount
(which may be nothing) and frequency of compensation is de-
fined in the contract between the publisher and the contractor,



and occurs after the contractor provides a proof of retrievabil-
ity [18, 30, 3].

3. Data processing at the contractor: a contractor is compen-
sated for performing any processing on the data it maintains.
The amount of compensation depends on the type of process-
ing and is agreed upon in the contract between the publisher
and the contractor. The source of the compensation is the node
that makes the request to the contractor.

4. Data processing at the coordinator: a coordinator is compen-
sated for the distributed query processing and data served to the
client. Since coordinators are relatively independent, the com-
pensation model is flexible and is advertised by the coordinator
to clients. The source of the compensation is the clients issuing
the request or query to the coordinator.

Registrations and contracts (Section 3.3). The rules and meta-
data of compensations are registered in the blockchain in the form
of registrations or publishing contracts. A registration serves as an
announcement of a node. For example, a publisher group can reg-
ister itself in blockchain to announce its interest in publishing data
with specific properties and requirements. Likewise, a contractor
group can register itself to announce its existence and properties.
These registrations are optional and serve as a way to help publish-
ers and contractors find each other. A contractor can register itself
more than once to advertise different levels of guarantees and prop-
erties. Likewise, a publisher can register more than one schema if
it generates different types of data and does not want to utilize ex-
isting schemas.

Once a publisher and contractor have found each other and have
agreed to the terms of a contract, they register the data publishing
contract on the blockchain. Data publishing contracts serve as an
announcement to clients and coordinators to inform them of the
availability of data and the way to access it.

Off-chain compensation (Section 3.4). Rather than relying on
the blockchain for every payment, AnyLog uses verifiable compen-
sation schemes that enable most fund transfers to occur off-chain,
while still leveraging the blockchain to ensure that payments occur
correctly.. This approach helps avoid the prohibitive performance
and monetary costs of doing payments directly on the blockchain.

Disputes management (Section 3.5). The decentralization of
compensation and processing can lead to cases where malicious
nodes fabricate information or avoid paying compensations. Any-
Log proposes the use of an automated dispute management pro-
tocol that utilizes smart contracts on the blockchain as arbiters of
disputes.

3.2 Example
The life-cycle of data from publishing to being served to clients

is illustrated in Figure 2. First, a publisher group P (optionally)
registers itself in the blockchain. This registration contains a ref-
erence to the schema of the data it plans to publish5. A contractor
group C also (optionally) registers on the blockchain along with its
SLA guarantees and other relevant information that enables pub-
lishers to select from existing contractors (step 1). Then, P and C
find each other and request establishing a data publishing contract
(step 2). Both parties asynchronously agree on the contents of the
contract and one of them uploads the contract—signed by both—to
the blockchain (step 3) In the meantime, P and C set up a pay-
ment channel and register it in the blockchain. After the contract is

5If it does not plan to use a previously registered schema, it needs
to register a new schema first prior to referring to it.
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Figure 2: Compensation and dispute example. Node P denotes a
Publisher and node C denotes a contractor. (P and C in all four
figures represent the same two nodes across different times.)

uploaded, data and compensation are continuously sent between P
and C (step 4)

Once the contract is published in the blockchain, coordinators
and clients can request access to the published data by contact-
ing the contractor (step 5) A client or coordinator accesses data
by sending the request and compensation to C. C sends the pub-
lisher’s share of the compensation to P through the payment chan-
nel and sends back the response to the client.

As an example, a dispute can arise if C does not respond to an
access request from a client (or coordinator). The correct behav-
ior for C is to either process the request and send a response or to
reject the request and refund the client’s payment. To force C to
provide the response or a refund, the client sends a dispute record
containing its request and C’s node ID to the smart contract on the
blockchain (step a). C must respond to this dispute within a pre-
determined interval (measured in the number of blocks written to
the blockchain after the block that contains the dispute). C’s re-
sponse is either a proof of its response or proof it has satisfied its
SLA and therefore may reject the request. If C fails to respond, the
smart contract—using C’s escrowed funds— refunds the client’s
payment and transaction cost to send the dispute record to block-
chain (step b). Depending on the terms of the SLA, the contract
may take additional punitive steps such as fines or termination of
the contract.

In the rest of this section, we present the details of the three main
design components for decentralized compensation.

3.3 Publishing Contracts
The process of writing a publishing contract involves coordina-

tion between a publisher group and contractor group (we refer to
them in shorthand as publisher and contractor).

Before the coordination to establish a publishing contract starts,
certain metadata that will be referenced by the contract needs to be
previously registered in the blockchain:

(1) Schema registration. Schema registrations can be initiated
by any entity in AnyLog, but will be most commonly initiated



from a publisher. Schemas are treated like regular data in many
respects: whoever creates a schema is considered a “publisher” of
that schema, and must contract with one or more contractor groups
for storage and query access to the metadata related to this schema.
The cost to register a schema is thus the transaction cost to regis-
ter it on the blockchain, plus the contract cost with the contractor
group that will store the metadata about this schema.

The metadata for a schema (version) includes the following:

• The globally unique identifier for that schema

• A plain text high-level description of the schema

• A backwards reference to the identifier of the previous ver-
sion of this schema (if it exists)

• The DDL commands (using standard SQL:2003) that define
the schema. The best schemas will make heavy use of in-
tegrity constraints so that others that want to use the schema
have a clear understanding of the important semantics of the
data published using this schema.

• An additional set of rules (in plain text) that describe the
semantics of the data that are hard to express using integrity
constraints (e.g., that temperature readings should use Cel-
sius).

• A list of all publisher group identifiers that have been cer-
tified as making correct use of this schema version.

• The contact information and/or link to a public forum where
questions, concerns, and ideas about this schema can be dis-
cussed.

(2) Contractor registration and contract document registra-
tion. Contractor registrations include the following information:
(1) the globally unique identifier of the group, (2) the IP address/port
information of at least one server in the group (if this changes, a
new transaction must be written to the blockchain). Separately,
contractors can register one or more contract documents which spec-
ify the SLA and other contract terms that it plans to support. All
other metadata regarding the group is stored by the group itself.
This off-chain metadata includes: (1) information about the current
members of the group, (2) information about the publisher groups
that it is currently contracting with, and (3) all information typi-
cally stored in a catalog on a traditional database system that de-
scribe the data being stored and important statistics about the data
that are leveraged during query planning and optimization. Because
this metadata is likely to change more frequently than the on-chain
metadata, storing these records off-chain reduces the performance
overhead for modifications. Nevertheless, decentralized contractor
groups may choose to store some or all of this metadata in their
smart contract to protect its integrity and ensure consensus among
their members.

Publishing Contract Protocol. Publishers search through the
contract document options that were previously published on the
blockchain (see Section 4.1 for a discussion of how data in the
blockchain is accessed) or alternatively negotiate a new contract
document offline with a specific contractor. Once a publisher has
found a contractor with contract terms that it finds acceptable, the
contract between them is made official by writing a smart contract
to the blockchain.

The contents of the publishing contract includes the following:
(1) the globally unique identifier of the publisher group that is reg-
istering the contract, (2) the globally unique identifier of the con-
tractor group that it is contracting with and its signature agreeing

to the contents of the contract, (3) the period of the contract, (4)
the globally unique identifier of the contract document that was
previously published in the blockchain that is being agreed to by
the parties involved in this contract (5) any changes or revisions
to this referenced contract document that is specific to this partic-
ular agreement (5) (if required by the contract terms) a deposit of
funds by the publisher to be placed in escrow to ensure payment for
services supplied by the contractor such as storage of the data.

As part of the contract, the contractor group becomes responsible
for storing and providing query access to all metadata about the
publisher group it is contracting with, including (1) the members
of the publisher group, (2) information regarding the rules that all
members of the publisher group must adhere to (e.g., all members
are associated with a particular device version from a particular
manufacturer), and (3) the globally unique identifier of the schema
version (that was previously registered in blockchain) associated
with data published by members of this group.

3.4 Compensation Processing
In AnyLog, the payments between nodes can potentially occur

frequently, and in small amounts. For example, the payment from
a coordinator to a contractor for its data processing contribution to
a particular query may be on the order of a few cents, or even less.
Transaction costs on popular blockchain implementations make pro-
cessing each micropayment via a blockchain prohibitive. The prob-
lem of performing micropayments on blockchains is well-known,
and several practical solutions have been proposed.

The most popular of these solutions is to perform micropayments
via payment channels [27] between entities. Two entities that wish
to exchange micropayments deposit funds to a smart contract that
holds these funds in escrow. The two entities may then directly
exchange signed messages “off-chain” that add or subtract from the
balance of their escrowed funds. To close the channel, either entity
may submit the log of signed transactions to the smart contract to
settle the off-chain transactions against the on-chain balances and
withdraw their remaining funds.

State channels [22] generalize the idea of payment channels to
more general protocols. For example, data storage compensation
for contractors is governed by a state-channel protocol. Publishers
periodically challenge contractors to provide proofs of retrievabil-
ity [18, 30, 3] (PORs). If the proof is valid, the publisher sends
payment for the storage period. If the contractor fails to respond
or to provide a valid POR, the publisher may attempt to cancel the
contract (possibly triggering additional penalties) by sending a dis-
pute record to the smart contract. If the contractor provides a valid
POR to the contract, it receives payment for the storage. If the
publisher fails to pay the contractor, the contractor may initiate a
dispute to force payments or cancel the contract.

Two common challenges for off-chain protocols are routing and
collateral management. Because payment channels require an on-
chain deposit of funds, routing payments (for a small fee) between
entities with pre-existing channels saves time and lowers the collat-
eral needed to usefully interact with the system. Furthermore, if the
transfers that occur off-chain deplete the deposits stored on-chain,
additional funds must be deposited so that off-chain payments are
properly collateralized. Until these deposits are finalized on-chain,
off-chain payments via the channel cannot be accepted.

Fortunately, AnyLog’s architecture lends itself to relatively sim-
ple solutions to these challenges. First, payments between publish-
ers and contractors only occur after a contract has been registered
on-chain, so establishing direct payment channels (typically as part
of the publishing contract’s functionality) avoids the need to route
these payments via other nodes. Payments from publisher to con-



tractors for storage are regular, and thus easy to anticipate. Con-
tractors make payments to publishers only after receiving payments
from coordinators or clients, and publishers can detect if contrac-
tors miss a payment by auditing periodic summaries of processed
requests (Section 5.2).

Some coordinators will specialize in particular datasets to add
value for clients through indexing and other aggregation services.
Thus these coordinators may only need to establish direct pay-
ment channels with a limited number of contractors. More general-
purpose coordinators may choose to route payments through these
specialized coordinators rather than establish direct channels.

Clients will typically only need to establish payment channels
with the coordinators they choose. Since the coordinator will likely
have direct channels to contractors or indirect channels via other
coordinators, any payments made by the client can be routed through
the coordinator. A failure to route a payment can be resolved by the
sender raising a dispute with the payment channel contract.

Coordinators will periodically need to transfer off-chain balances
from client channels to contractor channels, but except during pe-
riods of extreme volatility in the workload, the need for such trans-
fers should be easy to anticipate so as to not interrupt service.

3.5 Disputes
Many interactions in AnyLog are decentralized, happening di-

rectly between nodes. This introduces the potential of problems
caused by malicious or unresponsive nodes. Violations to SLA
or AnyLog protocols are handled in AnyLog via a decentralized
dispute mechanism. This dispute mechanism is implemented via
smart contracts that are run in the blockchain. The dispute smart
contract has the capability of performing actions such as charging
a fine to the offending party. The fine and penalties are paid from
escrow funds that are created at the time when the relationship be-
tween nodes are established.

There are many different types of disputes that could occur, in-
cluding disputes over unanswered queries from contractors, dis-
putes over missing compensation, and disputes over incorrect query
results. All these disputes follow the same pattern: a response or
compensation is expected, but is not received or is incorrect. The
receiving party sends a transaction to the SLA smart contract to ini-
tiate the dispute, and includes any evidence relevant to its dispute
claim (e.g., a signed acknowledgment by the contractor accepting
a query). If the dispute can be (mechanically) adjudicated on the
basis of this evidence alone, then the smart contract can verify the
dispute claim and transfer funds or cancel the contract as specified
by the SLA to resolve the dispute.

Many disputes, however, regard claims about the absence of a
message. These disputes cannot be resolved immediately since
the receiver cannot prove their claim directly: a malicious receiver
could attempt to negatively impact another party by falsely claim-
ing it did not receive a message. To avoid abuse in the processing
of these claims, the accused party is given an opportunity to present
the expected message directly to the smart contract (as opposed to
the intended party). If the message is received within a specified in-
terval after the dispute, then no negative consequences are assessed
to the accused node. In Section 5 we provide further details on how
how disputes are resolved and the role disputes play in enforcing
the integrity and availability of AnyLog data and computation.

4. NORMAL-CASE OPERATION
In this section, we present the protocols that AnyLog nodes fol-

low to perform various tasks such as accessing metadata, data pub-
lication, storage, and query processing.

4.1 Accessing important metadata
All participants in an AnyLog network require access to meta-

data during normal operation. For example, coordinators require
metadata about contractor groups in order to know where to find
relevant data for a particular query, metadata about publishers and
schemas in order to enable clients to express queries over data most
relevant to them, and metadata about the data being queried in order
to properly perform authentication, optimization, and planning.

As we described earlier, some of this metadata is present in the
blockchain (e.g. IP addresses of contractor groups), and the rest
is maintained by contractor groups as required by contract terms
(e.g. schema and publisher group metadata). The data in block-
chain needs to be converted to a format that is easy and fast to query
since it may be accessed frequently. In theory, each AnyLog par-
ticipant (such as a coordinator or a publisher) is capable of iterating
through the history of the blockchain, extracting all changes to the
metadata, and inserting this into an indexed relational database ta-
ble for future use. Clearly, this is a lot of work, and it would be
wasteful if each participant did this redundant work independently.
AnyLog’s incentive structure will likely make this redundancy un-
necessary. Any AnyLog participant may publish its version of the
metadata it has extracted from the blockchain in an manner no dif-
ferent than how any other data is published in AnyLog. Other par-
ticipants can choose to query this data instead of maintaining their
own tables if it is cost efficient to do so.

4.2 Data Publication
Publishers are devices that contribute data to the network in batches.

Any machine on the Internet can become a publisher. Each pub-
lisher is associated with a globally unique ID, a public key, and dig-
itally signs all data that it contributes with that ID. For IoT devices
that are not provisioned with a public key or whose computational
resources would be inadequate for digital signatures, a trusted IoT
hub or host can aggregate device data over the local network and
publish on the device’s behalf.

All published data is annotated with the publisher group of the
data, and client queries may include selection predicates that con-
strain the publishers of the data returned by a query. Publisher
groups that are carefully managed and curated will generally pro-
duce more reliable data. Therefore, publishers will be motivated
to join an existing group, if possible. The members of a publisher
group are not required to have a uniform security policy.

All members in the same publisher group must produce data ac-
cording to the same schema (version). A well managed publisher
group will be careful to ensure that there are no semantic differ-
ences in the way data is produced across members of the group.
The group manager of a publisher group (either a node or a smart
contract), is responsible for enforcing group policies. For example,
the manager may periodically query data produced by publishers
to verify compliance, or provide incentives for contractors to report
malformed data submitted by a publisher. The manager of a pub-
lisher group can also (optionally) specify other conditions that all
members of the group must meet, such as frequency of data pro-
duction, physical location of the publisher, and hardware/software
running on the device. Enforcement of some conditions may re-
quire publishers to trust the group manager to act fairly if evidence
of compliance is infeasible to collect or verify mechanically. De-
centralized publisher groups managed by a smart contract may thus
be limited in the conditions they can effectively enforce.

The manager of a publisher group controls the metadata for that
group, and is empowered with choosing which contractor group
that the publisher group contracts with. The contract terms detail
the profit sharing agreement (when the published data is queried)



between the contractor group and publisher group, and may also
require the contractor group to keep track of which individual pub-
lishers produced the data that was queried, so that the income for a
query can be divided across the publishers within a group fairly.

Some publication groups may be set up such that individual pub-
lishers can leave a publisher group at any time. The status of the
previous data that this individual publisher published before leav-
ing the publisher group is dependent on the group rules. In some
cases, this data remains associated with the old group, and in some
cases the old group loses the rights to this data. In the latter case,
contract terms with contractor groups must be set up to enable the
removal of data produced by independent publishers that leave a
publisher group.

By default, schemas are public and open. Any publisher can
publish using any existing public schema. Certain schemas will
start to dominate an application domain, and new publishers will
be motivated to publish using the dominant schema (to increase the
probability that the data they publish will be included in a query re-
sult and generate income). Unfortunately, it is inevitable that some
publishers will violate the semantic rules specified by the schema
manager in the plain text part of the schema definition (either by
mistake or on purpose). To counteract this, AnyLog provides an
ability for schema managers to “certify” publisher groups, and this
information is included in the metadata of the schema (see Section
3.3). In certifying a publisher group, the schema manager states
that it believes that this group is abiding by all of the semantics and
rules specified by the schema metadata. The choice of whether or
not to certify any groups, and what is required in order to achieve
certification is left to the discretion of the schema manager. Any-
Log includes a list of certified publisher groups as a first class cit-
izen of schema metadata in order to make it easy for clients to ex-
press queries over only certified publisher groups for a schema if
they chose to do so.

4.3 Storage and Query Processing
Published data is maintained and stored in contractor nodes. The

contractors and coordinators of the network are responsible for query
processing. In this section, we discuss the storage and query pro-
cessing tasks associated with these nodes.

4.3.1 Contractors
Contractors are servers that store and process data in AnyLog.

Any machine on the Internet can register under a contractor group
on AnyLog as a contractor. It is the responsibility of the contractor
group, and specifically the group manager, to ensure its members
uphold the SLAs of any contract entered into by the group.

A contractor group may choose to present a unified interface via
its group manager (or other designated nodes) to interact with the
rest of the AnyLog system. This single interface gives the group
more flexibility to adaptively partition data and distribute queries
internally to optimize changing workloads. The flexibility comes
at a price however, since violations of SLA terms may be levied on
the group as a whole rather than individual contractors. In these
cases the contractor group is essentially treated as a single (but dis-
tributed) contractor by other nodes. Alternatively, data assignments
and query distribution may be visible the rest of the AnyLog net-
work allowing publishers and coordinators to determine which spe-
cific contractors are responsible for storing and processing data. In
these cases, the individual contractors may be held accountable for
violating SLA terms.

Contractor groups enter into publishing contracts with publisher
groups (Section 3.3). These contracts typically obligate the con-
tractor group to provide integrity guarantees, such as the authentic-

ity of stored data and query results, availability guarantees, such as
response time and access to stored data, and confidentiality guar-
antees of the stored data. The enforcement of these guarantees are
discussed in depth in Section 5.

4.3.2 Coordinators
Coordinators are servers (or groups of servers) that manage the

processing of queries in AnyLog. Upon receipt of a SQL query, co-
ordinators perform all of the standard tasks that occur prior to query
execution in a traditional parallel database system: query parsing,
query rewrite and optimization, and plan generation.

The contractors enforce whether the coordinator is permitted to
receive the results of a query (before executing it), or the result
set is encrypted and the coordinator (or the client) must obtain the
decryption key from the publisher group to view it. When coor-
dinators wish to perform tasks on encrypted data such as building
indexes or aggregating results across multiple contractors, they can
use similar approaches to those used by contractors, such as trusted
execution environments.

The query optimization problem is more challenging for Any-
Log coordinators than in traditional parallel database systems. The
data relevant for any particular query may be stored across many
different contractors, that each have substantially different levels of
quality of service and query processing prices. Care must be taken
to avoid long tail latencies where queries get bottlenecked wait-
ing for slow contractors running at low levels of QoS. Furthermore,
some data stored in low levels of QoS may be totally offline and not
possible to include in a query result. Since each contractor charges
the coordinator for access to its data, it is particularly important to
avoid getting contractors involved in a query unnecessarily. Finally,
coordinators may have trust relationships that vary from contractor
to contractor which may require coordinators to authenticate some
results based on their source.

We anticipate a competitive marketplace of coordinators—each
one with their own indexing and caching layers to improve perfor-
mance of queries and reduce costs to the client. Coordinators have
total freedom to decide how many tokens to charge a client to pro-
cess a query (we expect that the most successful coordinators will
provide accurate estimates prior to query processing and keep costs
as low as possible).

5. SECURITY RISKS AND CHALLENGES
In Section 2.2 we gave an overview of properties of the secu-

rity mechanisms that enable query processing in distrustful envi-
ronments. In this section, we discuss how these mechanisms are
applied in AnyLog. We are primarily concerned with the enforce-
ment of decentralized SLA contracts where publishers, contractors,
and coordinators are mutually distrustful. The enforcement mech-
anisms we discuss may also be useful when a trusted mediator is
available, but such contracts can define specialized versions of our
mechanisms that leverage trust relationships to reduce overhead.

5.1 Query result integrity
Contractors that are not trusted by the publishers and coordina-

tors they interact with can still participate in the AnyLog network
by using protocols that enable coordinators to verify query results
over data assigned to that contractor. This verification can be done
through a combination of trusted hardware and authenticated data
structures. The SLA advertised by a contractor specifies which spe-
cific enforcement mechanisms will be employed for the contract.
For example, untrusted contractor groups without TEEs available
may still offer ADS-based contracts. Publishers who do not trust
the security of a particular TEE technology (or whose anticipated



workloads may not scale with the TEE’s available resources) may
choose to only establish contracts with contractors that implement
enforcement mechanisms that satisfy their requirements.

All data shipped to a contractor is signed by the publisher to es-
tablish its integrity and authenticity. If the contractor enforces in-
tegrity of query results using TEEs, the publisher additionally ver-
ifies the authenticity of each contractor’s TEE and the query pro-
cessing program using remote attestation. If the TEE and program
are verified, then the publisher issues a certificate that the contrac-
tor provides to the coordinator to authenticate all query results from
this contractor. Since only the TEE is capable of producing results
that are signed by TEE’s key, the coordinator knows that the pro-
gram running in the TEE is trusted by the publisher of the data.

For ADS-based enforcement, the publisher issues a signed mes-
sage containing a root digest of the current data stored by the con-
tractor and a version number. When the next batch of new data
is published, the publisher updates this root digest and increments
the version number. These messages may be distributed directly to
coordinators and contractors or published on the blockchain. New
data cannot be included in query results until the hash is updated.
With a query result, contractors can provide an ADS proof based
on the current root digest. Using the publisher’s signed digest, co-
ordinators verify the integrity of the results.

If a coordinator receives invalid results (either because of an in-
valid signature from a TEE or an invalid ADS proof), coordinators
can dispute the result by sending the offending results to the SLA
contract. If the contract determines that the result is in fact invalid,
the contract performs actions specified by the SLA contract such as
charging a fine to the contractor.

5.1.1 Optimizations
For large query results that would be infeasible or expensive to

send to the blockchain, the SLA contract may specify an entity (or
group of entities) trusted by the coordinator and the contractors to
validate results. For example, a host running validation code within
an SGX enclave could be designated as the mediator for an SLA
contract. If the coordinator wishes to dispute a query result, it sends
the results to the enclave, which could even be running locally on
the coordinator’s host. For TEE-enforced SLAs, the enclave will at-
tempt to verify the signature on the results. For ADS-based SLAs,
the enclave will attempt to verify the ADS proof. The enclave out-
puts a (small) signed validation result, which the coordinator can
then send to the SLA contract.

Generating ADS proofs may add significant overhead to the con-
tractors’ workload. Fortunately, the AnyLog setting offers some
opportunities for amortizing these costs. For example, an SLA
contract may allow contractors to initially respond to queries with-
out generating a proof. To disincentivize the contractor from pro-
cessing queries dishonestly, coordinators are occasionally permit-
ted to request an ADS proof for one of their previously answered
queries. Queries requiring proofs are chosen based on a public, un-
predictable value such as a block hash6. Since the contractor must
commit to the query results before it knows which queries it must
produce proofs for, it runs a risk of getting caught proportional to
the ratio of proofs to queries. By setting the penalties for invalid
results appropriately, an SLA contract can ensure contractors will
not benefit (in expectation) from producing invalid results.

6It is well known that using block hashes as pseudorandom num-
bers is problematic if a miner might be incentivized to forgo the
reward for mining a new block in order to influence the next block
hash. We expect that block rewards will far exceed the cost of Any-
Log queries. If not, some other source of unpredictable numbers
should be used.

5.2 SLA enforcement
It is inherently difficult to enforce SLAs in a decentralized en-

vironment: monitoring aspects of query processing like response
time is extremely challenging when contractors and coordinators
may behave maliciously. For example, a coordinator might lie
about when a request was sent, and a contractor might lie about
when it was received. Furthermore, mechanisms like ADSs and
TEEs are capable of enforcing the integrity guarantees of an SLA,
but not the availability guarantees. AnyLog uses state-channel-
based protocols that leverage the SLA contract and the underlying
blockchain to enforce course-grained SLA guarantees.

We first discuss how AnyLog handles disputes over unanswered
queries sent from a client (or coordinator) to a contractor (we call
these availability violations.) This discussion also applies to the
other types of availability disputes. Later in this section we will
discuss disputes over compensation that is not forwarded from con-
tractors to publishers.

Contractors are incentivized to process queries if they have re-
sources available since they only receive payment for the queries
they process. They may, however, attempt to overcommit their re-
sources to multiple contracts in order to ensure a higher utilization
rate and more revenue opportunities. This strategy is permissible
provided the contractor meets the terms of its SLAs. However, con-
tract terms will usually require it to pay a penalty if it cannot handle
the required load and fails to meet the SLA terms. In some cases,
AnyLog participants may prefer to utilize legal channels outside
of the AnyLog network to resolve SLA violations. Nonetheless,
AnyLog provides a mechanism for detecting and resolving certain
types of SLA violations within the network.

The availability component of decentralized SLA contracts may
be specified in terms of a duration and minimum record number.
Such a specification in a SLA smart contract requires a contractor
to process a certain number of records during the specified dura-
tion. The contractor is not allowed to reject requests within this
duration until it has reached this specified minimum. When the in-
put load is insufficient to allow the contractor to reach its required
throughput, a contractor may request a reduction in the required
minimum record number by sending a message to the SLA smart
contract. This message contains a time range for which the con-
tractor wishes to claim a below-average request load. This insulates
contractors from bursty input loads causing SLA violations.

To allow efficient bookkeeping of these availability metrics, con-
tractors process queries in batches. The number of batches and
their size is based on the maximum (contracted) capacity of the
contractor over the batch interval, usually a multiple of the under-
lying blockchain’s block arrival time. Thus, each batch number
corresponds to a specific deadline (a block number) by which the
requests of that batch must be processed7.

For example, suppose the duration of a contract is roughly 48
hours and the minimum record number is 288,000,000. This du-
ration is divided into 288 batches with each batch interval lasting
for 43 blocks, or about 10 minutes on the Ethereum blockchain.
The contractor is expected to process at least 1 million records per
batch. Each coordinator with a request in batch n should receive
the results of their query by the time the blockchain has increased
by (n+ 1) ∗ 43 blocks.

Contractors respond to queries from coordinators with a signed
acknowledgement of the request, an assigned batch number, and a
digest of the previous batches. This digest forces contractors to fill

7Block numbers are simply a convenient way to objectively specify
a time interval—batch assignment does not require communication
with the blockchain unless a dispute occurs.
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Figure 3: Query processing batches

the current batch before assigning queries to later batches, which
would result in longer response times and sparser batches. If the
contractor has exceeded its capacity, it may respond with a negative
acknowledgement containing a digest of the contents of its batches
to prove the SLA terms and thus is permitted to reject the query.
For example, Figure 3 illustrates the request queue of an AnyLog
contractor. Batches #0 and #1 are full, so when a new request is
received, the contractor must assign it to batch #2 and send a hash
of batches #0 and #1 in the acknowledgement.

If the batch interval expires and the coordinator has not received
the result of the query, the coordinator presents its batch assignment
to the SLA contract and the contractor must submit valid results
to the contract within a specified number of blocks or receive a
penalty. In addition to the batch interval, the SLA contract also
specifies an assignment interval within which the contractor must
respond with a batch assignment or a negative acknowledgement.
If the coordinator does not receive a response within the assignment
interval or the response is invalid, it may present its request to the
smart contract to force a response from the contractor. The contract
will wait a specified number of blocks for the contractor to submit
a batch assignment or negative acknowledgement. If the contractor
does not submit a valid response, the contract will penalize it for
violating the SLA.

Contractors periodically publish checkpoints, the digests of their
accepted batches, to the SLA smart contract. A coordinator that
received a negative acknowledgment may compare the digest it re-
ceived to the digests of the batches in the checkpoint. If the di-
gest fails to match, the coordinator may dispute the negative ack to
receive a penalty payment from the contractor as specified by the
SLA. For example, in Figure 3, if the contractor attempted to assign
the request to batch #3, it would be forced to hash the current con-
tents of batch #2. If the contract later assigned additional requests
to batch #2 (and included them in the checkpoint), the coordina-
tor could present its acknowledgement containing the assignment
to batch #3 to the contract and receive a penalty payment.

Publishers ensure they are paid for requests on their data in one
of two ways. When contractors hosting a publishers data use TEEs,
a summary of payments to publishers (and their transaction IDs) is
included with each checkpoint. Since this summary can only be

generated and signed by trusted code running inside the TEE, the
publisher can trust the accuracy of this report.

If a contractor is not using a TEE, then the contractor transmits
the requests associated with each checkpoint directly to publishers
(or a publisher’s representative) for auditing. Publishers use these
logs to ensure they have received payment for the requests pro-
cessed in each batch. By examining these requests, the publisher
can determine whether its data participated in the results. If the
publisher determines a payment was withheld by the contractor, it
may submit its data and the relevant request log as evidence to the
smart contract to receive payment and possibly trigger a penalty for
the contractor. If the contractor fails to provide requests for audit
to the publisher, or these requests do not match the on-chain hash,
the publisher may also initiate a dispute to penalize the contractor
or cancel the contract8.

Note that even though decentralized SLA contracts are only ca-
pable of enforcing relatively coarse-grained service-level guaran-
tees, we expect contractors will offer “soft guarantees” that exceed
enforceable guarantees to compete with other contractors. Contrac-
tors with a good reputation for meeting these soft guarantees will
be more likely to be chosen by publishers for new contracts.

5.3 Data confidentiality
We expect the vast majority of AnyLog publishers will either

publish public data, or will have existing trust relationships with at
least one contractor group that they believe is sufficiently trustwor-
thy to protect the confidentiality of the publisher’s data. Nonethe-
less, in some (minority of) cases, the publisher may not trust any
contractor group, and thus choose to encrypt the data it sends to the
contractor (group). Encrypting the data protects its confidentiality,
but it also limits the queries the contractor is able to process on the
data. One option is for publishers to deploy a TEE to each contrac-
tor that decrypts data and processes queries within the enclave. If
TEEs are already used as an integrity enforcement mechanism as
discussed above, using a TEE for confidentiality is a natural choice.
However, TEE limitations may not be suitable for all workloads,
and not all contractors may have compatible TEE hardware.

Previous work such as CryptDB [28] protects the confidential-
ity of data against an untrusted database operator via encrypted
query processing. This approach creates a tradeoff between the
strength of encryption and supported operations. For example, to
support queries with equality constraints, deterministic encryption
is used so that query constraints can be matched against database
entries. Because all database entries are encrypted deterministi-
cally, the database host is able to learn which entries are equal to
each other.

An advantage of the CryptDB approach is that it requires very lit-
tle modification of existing database systems. Unfortunately, some
aspects do not immediately generalize to the AnyLog setting. The
primary issue is that CryptDB employs a proxy that manages en-
cryption and decryption keys on behalf of clients. This proxy is
problematic in the AnyLog setting for two reasons. First, AnyLog
assumes a more decentralized setting than CryptDB: a proxy op-
erator that is sufficiently trusted by publishers, coordinators, and
clients may not exist. Second, publishers may not anticipate which
users will want to perform queries on the data sent to the contrac-

8There is some risk of collusion between clients and contractors
where contractors accept direct payment from clients for “off-
book” transactions that are not assigned to a batch and not in-
cluded in the checkpoint. Collusive behavior such as this between
clients and contractors can be disincentivized by offering a reward
to clients paid with the contractor’s escrowed funds that demon-
strate processed requests not included in a checkpoint.



tors. Therefore, releasing results to the clients becomes challeng-
ing. If the publisher simply provided access by revealing the de-
cryption key to the client, then a client could collude with a con-
tractor to decrypt the entire data set. Alternatives such as requiring
that all results are decrypted by a trusted host publisher create po-
tentially severe performance bottlenecks.

To avoid such bottlenecks, AnyLog publishers that wish to pro-
tect the confidentiality of their data will deploy TEEs that manage
decryption keys so that results may be revealed to clients (or coor-
dinators) based on the authorization tokens provided to the client.
An enclave may be deployed in a number of ways: on contractors,
coordinators, or clients. The enclaves receive an encrypted result
set and an authorization token as input and output a result set that
is re-encrypted to the intended recipient, specified by the token.
Using TEEs only for re-encrypting result sets enforces the pub-
lisher’s access control policies without imposing additional over-
head or hardware requirements on contractors, whose resources are
most in demand.

5.3.1 Freeloading
Clients must pay for each query they send to AnyLog. Once a

client obtains access to the results of a query, there are few effec-
tive technological mechanisms for preventing or constraining fur-
ther disclosure. A client may attempt to resell the data they have
access to or disclose it publicly. Therefore publishers must take
unauthorized disclosures into account when setting query prices
or providing access to decryption keys. In some settings, relying
on more traditional deterrence mechanisms such as legal contracts
may be appropriate.

The value of some data may in part be based on its authentic-
ity. Using a scheme similar to the “freeloading protection” scheme
proposed by Zhang et al. [34], we can remove a client’s ability to
authenticate the data to a third party, making the data less valuable
to a third party without undermining its value to honest clients.

For example, recall that publishers must distribute digests of
stored data to clients for verifying the authenticity of ADS queries.
Instead of the publisher signing these digests with its own private
key, the publisher could instead require that the client generate a
key and share it with the publisher to use for signing digests. The
client can authenticate digests from the publisher since it knows
only the publisher has the relevant key. A third party, however, can-
not rule out that the client is acting maliciously— either the client
or the publisher could have signed the digest. Under this scheme,
coordinators may also share a signing key with publishers to permit
coordinators and clients to independently authenticate query results
without forcing the client to trust the coordinator.

Note that publishers could also delegate the task of freeloading
protection to an entity they trust or even to an untrusted entity run-
ning a TEE. In either case, the publisher would send the data signed
with its own key over an encrypted channel and the enclave or
trusted party would verify and then resign the data with the key
generated by the coordinator or client.

5.3.2 Data integrity
Malicious publishers can attempt to undermine the integrity of

data in AnyLog in several ways:

• They can insert junk/useless data into AnyLog

• They can insert misleading/fraudulent data into AnyLog

• They can resell other publishers’ data without permission

There is little financial incentive for the first type of maliciousness—
junk/useless data will generally not be queried frequently enough

to cover the contractor cost for its storage, and thus the publication
of junk/useless data will typically result in a negative cash flow for
their publisher. However, there may be significant financial incen-
tive for the other two types of maliciousness.

The problem of “fake news”, fraudulent information, and plagia-
rized articles are not new problems—these problems have plagued
the Web for decades. Unfortunately, there is no silver bullet solu-
tion to these problems, and none likely to appear in the near future.
Nonetheless, these problems have not prevented to tremendous util-
ity and benefit brought by the existence of the Web. Users are aware
that some Websites are more reputable and reliable than others, and
are more likely to rely on information gleaned from reputable sites
(though obviously this method of relying on human-perceived rep-
utation is inherently fallible).

The analog of “reputable Websites” in AnyLog are “reputable
publisher groups”. Some publisher groups will be associated with
large and well-known companies, groups, or individuals, and Any-
Log users will be more likely to rely on information published by
such groups instead of less reputable groups. We expect that selec-
tion predicates on publisher groups will be common.

In addition to reputability estimates done by an end-user, pop-
ular existing search engines such as Google and Bing also tend to
rank results from reputable sites ahead of results from lesser-known
sites. The analog in AnyLog are coordinators: we expect that the
most popular coordinators in AnyLog will filter out data from non-
reputable publisher groups by default, but will have a mechanism
for communicating with the end-user what was filtered out in order
to give the end-user the option of including this less reliable data in
the results.

Prioritizing the reputability of publishers also makes freeloading
protection schemes such as the one discussed in Section 5.3.1 more
effective since publishers that are unable to prove the authenticity
of their data will likely be filtered out from most search results.
This reduces the ability of AnyLog participants to profit from re-
selling other publishers’ data without permission.

6. USE CASES
This paper has focused thus far on a single use case for AnyLog:

unifying datasets produced across different IoT device vendors into
a global platform with a high performance SQL query interface. We
now discuss several other use cases for AnyLog:
* Cloud alternative. Several IoT vendors currently have their de-
vices upload their data into the cloud and build a query infrastruc-
ture over it there. AnyLog provides a storage and query infrastruc-
ture that avoids lock-in to a particular cloud vendor, and that can
reduce the storage costs by enabling any machine on the Internet to
participate. (In some sense, AnyLog is a unifying cloud above the
individual cloud vendors—any cloud vendor can create new con-
tractor group and register their own machines as contractors within
that group.)
* Data storage at the edge Storing the data produced across a
large network of devices producing large amounts of data can be
expensive—whether in the cloud or on the network of independent
contractors in AnyLog. Furthermore, this data may not be queried
often enough to justify the network and organizational costs of col-
lecting it into a central location. Instead, the data producing device
itself (or a nearby device) can serve as the contractor for data pro-
duced by that device, and serves queries over that data during the
rare situations where the data needs to be accessed.
* Publication-funded hardware Instead of paying $100 for a new
smart thermostat, an IoT vendor can give away the device for free
in return for the device software publishing data generated by that
device on AnyLog. This data would likely be valuable to a vari-



ety of downstream applications, such as an insurance company that
builds an application which alerts its customers if preemptive mea-
sures need to be taken in order to circumvent costly events (e.g.
pipes freezing from thermostats set too low).
* Easy fulfillment of data storage/sharing obligations Some en-
tities have legal obligations to store (and potentially make available
for queries) data that they generate. Contractor groups can be de-
signed for such entities that charge publisher groups a fixed price
(per unit time and per unit of data stored) to join the group. Pub-
lishers can then be set up to publish their data to the contractor
group to fulfill their legal obligations (whether the obligation is to
share the data publicly or only with entities with the appropriate
permissions).

7. RELATED WORK
There have been several efforts to create a version of the WWW

for “structured” data, such as the Semantic Web [5] and Freebase
[6]. Our approach differs substantially by (1) providing economic
incentives for data to be contributed and integrated into existing
schemas, (2) offering a SQL interface instead of graph-based ap-
proaches, (3) including the computational and storage infrastruc-
ture in the architectural vision.

Our vision closely relates to the vision of P2P databases such as
PIER [15], PeerDB [24], and XPeer [9]. However, our architec-
tural implementation of this vision and query interface differ sig-
nificantly. First, P2P databases have a uniform architecture where
nodes that choose to participate perform a similar set of tasks. In
contrast, AnyLog divides responsibility of data publication, data
storage/processing, and query planning across different types of
nodes. This is important for IoT applications that typically have
lightweight devices at the edge of the network. Second, AnyLog’s
architecture makes SLAs first-class citizens—it is extremely chal-
lenging to perform query optimization and achieve high perfor-
mance distributed query processing over machines that do not make
any QoS promises. Third, AnyLog supports structured data storage
and querying, instead of PIER’s key-value interface and PeerDB’s
IR-based keyword search approach. Finally, previous P2P databases
do not provide sufficient incentives nor decentralized dispute res-
olution to motivate the effort involved in preparing and processing
data for sharing.

Several projects attempt to extract structured data from existing
WWW sources such as YAGO [32, 14], DBpedia [4], Elementary
/ DeepDive [25, 11], Knowledge Vault [13], WebTables [8], and
commercial projects such as Google’s Knowledge Graph and Mi-
crosoft’s Satori. AnyLog differs from these approaches by reaching
data publishers at an earlier stage in the data lifecycle and providing
the original repository for data storage (along with a mechanism for
publishers to profit from their data).

AnyLog targets IoT data in its initial implementation, similar to
recent time series and IoT database systems such as TimeScaleDB
[2] and InfluxDB [1]. These systems are complementary to Any-
Log and are candidates for use as the database system distributed
with the contractor code in AnyLog.

AnyLog allows publishers to map/publish their data to an exist-
ing schema rather than create a new one. This bottom-up approach
to data integration is similar in vision to Orchestra [16]. However,
AnyLog provides an economic incentive for publishers to perform
this bottom-up integration. AnyLog also targets use cases (e.g. IoT)
where there are many devices already producing data according to
a uniform schema.

AnyLog’s economic model of reimbursing query processing nodes
for their efforts in performing query evaluation is similar to Mari-
posa [31]. AnyLog extends this model to include reimbursement

for data sharing as well. Nodes in AnyLog are not as autonomous
as in Mariposa, which allows for a higher performance implemen-
tation for intermediate data, less complexity (and more predictabil-
ity) in query optimization, and better enforcement of SLAs.

AnyLog’s architecture optionally incorporates trusted hardware
[20, 26] in situations where parties do not trust each other. Running
distributed analytics over secure enclaves has been investigated in
detail in prior work [29, 7]. The use of ADSs has also been pro-
posed to perform database functions such as transaction process-
ing [17] and query processing [36, 35].

The Relation Cloud [10] proposed a vision of databases-as-a-
service (DBaaS) that shares many of AnyLog’s goals, but in a cen-
tralized cloud setting. In this model, the DBaaS provider is honest-
but-curious. It is trusted to execute queries faithfully, but may
not be trusted with confidential data. In contrast, contractors in
AnyLog may attempt to undermine the confidentiality, integrity, or
availability of data and queries in the system. Furthermore, because
AnyLog is decentralized, a trusted entity may not be available to
coordinate large-scale data migrations or partitioning.

Fabric [19] is a federated distributed system for building secure
applications on distributed object stores. Similarly to AnyLog, Fab-
ric is an open and decentralized system: any node can join the Fab-
ric network, and Fabric nodes may differ on which nodes they con-
sider trustworthy. Also Fabric programs process distributed persis-
tent data, but since these computations operate on Java-style data
structures like lists, sets, and hash tables, common query optimiza-
tions available to a SQL data base are nontrivial to apply. Further-
more, Fabric only uses cryptography to secure channel communi-
cation. AnyLog’s use of TEE and ADS protocols enables more
functionality between distrustful peers. Finally, Fabric provides no
availability guarantees, whereas AnyLog enforces SLA contracts
even in the presence of malicious nodes.

8. CONCLUSION
AnyLog is a decentralized platform for data publishing and query-

ing that targets IoT data. AnyLog proposes an architecture that
divides the responsibilities of publishing, storage, and processing
across different node types. Also, it proposes a decentralized com-
pensation scheme that motivates contributing data and using exist-
ing schemas for better integration. The decentralized compensa-
tion mechanism of AnyLog is enabled by the recent advances in
security mechanisms such as secure query processing, blockchain,
and trusted execution environments. We envision that AnyLog’s ar-
chitecture and decentralized compensation will enable a powerful
infrastructure to query the wealth of data produced by IoT devices.

This paper has given a high level overview of the architecture.
There remain several important research challenges that will be
critical to the ultimate success of AnyLog. The challenges include
improving the scalability and efficiency of query processing that
occurs within trusted execution environments, improving the scal-
ability of authenticated data structures and expanding their appli-
cability to a wider range of query processing operations, federating
query processing over many independent contractors, and achiev-
ing accurate cost estimates of query processing across many differ-
ent entities that are entitled to token payments in return for their
contributions to generating the query results.
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