
BullFrog: Online Schema Evolution via Lazy Evaluation

Souvik Bhattacherjee∗† Gang Liao∗ Michael Hicks Daniel J. Abadi
ServiceNow† University of Maryland, College Park

souvik.bhattacherjee@servicenow.com {gangliao, mwh, abadi}@cs.umd.edu

ABSTRACT
BullFrog is a relational DBMS that supports single-step schema
migrations — even those that are backwards incompatible — with-
out downtime, and without need for advanced warning. When a
schema migration is submitted, BullFrog initiates a logical switch
to the new schema, but physically migrates affected data lazily, as
it is accessed by incoming transactions. BullFrog’s internal con-
currency control algorithms and data structures enable concurrent
processing of schema migration operations with post-migration
transactions, while ensuring exactly-once migration of all old data
into the physical layout required by the new schema. BullFrog is
implemented as an open source extension to PostgreSQL. Experi-
ments using this prototype over a TPC-C based workload (supple-
mented to include schema migrations) show that BullFrog can
achieve zero-downtime migration to non-trivial new schemas with
near-invisible impact on transaction throughput and latency.

ACM Reference Format:
Souvik Bhattacherjee, Gang Liao, Mike Hicks and Daniel J. Abadi. 2021.
BullFrog: Online Schema Evolution via Lazy Evaluation. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3452842

1 INTRODUCTION
Continuous Deployment (CD), an aspect of DevOps [13], is the
increasingly popular practice of frequent, automated deployment
of software changes [16, 36], with some practitioners deploying
multiple changes per day [34]. To realize the benefits of CD, it must
be straightforward to deploy updates to both front-end code and
the database, even when the database’s schema has changed. Unfor-
tunately, this is where current practices run into difficulty. Savor
et al. [34] stated in their retrospective on CD practices at OANDA,
“database schema changes always were always ad hoc and full of
fear.” Claps et al. [16] and Shahin et al. [36] confirmed via surveys
of more than 100 experts and practitioners that database schema
changes are particularly challenging to handle. Nonetheless, there
is evidence that schema changes are also frequent: Qiu et al. [30]
† Work performed during postdoc at University of Maryland, College Park.
∗ The first two authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452842

examined changes in releases to a dozen open-source applications
and found that schema changes occurred roughly once per week,
on average. In our own examination of the development history
of 20 open source Ruby on Rails applications found on GitHub
(including the Sharetribe and GitLab repositories studied by Bailis
et al [11]) we found 1,611 schema changes, of which approximately
20% required significant physical data movement.

Application developers should be free to change the code and
database schema as they see fit, without concern for the complexi-
ties of deploying those changes later. For example, they should be
able to delete or add columns or constraints, join tables, split tables,
etc. according to their needs. To deploy an update, the developer
defines an evolution transaction that is used to migrate the existing
data to the new schema. The CD system uses that transaction to
update the current database, and then deploy the updated front-end
instances. If downtime is not a concern, then the simplest way to
do this is to shut down all of the application instances, migrate the
data, and then restart with the new instances. Of course, downtime
frequently is a concern, and with multiple updates happening per
day, the simple shutdown-and-restart approach is unacceptable.

State-of-the-art approaches to schema migration without down-
time use a multi-step approach. In such approaches, the database
system migrates a copy of the data to the new schema in the back-
ground, before the front-end instances can switch over to it. During
this migration window, writes to the old schema must be prop-
agated to the new copy, typically via triggers or log shipping of
updates [1–5, 26, 32, 40]. Aside from the obvious side effect that
such approaches approximately double the resource requirements
of the system, the requirement to delay the front-end application
migration until the database is ready is fundamentally antithetical
to the spirit of the continuous deployment movement.

To avoid such delays, new-version transactions can be rewrit-
ten so they work on the old schema while the data is migrated;
rewriting can occur in the other direction too, to allow both ap-
plication versions to coexist [10, 17, 18, 20, 31, 32]. Unfortunately
this limits schema evolution to backwards compatible migrations,
since transactions must be rewritable/processable over all active
schema versions. For example, if an application evolves such that
data must be inserted that violates previously defined integrity
constraints, the constraints cannot simply be dropped in the new
schema, because doing so would be backwards-incompatible: this
data cannot be inserted into the old schema. To cope, developers
may be forced to employ non-ideal structures and/or temporary
tables and front-end code, thereby accruing technical debt in appli-
cations and decay in databases [38], while adding complexity to the
update process (see the OANDA quote above). All of these problems
have pushed application developers toward "NoSQL" databases that
avoid predefined schemas entirely, and never reject writes that use
a different schema than has been previously used.

https://doi.org/10.1145/3448016.3452842

In this paper we propose a mechanism for schema evolution, that
we call BullFrog1, that avoids the delayed deployment of the new
schema required in the multi-step approaches, while also avoiding
themigration restrictions and database decay of the backwards com-
patible approaches. BullFrog deploys arbitrary schema changes
immediately, in a single step, in conjunction with CD-based up-
dates to a web-based or mobile service. Rather than introduce down-
time by halting existing service while the evolution transaction
takes place, BullFrog logically converts the database to use the new
schema immediately without any physical changes of the stored
data. Updated front-end instances may now submit transactions
using the new schema. Doing so prompts BullFrog to migrate any
relevant tuples from the old schema’s tables to the new/updated
ones before processing the transaction; i.e., tuples are migrated
lazily, as needed. For backward-compatible schema changes, Bull-
Frog permits old-version front-end instances to be updated gradu-
ally; for incompatible changes, front-end instances are updated as a
big flip [15]; the latter can be done by simply restarting them (e.g.,
when they submit an incompatible query [33]), or using a more
sophisticated dynamic software updating scheme [25, 28, 29].

BullFrog uses a light-weight concurrency control mechanism
that ensures exactly-oncemigration of data under contention. Shared
data structures synchronize record migration states and allow data-
base system workers that are processing separate transactions to
cooperate in parallel without missing or duplicating tuples, and
without landing in stuck states due to aborts or cyclic dependencies.

We have implemented a prototype of BullFrog as an extension
to PostgreSQL. We use this prototype to evaluate BullFrog by
measuring its performance on variations of the standard TPC-C
benchmark that include schema migration transactions. We find
that under realistic deployment scenarios, BullFrog is able to
support complex schema migrations in a near invisible fashion,
with no downtime, no observable effects on system throughput,
and limited latency increases. BullFrog is thus the first system, to
the best of our knowledge, to support single-step, non-backwards
compatible schema migrations without downtime.

In summary, this paper makes the following contributions:
• A proposed system design (BullFrog) that uses lazy schema
migration to implement single-step, on-line schema evolution.

• Algorithms and data structures that achieve efficient, exactly-
once physical migration of data under contention.

• An implementation of BullFrog in PostgreSQL. The code is cur-
rently available at https://github.com/DSLAM-UMD/BullFrog.

• An extension of the TPC-C benchmark that includes non-trivial
and non-backwards compatible schema migrations.

2 REQUEST-DRIVEN LAZY MIGRATION
2.1 Basic approach
A schema migration request is submitted to BullFrog as one or
more DDL statements. These statements may create new tables or
modify or delete existing tables. Data from existing tables may be
specified to initialize or update new or modified tables. The new
schema becomes immediately active as soon as it is processed by
BullFrog. For non backwards-compatible "big flip" migrations, the

1Bullfrogs do not sleep, much like our zero-downtime migration system.

old schema becomes inactive, and all subsequent requests that ac-
cess it are rejected. For requests over the new schema, BullFrog
identifies tuples in the old tables that are potentially relevant, phys-
ically migrates them to the new/modified tables, and then processes
the original request on the new/modified tables.

Consider a hypothetical airline flight application with an original
schema containing two tables:

CREATE TABLE FLIGHTS (FLIGHTID CHAR(6) PRIMARY KEY, SOURCE

CHAR(3), DEST CHAR(3), AIRLINEID CHAR(2), DEPARTURE_TIME

TIMESTAMP, ARRIVAL_TIME TIMESTAMP, CAPACITY INT);

CREATE TABLE FLEWON (FLIGHTID CHAR(6), FLIGHTDATE DATE,

PASSENGER_COUNT INT CHECK (PASSENGER_COUNT > 0));

The FLIGHTS table contains general information about active
flight routes, and the FLEWON table contains daily flight statistics.

At some point the application developer makes some schema
changes: (i) rename FLEWON to FLEWONINFO; (ii) add a derived at-
tribute, EMPTY_SEATS; (iii) add attributes ACTUAL_DEPARTURE_TIME
and ACTUAL_ARRIVAL_TIME to track the delay incurred by each
flight; and (iv) drop constraint (PASSENGER_COUNT > 0) to allow
for the airline to take packages rather than passengers during a
pandemic. Change (iv) is backward-incompatible.

This change is expressed with the following migration DDL:

CREATE TABLE FLEWONINFO AS (

SELECT F.FLIGHTID AS FID, FLIGHTDATE, PASSENGER_COUNT,

(CAPACITY - PASSENGER_COUNT) AS EMPTY_SEATS,

DEPARTURE_TIME AS EXPECTED_DEPARTURE_TIME,

NULL AS ACTUAL_DEPARTURE_TIME,

ARRIVAL_TIME AS EXPECTED_ARRIVAL_TIME,

NULL AS ACTUAL_ARRIVAL_TIME

FROM FLIGHTS F, FLEWON FI

WHERE F.FLIGHTID = FI.FLIGHTID);

Once the migration has been submitted, BullFrog creates a new
transaction that creates new, empty tables corresponding to the
tables that are created or modified in the migration request, along
with a temporary VIEW (that will only be used during the migration
process) that contains the contents of the migration request:

CREATE VIEW FLEWONINFO_VIEW AS (

SELECT F.FLIGHTID AS FID, FLIGHTDATE, PASSENGER_COUNT,

...); -- exactly matches FLEWONINFO def above

BullFrog also creates data structures (described in Section 3) to
control concurrent migration processes and track migration status.

When the database system receives a client request that refer-
ences any table that was added/modified, BullFrog first migrates
any relevant data from the old tables, and then processes the origi-
nal request over the new ones. To do this, it uses filtering statements
in the client request, typically located in the WHERE clause of SE-
LECT, UPDATE, and DELETE statements, to limit the scope of the
lazy migration. BullFrog attempts to convert these filters over
the new schema into filters over the old schema that match as few
tuples as possible while still yielding the set needed to fully process
the client request.

As an example, consider the following client request.

SELECT * FROM FLEWONINFO WHERE FID = 'AA101'

AND EXTRACT(DAY FROM FLIGHTDATE) = 9;

https://github.com/DSLAM-UMD/BullFrog

The FID = ‘AA101’ predicate will be converted into FLIGHTID =
‘AA101’ over the FLIGHTS and FLEWON tables, while the predicate
EXTRACT(DAY FROM FLIGHTDATE) = 9 will be applied on the
FLEWON table. Only those tuples from these old tables that return
true for these converted predicates need to be migrated; all other
tuples can be ignored and migrated at a later time.

Although for this example it was straightforward to convert the
predicates over the new schema into predicates over the old schema,
in some cases such a conversion is non-trivial or impossible. In the
worst case, all tuples in the old schema must be deemed potentially
relevant (see Section 2.4).

BullFrog uses the VIEW that it created during the migration ini-
tialization step discussed above to leverage existing capabilities in
database systems to move filters across schemas. Most database sys-
tems implement view expansion to rewrite requests over a view into
requests over the original tables. BullFrog accesses the query plan
that was generated after view expansion and query optimization,
and extracts any filtering statements over the old schema.

For the example client request, the output from PostgreSQL
EXPLAIN (which shows its query plan) is shown below:

QUERY PLAN

--

Nested Loop (cost=4.34..14.04 rows=1 width=99)

-> Seq Scan on flights f (cost=0.00..4.50 rows=1 width=27)

Filter: (flightid = 'AA101'::bpchar)

-> Bitmap Heap Scan on flewon fi

(cost=4.34..9.52 rows=1 width=15)

Recheck Cond: (flightid = 'AA101'::bpchar)

Filter: (date_part('day'::text, (flightdate)::timestamp

without time zone) = '9'::double precision)

-> Bitmap Index Scan on flewon_flightid_idx

(cost=0.00..4.34 rows=9 width=0)

Index Cond: (flightid = 'AA101'::bpchar)

The predicates over the view have been converted into predicates
over the original tables; we see the predicate FLIGHTID = ’AA101’
on both FLIGHTS and FLEWON table (line 5 and 13 in the query plan)
and the predicate EXTRACT(DAY FROM FLIGHTDATE) = 9 on the
FLEWON table (line 9-10 in the query plan). BullFrog inserts these
predicates into a version of the original schema migration DDL,
except that the CREATE TABLE statement in the query is substituted
with an INSERT INTO statement, as shown below.

INSERT INTO FLEWONINFO (

FID, FLIGHTDATE, PASSENGER_COUNT, EMPTY_SEATS,

EXPECTED_DEPARTURE_TIME, ACTUAL_DEPARTURE_TIME,

EXPECTED_ARRIVAL_TIME, ACTUAL_ARRIVAL_TIME)

(SELECT F.FLIGHTID, FLIGHTDATE, PASSENGER_COUNT,

(CAPACITY - PASSENGER_COUNT),

DEPARTURE_TIME, NULL, ARRIVAL_TIME, NULL

FROM FLIGHTS F, FLEWON FI

WHERE F.FLIGHTID = FI.FLIGHTID

AND F.FLIGHTID = 'AA101' AND FI.FLIGHTID = 'AA101'

AND EXTRACT(DAY FROM FLIGHTDATE) = 9);

BullFrog implements DELETE and UPDATE statements by
rewriting them into SELECT statements on the old schema to mi-
grate relevant tuples first, and then processing the original request

on the new schema. This limits BullFrog’s reliance on views to
read-only queries for which view expansion is trivial (via nesting
SQL statements in the FROM clause), and avoids the well-known
problem of performing updates through views.

INSERT commands generally can be performed over the new
schema without requiring any prior migration unless there are
integrity constraints defined on the new schema. Such constraints
may expand the set of potentially relevant data beyond the data
specified by the client request. For example, if a uniqueness con-
straint is defined on any column of the new table, then any INSERT
commands over the new schema (or updates to the unique attribute)
must first migrate records that have potentially conflicting values so
that the constraint can be properly checked over the new schema.

2.2 Background migrations
If parts of the input tables are never deemed relevant for client re-
quests, a purely lazy system will never migrate them. To ensure that
all data is eventually migrated, BullFrog initiates background mi-
gration threads that slowly inject simulated client requests that cu-
mulatively cover the entirety of the old tables. When these threads
finish, the migration is complete and the old schema can be deleted.

2.3 Consistency
Unlike many of the state-of-the-art schema migration approaches
discussed in Section 1, BullFrog does not maintain replicas as part
of its approach. Logically, a given tuple starts in the old schema
and eventually migrates to the new schema, but never exists in
both schemas simultaneously. Once it is migrated, although a stale
physical copy may remain in the old schema, the migration status
of that tuple prevents it from subsequently being accessed. Thus,
there is no concern for replica consistency in BullFrog2.

With regard to ACID consistency, BullFrog does not restrict
what constraints may be declared on the old schema or new schema.
However, it does not automatically generate integrity constraints
based on the integrity constraints that existed in the old schema.
Rather, the schema migration DDL must explicitly (re)declare any
integrity constraints that must be enforced on the new schema. We
will analyze the performance impact of needing to migrate coarser
units of data in order to check integrity constraints in Section 4.5.

2.4 Limitations
BullFrog supports any legal SQL that can appear in DDL state-
ments in the database system, including any legally defined in-
tegrity constraint over the new schema. However, some types of
migrations reduce BullFrog’s effectiveness.

First, although BullFrog utilizes views in a read-only fashion,
(thereby avoiding the view update problem), any limitations in the
view support of the underlying database system is passed through
to BullFrog. One situation where this limitation is manifested
is when the migration is expressed using a user-defined function
(UDF) instead of standard SQL. Many database systems support
the incorporation of calls to UDFs within views, but treat the UDF
as a black box during query planning. Any filtering conditions
that appear within the UDF code will be invisible to BullFrog and
therefore will not be helpful to limit the scope of the lazy migration.
2Such as the notion of consistency used by the CAP [14] and PACELC [9] theorems.

Second, integrity constraints added during migration may cause
arbitrary data to be dropped. For example, if a uniqueness constraint
is added to a table with duplicates, most existing systems will re-
turn an error immediately upon the ALTER TABLE command that
attempted to add the constraint. However, a pure lazy migration
approach would prevent the system from becoming aware of the
problem until after the new schema is already live. Therefore, Bull-
Frog must either perform a synchronous check upon receiving a
potentially problematic migration command so that it can return an
error in advance, or otherwise proceed with the pure lazy approach
and give a warning that some records may fail to migrate.

3 LAZY MIGRATION, CONCURRENTLY
BullFrog must support concurrent client requests that may access
overlapping sets of data. Care must be taken to avoid migrating
the same tuple more than once, or deleting it from the old tables
prematurely. BullFrog addresses these problems by using custom
data structures and mechanisms to track the status of a tuple as it
is migrated. At a high level, the technique involves locking ranges
of data in the old tables to ensure that once one worker begins
to migrate the data, no other concurrent worker can attempt to
migrate it unless the first worker fails. Care is taken to handle
situations in which there is not a one-to-one mapping of tuples
under the old schema to tuples under the new schema. Furthermore,
efficient data structures are used to track the status of these locks
and the history of previously migrated data. In sum, BullFrog’s
design allows conflicting migration efforts to continuously and
efficiently make progress migrating non-conflicting records, and
avoid duplicating work for conflicting records.

3.1 Migration categories
A schema migration may involve one or more migration statements.
Each migration statement may involve one or more tables from the
old schema (“input tables") and generate one or more tables in the
new schema (“output tables").3 For each input table in a migration
statement, BullFrog classifies it into four broad categories that
dictate how its tuples will be locked and tracked during migration.

One-to-one (1:1) migration. In a 1:1 migration, each tuple in
an input table has at most one corresponding tuple in the output
schema (across all the output tables). Examples of 1:1 migrations
include adding one or more columns to a table, dropping one or
more columns from a table, changing the data type of a column,
adding constraints to a table (whichmay cause the output table to be
a subset of the tuples in the input table), or joining a table to another
one using one of its foreign keys, i.e., a foreign-key, primary-key
(FK-PK) join. For 1:1 migrations, BullFrog uses a bitmap to track
migration and lock status. There are two bits per tuple in the input
table: one bit corresponding to that tuple’s migration status, and the
other corresponding to its lock status. Bitmaps provide a favorable
space-time trade-off, since they are effective at exploiting bit-level
parallelism in hardware and introduce limited overhead. Tuple-
level granularity on migration and lock status gives BullFrog the
flexibility to migrate exactly those tuples that it has determined
to be potentially relevant to a particular client request without
having to drag along unnecessary data during themigration process.
3We ignore migrations that involve zero input or output tables since they are trivial.

Algorithm 1: Per-transaction migration loop.
1 do
2 WIP, SKIP = empty list
3 Start transaction
4 Scan via client request predicates, for each tuple, T do
5 canMigrate = Call Algorithm 2 or 3 for T
6 if canMigrate == true then Include T in migration.
7 End transaction
8 for each tuple or group, G in WIP do
9 Update G’s status to migrated (not in-progress)

10 while SKIP is not empty
11 Run client request on new schema

However, BullFrog also provides the capability to track migration
and lock status at less granular levels (e.g. at a page level).

One-to-many (1:n) migration. In a 1:n migration, each tuple
in the input table may (but does not necessarily) produce more than
one tuple in the output schema. One example of such a migration
is where an input table is split into multiple output tables, with a
single input tuple generating a tuple in each of the output tables.
Other examples include the primary key side of a FK-PK join and
either side of a many-to-many join. 1:n migrations work similarly
to 1:1 migrations in that a bitmap is used to track migration and
lock status. The only additional detail is that the migration bit for a
tuple in the input table cannot be set (indicating that it has been
migrated) until all of its dependent tuples in the output schema
have been generated.

Many-to-one (n:1) migration. In a n:1 migration, a group of
tuples from the same input table combine to generate a single tuple
in the output schema. An example of an n:1 migration is where an
output table is formed by performing a group-by aggregation. For
these migrations, BullFrog tracks migration and lock status at the
group level, and uses a hash table instead of a bitmap.

Many-to-many (n:n) migration. n:n migrations are imple-
mented as an extension of n:1 migrations analogous to how 1:n
migrations extend 1:1 migrations as described above. Thus, a hash
table is used instead of a bitmap, but the migration bit for a group in
the input table is only set once all of the group’s dependent tuples
in the output schema have been generated.

We call 1:1 and 1:n migrations "bitmap migrations", and n:1 and
n:n migrations "hashmap migrations", and discuss each of these in
more detail in the following subsections.

When the same input table is involved in separate migration
statements, BullFrog maintains multiple data structures for it. For
example, if a column is added to a table (1:1 migration) in addition to
it generating a new table via a 1:n join (1:n migration), two bitmaps
are allocated to manage the two migration operations on that table.

3.2 Migration transaction processing
The migration work precipitated by a client request is performed in
a series of transactions that is separate from, and completed prior
to, processing the client request transaction. Dividing work into
multiple transactions simplifies abort handling and avoids deadlock.

Algorithm 1 shows BullFrog’s per-worker logic for handling a
client transaction during schema migration. Two worker-local lists,
SKIP and WIP, start off empty (line 2). After starting a transaction,
it iterates through the records in the old schema deemed to be
potentially relevant via the predicate extraction process described
in Section 2.1 (lines 3-4). For each relevant record, T is migrated
if Algorithm 2 (bitmap migrations, Section 3.3) or Algorithm 3
(hashmap migrations, Section 3.4) says it should be (lines 5-6).

Algorithms 2 and 3 add to WIP tuples or groups for which they
returned true, and add to SKIP those for which they returned false
due to an existing migration effort by a different worker. After the
migration transaction completes, the status of all tuples in WIP are
updated to indicate that they have been migrated (lines 8-9) using
the data structures to be discussed shortly. Finally, the loop body
ends and the SKIP list is checked (line 10). If it is non-empty, the do
loop repeats (in a fresh transaction) to recheck the status of these
skipped tuples and migrate them in the rare case that the other
worker that was migrating them aborted (see Section 3.5).

3.3 Bitmap migrations
For 1:1 and 1:n migrations, lock and migration status are tracked
using two bits per migration granule, such as a tuple or page. (This
section assumes tuple granularity for simplicity.)

• A migrate bit that is initialized to 0 and is set to 1 when
that tuple has been migrated.

• A lock bit (or "in progress" bit) that is initialized to 0 and is
set to 1 when a worker begins the process of migrating this
tuple. Setting the bit to 1 prevents other migration workers
from concurrently trying to migrate the same tuple.

These two bits are stored in adjacent positions in the bitmap so
both can be accessed in a single read of a memory word. The top
of Figure 1 shows an example bitmap, with [lock-bit migrate-bit]
pairs associated with a set of 8 tuples. A pair of [0 0] in the bitmap
indicates that the tuple has not yet started the migration process,
[1 0] means that the migration is "in-progress", and [0 1] means the
migration has completed. A state of [1 1] should never occur.

0����0 0����0 0����0 0����0 0����0 0����0 0����0 0����0

w0: migration granules [1, 2]

0����1 0����1 0����0 0����0 0����0 0����0 0����0 0����1

1 2 8

Time

BITMAP

lock-bit migrate-bit

BITMAP

w1: migration granule [8]

w2: migration granules [4, 6, 7]

4 3WIP

w3: migration granules [3, 5, 6]

WIP 6 7 5 SKIP 6

WIP WIP

0����1 0����1 1����0 1����0 1����0 1����0 1����0 0����1BITMAP

0����1 0����1 0����1 0����1 0����1 0����1 0����1 0����1BITMAP

Figure 1: Schema migration during transaction processing.

Algorithm 2: Check bitmap whether to migrate a given tuple.
Input : shared bitmap bitmap, tuple index in bitmap bkey,

local in-progress lists WIP and SKIP
Output : true, if the worker is permitted to migrate the tuple

1 if migrate bit of bkey in bitmap is not set then
2 if lock bit of bkey in bitmap is set then
3 append bkey to list SKIP
4 return false
5 acquire an exclusive latch on the bitmap
6 if migrate bit of bkey in bitmap is not set then
7 if lock bit of bkey in bitmap is not set then
8 set the lock bit of bkey in bitmap

9 release the latch on bitmap

10 append bkey to list WIP
11 return true
12 else
13 release the latch on bitmap

14 append bkey to list SKIP
15 return false
16 else release the latch on bitmap

17 return false

The bitmap is protected from concurrent workers by a read-write
latch that allows concurrent reads but requires exclusive access for
writes. We partition the bitmap into separate chunks protected by
different latches to reduce cross-worker latch contention.

To check whether to migrate a particular tuple, the worker runs
the pseudocode shown in Algorithm 2. Line 1 checks the migration
bit of the tuple. If it is 1, it has already been migrated, so it returns
false (line 17). Line 2 checks the lock bit. If it is 0, the code in
lines 5-16 is run, that sets the lock bit to 1 and appends the tuple
identifier into the in-progress list WIP of that worker. All of this is
done after getting an exclusive latch on the bitmap partition and
then rechecking the migration and lock bits to confirm they were
not changed before the worker acquired the exclusive latch. If the
lock bit is 1, another worker has already started the process of
migrating this tuple. In that case, the code in lines 3-4 and 13-15
adds that tuple to the“skipped tuple” list SKIP for that worker.

Algorithm 1 migrates the tuple and at line 9 sets its status: [0 1].
The example in Figure 1 depicts four queries issued over the new

schema, each of which spins up a worker to migrate relevant data
(query q1 spins up worker w1, query q2 spins up worker w2, etc.).
w0 executes simultaneously with w1, but they do not attempt to
migrate the same data, and so can proceed independently. After
this, w2 and w3 run concurrently and both attempt to read data
located inside the 6th tuple. Although reads do not conflict with
respect to data access, they do conflict with respect to migration
workers, since only one worker is allowed to migrate this tuple.
w2 acquires the lock bit on tuple 6 earlier than w3, so w2 appends
tuple 6 to its WIP, while w3 observes that tuple 6 is locked and so
appends it to its SKIP. When w3 finishes migrating tuples 3 and 5,
it checks tuple 6 again to see if it was migrated. If it was, it allows
q3 to run on the new schema. Otherwise, it blocks the query until
tuple 6 is migrated or the lock is released.

Algorithm 3: Tuple eligibility checking for hash migrations.
Input : shared hash table htable and a tuple T,

local in-progress lists WIP and SKIP
Output : true, if the txn is permitted to migrate T

1 Generate group key hkey from T
2 if hkey exists in list WIP then return true
3 if hkey exists in list SKIP then return false
4 if hkey exists in htable then
5 if hkey state in htable is in-progress then
6 append hkey into list SKIP and return false
7 if hkey state in htable is abort then
8 update the pair (hkey, in-progress) in htable

9 append hkey into list WIP and return true
10 return false
11 if htable.insert (hkey, in-progress) already exists then
12 GOTO LINE 7
13 else append hkey into list WIP and return true

3.4 Hashmap migrations
Both n:1 and n:n migrations require accessing multiple tuples
from an input table in order to produce an output tuple. This
means that tuple-level granularity tracking of migration status
is inappropriate—either an entire group of tuples that combine to
form an output tuple should be considered migrated, or none of
them. BullFrog therefore tracks lock/migrate status at the group
level for these migrations. Since mapping arbitrary group identi-
fiers to unique offsets in a dense bitmap would be complex without
advanced knowledge of the complete set of group identifiers, a hash
table is used to track statuses, rather than a bitmap.

Given a tuple in an input table that is potentially relevant to a
query result, Algorithm 3, line 1, determines the group identifier
to use as a key into the hash table. For example, for a GROUP BY
migration statement, the group identifier is constructed from the
value of the attribute(s) that appear in the GROUP BY clause. With
this key, the worker executes the remaining code in Algorithm 3.

Line 2: If the key exists in the list WIP, this means that this same
worker has already decided to migrate a different tuple from the
same group. Since the entire group must be migrated together, the
worker must migrate the current tuple as well.

Line 3: If the key is found in the list SKIP, a different worker was
already found to be migrating the group associated with this tuple
and so it will be skipped by the current worker and revisited a later
point to check whether the other worker successfully completed
the migration of this group, as we described in Section 3.2.

Lines 4-10: If the key is found in the global hash table (but not
the local lists), its current lock/migration status is checked. If it
is locked but not yet migrated, this implies that the migration is
in-progress by another worker, and the key is appended to the
local list SKIP. If it is neither locked nor migrated, this implies that
a different worker started the process of migrating it, but aborted.
The worker thus (exclusively) updates the lock status to acquire
the lock and appends the key to the local list WIP.

Lines 11-13: If the key is not found in the hash table, this implies
that the data is neither locked nor migrated. The worker attempts to

Time

w2: migration granules [4, 6, 7]

4 3WIP

w3: migration granules [3, 5, 6]

WIP 6 7 5 SKIP 6

0����1 0����1 1����0 1����0 1����0 1����0 1����0 0����1BITMAP

0����1 0����1 1����0 0����0 1����0 0����0 0����0 0����1BITMAP

0����1 0����1 0����0 0����0 0����0 0����0 0����0 0����1BITMAP

0����1 0����1 1����0 0����0 1����0 1����0 0����0 0����1BITMAP

0����1 0����1 0����1 0����0 0����1 0����1 0����0 0����1BITMAP

w2: aborted w3: waiting

w3: unblocked

Figure 2: Transaction abort handling.

acquire a latch on the hash table4 and insert the key with a value of
“in progress" (locked but not migrated) into the hash table. If after
acquiring the latch it finds that the key had already been inserted
by another worker in between the initial check and the point where
the latch was acquired, it releases the latch and runs the same code
that would have been run if it had initially found the key in the
hash table (line 12). Otherwise, the key is inserted into the local list
WIP and the migration of that tuple can proceed (line 13).

Algorithm 1 performs the migration of the group, and updates
its key in the hash table to a status of migrated at line 9.

3.5 Migration aborts
When a migration transaction aborts, after the standard database
system code is run to handle the abort, BullFrog5 must inject
additional code that traverses the aborted worker’s WIP list, and for
each element, the corresponding key is accessed in the bitmap or
hash table and set to [0 0] in the bitmap or abort in the hash table.

Figure 2 depicts an example of abort handling for bitmap migra-
tions. Workers w2 and w3 both access the 6th tuple in addition to
other tuples. w2 accesses it first and grabs that lock and puts it in
its WIP, while w3 sees that it is locked and puts it in its SKIP. After
migrating tuples 4, 6, and 7, but before it commits, w2 gets aborted.
This causes the underlying system to undo the insertion of the new
tuples in the output tables that were caused by the migration of
tuples 4, 6, and 7. At the end of the abort logic, BullFrog iterates
through w2’s WIP and resets the lock and migration statuses of
those keys back to [0 0]. When tuple 6’s status is reset to [0 0], w3
(which had been looping, waiting for the migration of tuple 6 to
complete or abort) can migrate that tuple itself.

BullFrog’s status tracking data structures are stored in volatile
memory. Upon a crash, they must be reinitialized. While the REDO
log is scanned during recovery, for each tuple (or group) that is
found in a committed migration transaction, the corresponding
status is set to [0 1] in the bitmap or migrated in the hashmap.5

4Similar to what we described in Section 3.3 for the bitmap, the hash table is partitioned
and each partition is protected by a separate latch in order to reduce cross-worker
contention that would arise if there were a global latch for the entire hash table.
Deadlock does not occur since two latches are never acquired simultaneously.
5We have yet to implement this feature in the BullFrog codebase.

3.6 Joins
As we described in Section 3.1, joins can either be 1:1 migrations or
1:n migrations depending on the type of join. For example, a foreign-
key/primary-key join is a 1:n migration relative to the primary key
input table (PKIT), while at the same time being a 1:1 migration
relative to the foreign-key input table (FKIT). However, we said
for 1:n migrations, a tuple cannot be considered migrated until the
n tuples that it generates have been migrated. Consider a tuple
to migrate from the FKIT with a foreign key of 4. Since this is a
1:1 migration relative to the FKIT, the tuple from the PKIT with a
primary key of 4 is extracted and joined with this tuple to produce
the migrated version of it. After the migrated version has been
successfully inserted into the output table, the input tuple in the
FKIT can be marked in the bitmap as being migrated. However, the
tuple in the PKIT that it joined with (the one with primary key of 4)
cannot be considered migrated, since it is a 1:n migration and there
may be other tuples in the FKIT with a foreign key of 4. There are
two options for what to do next in such a scenario:
(1) Immediately migrate all other tuples in the FKIT with the same
foreign key. This allows BullFrog to mark the key in the primary
key table as migrated at the completion of this migration. However,
this turns the 1:1 migration on the FKIT side into a n:n migration.
(2) Stop at this point without adding any additional tuples to this
particular migration task. This option provides BullFrogwith more
flexibility to migrate lazily, and maintains the simpler 1:1 migration
semantics on the FKIT. However, maintaining migration status for
the PKIT requires occasional coordination with the FKIT to learn
when all tuples with a particular value have been migrated.

In general, the second option is preferable when the cardinality of
the foreign key is small or when there is skew such that large chunks
of the FKIT would be forced to be migrated at once. In practice,
when BullFrog uses the second option in the context of an inner
join, it does not attempt tomaintain themigration status of the PKIT.
Furthermore, it does not maintain the lock status on the PKIT, since
the unit of migration is entirely determined by individual tuples
in the FKIT, and there are no semantic issues that arise when two
different tuples from the FKIT are being migrated concurrently
and access the same tuple from the PKIT. If an entire PKIT tuple
is to be migrated, then all tuples from the FKIT that it joins with
must be locked. Thus, there are no lock status or migration status
bitmaps associated with the PKIT. Correspondingly, when using the
first option in the context of an inner join, the unit of migration is
entirely determined by individual tuples in the PKIT, so BullFrog
does not maintain lock or migration bitmaps on the FKIT.

For many-to-many joins, BullFrog provides the same two op-
tions for maintaining the lock and migration status discussed above.
However, both input tables are considered a 1:n migration with
respect to the other table so it may be impossible to avoid migrating
large chunks of data within individual migration tasks if there is
skew in the attribute(s) involved in the join condition. Therefore,
BullFrog also provides a third option of tracking status based on
the combination of tuples from the two tables involved in the join,
which increases the granularity of the lazy migration. I.e., instead of
x.tupleID→ (lock_status, migrate_status) it is (x.tupleID, y.tupleID)
→ (lock_status, migrate_status). BullFrog uses the hashmap tech-
nique described in Section 3.4 to track migration status.

3.7 Discussion: Conflict detection
In some cases, instead of using BullFrog’s lock data structures, it
would be possible to leverage the underlying database system to
prevent duplicate migrations via SQL clauses such as ON CONFLICT
DO NOTHING. Unfortunately, this method of preventing duplicate
migrations has limited applicability. First, the output tables must
have a uniqueness constraint declared on an attribute. Many data-
base systems, such as PostgreSQL, require a B-tree index on any
attribute declared to be unique. This uniqueness constraint must
have been declared on a deterministic attribute whose value is based
directly on values of data in the input table(s). Therefore, a primary
key generated by an auto-increment function would not be eligible.
Even though this primary key is unique, the duplicate insertion
during the migration process will not be detected – instead the
record will be inserted twice, with the system generating different
unique primary keys for each record.

When applicable, this technique prevents the additional accesses
to the old schema on behalf of migration transactions that are
blocked, waiting for the old schema to be released. However, it
detects conflict at a later stage (at the point of insert into the new
schema) and therefore may incur additional wasted work upon a
conflict. BullFrog supports both methods for handling migrations
and we experimentally compare them in Section 4.

4 EXPERIMENTAL EVALUATION
We implemented a complete prototype of BullFrog on top of Post-
greSQL 11.0. Our implementation leverages PostgreSQL’s existing
view expansion and query rewriting/optimization functionalities –
we did not have to modify any core PostgreSQL code. Our bitmap
data structures (see Section 3.3) use PostgreSQL’s existing TIDs for
mapping tuples to bits in the bitmap.

The primary goal of our experimental evaluation is to under-
stand the downtime implications of single-stepmigration algorithms
in which the database switches from the old to new schema im-
mediately; such single-step migrations historically have required
extensive downtime. To this end, we experimentally evaluate the
lazy migration algorithms of BullFrog and compare their perfor-
mance under various configurations against eager migration. In
eager migration, the system immediately physically moves all data
stored under the old schema into tables in the new schema prior to
becoming available to client requests over the new schema.

In addition, we also benchmark BullFrog against a multi-step
migration implementation in which a schema change is registered
with the system ahead of time, and the system copies data into the
new schema in a background process. Reads are served from the
old schema, while writes go to both schemas. Although BullFrog
is targeted for single-step deployment scenarios where giving ad-
vanced notification of a schema change is impossible, impractical,
or simply too burdensome (see Sections 1 and 5), there are also
some performance differences between single-step and multi-step
algorithms that these experiments can illuminate.

For the BullFrog algorithms, we compare solutions that per-
form duplicate migration detection at time of insert into the new
schema via PostgreSQL’s ON CONFLICT clause (see Section 3.7) with
solutions that detect duplication prior to generation of the migrated
record (see Sections 3.3 and 3.4).

Workload. We developed a variation of TPC-C that includes
schemamigrations. TPC-Cmodels the transactions involved in plac-
ing and delivering orders in a retail application; and querying stock
levels of merchandise. The workload is defined by a mix of trans-
actions according to the following percentages: NewOrder (45%),
Payment (43%), Delivery (4%), OrderStatus (4%) and StockLevel
(4%). StockLevel and OrderStatus are external read queries. The
schema defined by the TPC-C benchmark consists of nine tables.
Our experiments evolve the original schema in various ways, the
specifics of which will be discussed in the following sections.

Experimental Platform. We use OLTP-Bench [21] to set up and
run our experiments. OLTP-Bench has the ability to support tight
control of transaction mixtures, request rates, and access distribu-
tions over time. We measure throughput as transactions per second
and the end-to-end latency as the time from when the client is-
sues a transaction request until the response is received. Maximum
throughput measurements are taken by increasing the rate that
clients submit requests until the latency of these requests starts
to increase due to queuing delays. The measurements for all of
our throughput experiments are averaged over 10 runs, but we
found that the variance across runs in each of our experiments was
negligible. Latency experiments are presented using cumulative
distribution functions (CDFs), and each plot shows a distribution
over at least 50,000 points. We run our experiments on an eight-core
2.50GHz Intel Core i7 using 16GB of memory. We dedicate all eight
cores to workers within the transaction processing engine.

4.1 Table split migration
In our first experiment, the baseline TPC-C schema incurs a rela-
tively simple migration: the customer table is split into two tables,
where its original set of columns are divided across the two new
tables, except for the primary key which appears in both new tables.
Each new table contains the same number of tuples as the original
customer table. One table includes the customer’s personal financial
information (balance, payment, credit, etc.) and the other has the
customer’s less private information (city, state, zip). Using the terms
we described in Section 3.1, this is a 1:n migration with respect to
the original customer table, since for every row in the customer
table there are two rows generated (one row for each of the new
tables). Therefore, BullFrog uses a bitmap data structure to track
the migration. In this experiment, we use the TPC-C configura-
tion with 50 warehouses, which therefore causes the benchmark to
generate 1.5 million records in the customer table. Four out of the
five TPC-C transaction types access the customer table—NewOrder,
Payment, Delivery and OrderStatus and are straightforwardly
modified to be compatible with the new customer tables.

Figure 3 shows how the throughput of transaction processing
varies during the different phases of the schema migration. Figure
3(a) shows the common case where the system is not overloaded at
the time of the migration, and the system can devote extra resources
to the additional work involved in migrating to a new schema. Fig-
ure 3(b) shows the same experiment, except that the clients are
already submitting requests at the maximum rate at which the
system is able to keep up (without falling behind) before the mi-
gration, and thus the additional migration work necessarily forces

Eager migration
Multistep migration
BullFrog (on-conflict clause)
BullFrog (bitmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200

(a) Request rate: 450 transactions per second.
BullFrog without background migration (bitmap)
BullFrog without background migration (on-conflict clause)

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

(b) Request rate: 700 transactions per second.

Figure 3: Throughput during table-split migration.

the system to fall behind. The migration begins for all implemen-
tations at the purple circle and ends for each system at the later
corresponding circles marked in the figure.

Eager migration takes approximately 80 seconds to complete.
This time is independent of client request load because all requests
that access the customer table during the migration are queued,
and the performance of the migration itself is not affected by the
size of this queue of waiting transactions. Throughput does not dip
all the way to 0 since the StockLevel transaction does not access
the customer table and can be processed even during an eager
migration. When the client load is 450 transactions per second
(TPS), there is enough system headroom for the eager migration
system to catch up after the migration. This observed in Figure 3(a)
by a temporary increase in throughput after the migration relative
to the throughput before the migration began. When the client load
is maxed out at 700 TPS (Figure 3(b)), the eager system can never
catch up after the migration and cannot decrease the size of the
request queue that built up during the migration.

For the lazy migration algorithms, the total time to complete
the migration is longer since they process active client requests
concurrently with performing the migration. Nonetheless, the back-
ground process discussed in Section 2.2 enables the migration to
complete within the time window shown in the figure. Without
the background process (the dotted lines in the figure), the TPC-
C benchmark does not access enough distinct tuples to complete
the migration within the experimental time window. Throughput
steadily degrades as the tables in the new schema become larger
and slower to access, while access costs to the fixed-size old schema
remains constant despite the increasing percentage of transactions
that find out that all relevant tuples have already been migrated.

Lazy migration throughput is unaffected by the migration when
the client request rate is at 450 TPS. The additional per-transaction
overhead of lazily migrating relevant records to the new schema
tables is hidden by the spare capacity of the system. However, when
the client load is maxed out at 700 TPS, the throughput is ultimately
affected by the migration. At first, the migration overhead is visible
in transaction latency, but throughput is not affected. Eventually,
OLTP-Bench is forced to queue transactions before sending them
to PostgreSQL, and the throughput drops along with the additional

TPC-C w/o migration
Eager migration
Multistep migration
BullFrog (bitmap)
BullFrog (on-conflict clause)Fr

ac
 o

f t
xn

s

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102

(a) Request rate: 450 transactions per second.

BullFrog w/o background migration (bitmap)
BullFrog w/o background migration (on-conflict)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

(b) Request rate: 700 transactions per second.

Figure 4: Latency during table split migration.

queuing latency. The performance of the bitmap vs. on-conflict
approaches are similar. In addition to the more steady throughput
curves, the lazy migration also performs 13% more transactions
overall than the eager migration approach during this experimental
window. We attribute this additional efficiency to the improved
cache efficiency of bringing in a tuple into cache just once to both
migrate it and use it as part of an active client request.

For lazy migration, background migration threads do not begin
until 20 seconds after migration initiates, since at first, the client
requests themselves are sufficient to keep the migration progress
moving along. Only later do the background threads start and search
for data to migrate that has not yet been covered by a client request.
In contrast, for multi-step migration, the entire migration process
happens in the background. Therefore, the background threads
start immediately which causes an earlier performance drop.

Surprisingly, in contrast to lazy migration in which the back-
ground threads help accelerate the completion of the migration,
multi-step migration takes longer to complete than lazy migra-
tion despite the presence of background threads throughout the
migration. The reason is that during the early stages of multi-step
migration, most data exists only in the old schema, and updates are
only performed in the old schema. However, as migration continues,
a larger percentage of data has been migrated to the new schema.
Any updates to migrated data must happen twice – in the new and
old schema – since the old schema must be able to serve reads until
the migration completes. Therefore, as the migration progresses,
the multi-step migration needs to perform additional work relative
to lazy migration (which never has to perform updates on the old
schema). This is observed in the experiments by a steadily dropping
throughput for multi-step migration, until the migration completes.

Figure 4 shows a CDF of client request latency for the same ex-
periment, starting at the point the migration begins until the end of
the experimental window from Figure 3. Latency results are plotted
for only one transaction type (the most complex – NewOrder) in or-
der to avoid variations due to the different complexities of different
TPC-C transaction types. When the client request rate is 700 TPS,
the eager migration algorithm is never able to catch up. Thus, the 80
second downtime required to perform the migration is experienced
not only by the requests that were submitted during the downtime,
but also by the requests that were submitted afterwards, since the
size if the request queue never has a chance to decrease. In contrast,
at 450 TPS, the eager system is able to catch up. Therefore, the CDF

Eager migration
Multistep migration
BullFrog (hashmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 20 40 60 80 100 120 140 160 180 200 220

(a) Request rate: 450 transactions per second.

Tx
ns
/s
ec

0

500

Seconds
0 20 40 60 80 100 120 140 160 180 200 220

(b) Request rate: 700 transactions per second.

Figure 5: Throughput during aggregation migration.

appears as a step – the left side of the graph shows the requests
that were submitted after the system catches up, while the right
side shows the latency of transactions before the system catches
up. The multi-step and lazy schemes, are also never able to catch
up when then are no spare resources in the system at 700 TPS.
However, because of its superior throughput, BullFrog never gets
as far behind as the other algorithms, and both the BullFrog and
multi-steps algorithms fall behind at a more steady rate because of
their lack of downtime. The poor latency for multi-step at 450 TPS
is caused by the throughput dip from Figure 3 and resulting queuing
delays. Overall, the latency of the lazy algorithms is up to an order
of magnitude better than the eager and multi-step algorithms and
is comparable to the latency of TPC-C without any migration.

4.2 Aggregate Migration
The Delivery transaction collects a number of the oldest undeliv-
ered orders and marks them as having been delivered. As part of
this process, it performs an implicit aggregate operation as follows:
SELECT SUM(OL_AMOUNT) AS OL_TOTAL FROM ORDER_LINE

WHERE OL_O_ID = ? AND OL_D_ID = ? AND OL_W_ID = ?;

In our next experiment, we model a schema evolution in which
this aggregation is maintained as a separate table. This evolution
can be thought of as a materialized view that is maintained by
the application instead of the database system. The migration re-
quest runs the initial aggregation of the 15 million tuples in the
ORDER_LINE table, and all future transactions update both the orig-
inal and aggregated version of this table.

Figures 5 and 6 show the throughput and latency of this experi-
ment using the same methodology as Figures 3 and 4 respectively.
Using the terminology from Section 3.1, this is a n:1 migration
with respect to the ORDER_LINE table (in contrast to the previous
experiment which was a 1:n migration). Therefore, BullFrog uses
a hashmap data structure instead of a bitmap to track the migration.
Nonetheless, the results of this experiment are similar to the table-
split experiment where throughput and latency are not affected by
the migration at 450 TPS, but all systems fall behind at 700 TPS.
However, the amount of data that must be written as part of the
aggregation migration is smaller (since the output table is small), so
the migration is cheaper and the window of throughput reductions
for all approaches is smaller and the systems fall less behind.

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102

(a) Request rate: 450 transactions per second.

TPC-C w/o migration
Eager migration
Multistep migration
BullFrog (hashmap)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

(b) Request rate: 700 transactions per second.

Figure 6: Latency during aggregation migration.

Eager migration
Multistep migration
BullFrog (hashmap)
Migration starting-point

Eager migration end-point
Multistep migration end-point
BullFrog migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 100 200 300 400 500

(a) Request rate: 450 transactions per second.

Tx
ns
/s
ec

0

500

Seconds
0 100 200 300 400 500

(b) Request rate: 700 transactions per second.

Figure 7: Throughput during join migration.

4.3 Join Migration
TPC-C’s StockLevel transaction is a read-only transaction that
scans a warehouse’s inventory for items which are (or close to
being) out of stock. As part of this process, a join occurs:

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT

FROM ORDER_LINE, STOCK WHERE S_I_ID = OL_I_ID ...;

We model a situation where the application developers priori-
tize the performance of StockLevel queries by denormalizing the
schema so that the order line and stock tables are already joined. The
new schema includes this new table – named orderline_stock –
instead of the original order line and stock tables. All transactions
that accessed the old tables are replaced by new transactions against
the orderline_stock table that consists of close to 8 million tuples.

Figure 7 shows the throughput results of this experiment and
Figure 8 shows the latency results. This join is the most resource
intensive of all the migrations we have experimented with, and thus
the throughput dip of all systems, including multi-step migration,
is more extended (except BullFrog at 450 TPS which still has no
throughput dip). The eager approach experienced over 200 seconds
of downtime. The join involved in the migration is a many-to-many
join, andBullFrog uses the hashmap-based n:nmigration approach
discussed in Section 3.6. When BullFrog attempts to perform the
migration during a period of maximum load (700 TPS), latency
steadily increases to 10 seconds per transaction, until PostgreSQL

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
10−3 10−2 10−1 1 101 102 103

(a) Request rate: 450 transactions per second.

TPC-C w/o migration
Eager migration
Multistep migration
BullFrog (hashmap)

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100 1000

(b) Request rate: 700 transactions per second.

Figure 8: Latency during join migration.

BullFrog (bitmap)
BullFrog (no bitmap)Tx

ns
/s

ec

0

500

Seconds
0 5 10 15 20 25 30 35 40 45

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10

Figure 9: Data structure maintenance cost.

reaches its maximum number of concurrent transactions. At this
point, throughput dips by approximately 100 TPS as OLTP-Bench
queues transactions. After the migration completes, the through-
put returns to its original level since the new pre-joined table is
designed to accelerate the StockLevel transaction which appears
relatively infrequently in TPC-C (4% of transactions). Furthermore,
the orderline_stock table retains all secondary indexes of the
two tables that generated it. However, latency never returns to its
original level since the system is running at maximum load and can
never catch up. The same is true of the eager system, but since it got
further behind, the steady latency after the migration is an order
of magnitude higher than BullFrog. Thus the lazy approaches are
superior to the eager and multi-step approaches, both in terms of
the size of the throughput dip and also the increase in latency.

4.4 Tracking Overhead
We now investigate some sources of overhead in BullFrog. All
experiments in this section use the table split migration.

4.4.1 Data Structure Maintenance. We first measure the overhead
data structure maintenance in BullFrog by comparing BullFrog
performance with a version where no data structures are neces-
sary. Instead, the application is modified such that the NewOrder
transactions cumulatively access each tuple in the old schema ex-
actly once, rendering migration status tracking unnecessary. Figure
9 shows the throughput and latency improvements of removing
the tracking data structures is small since they do not introduce
significant overhead.

4.4.2 Lock and Latch Contention. In this experiment, we create a
variable number of hot records over which transactions exclusively
access. Decreasing the size of this hot set increases the contention

Hot set = 1,500,000
Hot set = 3,000
Background migration starting-point

Hot set = 15,000
Migration starting-point
Migration end-point

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

Figure 10: Skewed data access.

in the workload, and causes two potential problems for BullFrog.
First, it increases the probability of duplicate, simultaneous attempts
to migrate a tuple, which causes one of them to block until the first
one completes the migration. Second, it increases latch contention
for the hot partitions in BullFrog’s data structures. Figure 10 shows
that decreasing the hot set from 1,500,000 to 15,000 records indeed
causes a longer drop in throughput during the migration. We veri-
fied that this was due to lock contention (and not latch contention)
by rerunning the same experiment without making transactions
wait upon reaching a locked record. We found that the performance
drop was due to transactions repeating the loop through the set
of records to migrate, waiting for the lock to be released (line 10
from Algorithm 1). This increases the latency of the transaction and
reduces the number of transactions that can processed concurrently,
thereby extending the migration time. However, for very small hot
sets, the opposite phenomena is observed. The hot set gets quickly
migrated, and the rest of the migration is performed by the back-
ground threads which can proceed efficiently and independently
with minor impact on throughput.

4.4.3 Migration Granularity. We next vary the granularity of mi-
gration. Instead of tracking migration status at the tuple level, it
is done at the page level, and we vary the size of pages and con-
tention in the workload. Figure 11 shows that migrating data in
larger chunks increases the latency of each operation, but allows
the migration to complete more quickly. At 450 TPS, single-tuple
granularity is best at low contention, since no matter the granu-
larity, BullFrog can keep up with the request rate, so the latency
advantage of fine granularity is preferable. However, under higher
contention, coarse granularity migration is preferred, since the la-
tency benefit of migrating with tuple granularity is negated by the
additional queuing delays caused by the extended migration period.
This is also the case when running at 700 TPS.

4.5 Integrity Constraints
We next evaluate the overhead of constraint preservation during a
migration. The TPC-C benchmark includes foreign key constraints
from the Customer table to Order and District. In Figure 12(a)
we remove one (green line) or both (pink line) constraints to ob-
serve the improvement in performance from avoiding the overhead
of migrating additional data in order to check the constraints. As
explained in Sections 2.1, 2.3, and 2.4, the presence of integrity con-
straints in the new schema limits the laziness in which BullFrog
can work, since it must migrate not only the data being accessed by

Hot set: 15,000

Hot set: 1,500,000

Page: 1
Page: 64

Page: 128
Page: 256

Migration starting-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

(a) Request rate: 700 transactions per second.

Hot set: 15,000

Hot set: 1,500,000

Tx
ns

/s
ec

0
200
400

Tx
ns

/s
ec

0
200
400

Seconds
0 50 100 150 200 250

Hot set: 15,000

Hot set: 1,500,000

Fr
ac

tio
n

of

0

0.5

1.0 tr
an

sa
ct

io
ns

0

0.5

1.0

Latency (seconds)
0.1 1 10 100

(b) Request rate: 450 transactions per second.

Figure 11: Varying access skew and migration granularity.
End points are marked by the corresponding circles.

the client request, but also all data necessary to check the integrity
constraints in the new schema. Since not all transactions in TPC-C
access the customer table, the difference in performance was hard
to observe. Therefore, we repeated the same experiment, but re-
moved the transactions that do not access the customer table from
the workload. These results are presented in Figure 12(b), where
the overhead of constraint preservation manifests primarily as an
earlier drop in throughput. This is because the additional data that
is migrated per transaction limits the number of transactions that
can be processed concurrently which accelerates the point at which
the DB pushes back on OLTP-Bench to reduce the input workload.

5 RELATEDWORK
Ronstrom [32] describes online schema evolution using triggers
in a telecom database which is not allowed to be down for more
than a minute in a year. The paper proposes two different ways to
update the schema: soft schema change and hard schema change.
For soft schema changes, old transactions are executed using the old
schema and new transactions are processed using new schema. Old
and new transactions can execute concurrently. For hard schema
changes, transactions in the old schema are executed until all of
them have finished executing. Thereafter the system switches over
to using the new schema. However, even the hard switch uses a
multi-phase process in which triggers are used to prepare the new
schema in advance of the switch. In contrast, BullFrog supports
single-step schema evolution.

PK: Customer
PK: Customer, FK: District
PK: Customer, FK: Order, District

Migration starting-point
Migration end-point
Background migration starting-point

Tx
ns

/s
ec

0

500

Seconds
0 50 100 150 200 250

(a) Full workload.

Tx
ns
/s
ec

0

500

Seconds
0 10 20 30 40 50 60 70 80 90 100

Fr
ac

 o
f t

xn
s

0

0.5

1.0

Latency (seconds)
0.1 1 10

(b) Partial workload.

Figure 12: FOREIGN KEY constraints on table split migration.

Thework on non-blocking schema change in F1 by Google works
similarly to the “soft schema change” mechanism described by Ron-
strom [31]. Schema changes are done asynchronously across servers.
Since F1 is a distributed system with no synchronization across
the servers, different servers may transition to the new schema at
different times and multiple schema versions may be in use simulta-
neously. To simplify reasoning about correctness of the implemen-
tation, the authors restrict the servers in an F1 instance from using
more than two distinct schema versions. Tools such as LessQL [10]
facilitate automatic rewriting of queries to use evolved versions of a
schema. However, soft schema change solutions restrict the scope of
the schema evolution to ensure capability across all active schema
versions. In contrast, BullFrog uses a more general approach that
does not restrict the scope of the migration operations.

A host of schema migration tools generalize the state-of-the-
art multi-step schema migration process, including Percona online
schema change [5], Facebook online schema change [1], OAK online
alter table [2] and LHM [3]. In the first step, the new schema is
registered without yet becoming actively used. Writes performed to
a source table (from the old schema) are propagated into a shadow
table (for the new schema) that is gradually synchronized in the
background using triggers. After all the data has been migrated,
the second step involves switching over to the new schema by
locking the source table briefly and renaming the shadow table (if
necessary) to bring it online. The work on QuantumDB [20] along
with the dissertation by Zhu [40] use a similar approach which use
a combination of materialized views and triggers for maintaining
consistency with the original tables while they are updated. In
addition to the general disadvantages of multi-step migrations that
we discussed in the introduction, all of these tools use update/insert
triggers for applying the changes from the old table to the new table.
Triggers are known to increase lock contention and at times render
the table or the entire database inaccessible due to contention [6].

Løland and Hvasshovd [26] avoid the use of triggers by using
log propagation to perform non-blocking schema transformation.
Similarly, Github’s online schema change tool gh-ost slowly and

incrementally copies existing data from the source table to the
shadow table while using the binary log stream inMySQL to capture
ongoing changes on the source table, and replaying them to the
shadow table asynchronously [4]. When the write load gets higher,
gh-ost can’t keep up with binary log, and may not finish at all [7].
Since these techniques read from the log files, there is a delay in
between the time the changes are committed in the original table
and the time they are applied to the shadow table. Similar to the
other multi-step migration techniques we discussed above, these
techniques allow queries to execute over the new schema only after
the shadow table is caught up to the source.

Schema migration shares some complexities with database mi-
gration in which a database is moved from a source node to a
destination node, and the copy on the source node is either kept
or deleted after the migration [8, 12, 19, 27]. There also exists lazy
implementations of database migration, in which data is pulled
to the destination node as it is needed [22, 35], with background
processes that ensure all data is eventually migrated, similar in
theme to BullFrog. However, these lazy approaches do not make
significant changes to the schema during migration. At most, sim-
ple 1:1 schema migrations are allowed such as type changes of an
attribute. In contrast, BullFrog implements lazy schema migration
that supports an arbitrary number of complex schema changes,
including 1:n, n:1, and n:n migrations.

Our goal of single-step schema evolution is driven by the soft-
ware maintenance community. For example, the work on KVolve
starts with the same single-step migration requirement [33] and
uses a lazy migration approach in the context of migrating an ap-
plication on top of a NoSQL database (Redis). NoSQL databases are
widely used by continuous deployment practitioners since they typ-
ically do not enforce schema constraints. Our work on BullFrog
proves that lazy migration can be used for traditional relational
database systems that enforce schema constraints and require phys-
ical data reorganization during a schema migration.

BullFrog’s lazy approach to schema migration can be thought
of as combining previous work on lazy transaction processing in
database systems [24] with transaction decomposition [23, 37, 39]
such that a large migration transaction is decomposed into separate
smaller transactions that are processed lazily.

6 CONCLUSION
As applications and database systems increasingly evolve in lock-
step, the database systemmust support single-step migration where
the database must instantaneously switch over to a new schema
with no downtime. BullFrog succeeds in using a lazy migration
approach so that the new schema can be instantaneously ready for
access even when the physical data has not yet been migrated to
the new schema. Experiments show that BullFrog’s lazy approach
only causes a slight reduction in throughput and increase in latency
during the migration, in contrast to eager approaches that cannot
process any transactions during the migration.

7 ACKNOWLEDGEMENTS
This work was sponsored by the NSF under grants IIS-1718581 and
IIS-1910613. We thank the anonymous reviewers and Karla Saur
for their extremely helpful feedback and ideas.

REFERENCES
[1] 2010. Facebook Online Schema Change. https://www.facebook.com/notes/mysql-

at-facebook/online-schema-change-for-mysql/430801045932/.
[2] 2010. OAK Online Alter Table. https://shlomi-noach.github.io/openarkkit/oak-

online-alter-table.html.
[3] 2012. Large Hadron Migrator. https://github.com/soundcloud/lhm.
[4] 2016. GitHub Online Schema Change. https://github.com/github/gh-ost.
[5] 2016. Percona Online Schema Change. https://www.percona.com/doc/percona-

toolkit/2.2/pt-online-schema-change.html.
[6] 2016. Why Triggerless? https://github.com/github/gh-ost/blob/master/doc/why-

triggerless.md.
[7] 2017. Gh-ost benchmark against pt-online-schema-change performance.

https://www.percona.com/blog/2017/07/12/gh-ost-benchmark-against-pt-
online-schema-change-performance/.

[8] 2020. Database migration: Concepts and principles (Part 2). https://cloud.google.
com/solutions/database-migration-concepts-principles-part-2.

[9] Daniel Abadi. 2012. Consistency tradeoffs in modern distributed database system
design: CAP is only part of the story. Computer 45, 2 (2012), 37–42.

[10] Ariel Afonso, Altigran da Silva, Tayana Conte, Paulo Martins, João Cavalcanti,
and Alessandro Garcia. 2020. LESSQL: Dealing with Database Schema Changes in
Continuous Deployment. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 138–148.

[11] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein,
and Ion Stoica. 2015. Feral concurrency control: An empirical investigation of
modern application integrity. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. 1327–1342.

[12] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant Shenoy.
2012. "Cut me some slack" latency-aware live migration for databases. In Proceed-
ings of the 15th international conference on extending database technology (EDBT).
432–443.

[13] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A software architect’s
perspective. Addison-Wesley Professional.

[14] Eric A Brewer. 2000. Towards robust distributed systems. In PODC, Vol. 7. Port-
land, OR, 343477–343502.

[15] Eric A Brewer. 2001. Lessons from giant-scale services. IEEE Internet Computing
5, 4 (2001), 46–55.

[16] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. 2015. On
the journey to continuous deployment: Technical and social challenges along
the way. Information and Software technology 57 (2015), 21–31.

[17] Carlo Curino, Hyun JinMoon, Alin Deutsch, and Carlo Zaniolo. 2013. Automating
the database schema evolution process. The VLDB Journal 22, 1 (2013), 73–98.

[18] Carlo A Curino, Hyun J Moon, MyungWon Ham, and Carlo Zaniolo. 2009. The
PRISM workwench: Database schema evolution without tears. In IEEE 25th Inter-
national Conference on Data Engineering (ICDE). IEEE, 1523–1526.

[19] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight elasticity in shared storage databases for the cloud using
live data migration. Proceedings of the VLDB Endowment 4, 8 (2011), 494–505.

[20] Michael de Jong, Arie van Deursen, and Anthony Cleve. 2017. Zero-downtime
SQL database schema evolution for continuous deployment. In 2017 IEEE/ACM
39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). IEEE, 143–152.

[21] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. Proceedings of the VLDB Endowment 7, 4 (2013), 277–288.

[22] Aaron J Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Zephyr: live migration in shared nothing databases for elastic cloud platforms.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data. 301–312.

[23] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High performance
transactions via early write visibility. Proceedings of the VLDB Endowment 10, 5
(2017).

[24] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. 2014. Lazy evaluation
of transactions in database systems. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 15–26.

[25] Christopher M Hayden, Karla Saur, Edward K Smith, Michael Hicks, and Jeffrey S
Foster. 2014. Kitsune: Efficient, general-purpose dynamic software updating for
C. ACM Transactions on Programming Languages and Systems (TOPLAS) 36, 4
(2014), 1–38.

[26] Jørgen Løland and Svein-Olaf Hvasshovd. 2006. Online, non-blocking relational
schema changes. In International Conference on Extending Database Technology
(EDBT). Springer, 405–422.

[27] Takeshi Mishima and Yasuhiro Fujiwara. 2015. Madeus: database live migration
middleware under heavy workloads for cloud environment. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data. 315–329.

[28] Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019. Mved-
sua: Higher availability dynamic software updates via multi-version execution. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 573–585.

[29] Luís Pina, Luís Veiga, and Michael Hicks. 2014. Rubah: DSU for Java on a stock
JVM. In Proceedings of the ACM Conference on Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA), Vol. 49. 103–119.

[30] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An empirical analysis of the co-
evolution of schema and code in database applications. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering. 125–135.

[31] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. 2013.
Online, asynchronous schema change in F1. Proceedings of the VLDB Endowment
6, 11 (2013), 1045–1056.

[32] Mikael Ronstrom. 2000. On-line schema update for a telecom database. In Proceed-
ings of 16th International Conference on Data Engineering (ICDE). IEEE, 329–338.

[33] Karla Saur, Tudor Dumitraş, and Michael Hicks. 2016. Evolving nosql databases
without downtime. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 166–176.

[34] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 21–30.

[35] Oliver Schiller, Nazario Cipriani, and Bernhard Mitschang. 2013. Prorea: live
database migration for multi-tenant rdbms with snapshot isolation. In Proceedings
of the 16th International Conference on Extending Database Technology (EDBT).
53–64.

[36] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi, and Liming Zhu.
2017. Beyond continuous delivery: an empirical investigation of continuous
deployment challenges. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 111–120.

[37] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-
action chopping: Algorithms and performance studies. ACM Transactions on
Database Systems (TODS) 20, 3 (1995), 325–363.

[38] Michael Stonebraker, Dong Deng, and Michael L Brodie. 2016. Database decay
and how to avoid it. In IEEE International Conference on Big Data (Big Data). IEEE,
7–16.

[39] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and
Jinyang Li. 2013. Transaction chains: achieving serializability with low latency
in geo-distributed storage systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP). 276–291.

[40] Yu Zhu. 2017. Towards Automated Online Schema Evolution. Ph.D. Dissertation.
UC Berkeley.

https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://www.facebook.com/notes/mysql-at-facebook/online-schema-change-for-mysql/430801045932/
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://shlomi-noach.github.io/openarkkit/oak-online-alter-table.html
https://github.com/soundcloud/lhm
https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://github.com/github/gh-ost/blob/master/doc/why-triggerless.md
https://github.com/github/gh-ost/blob/master/doc/why-triggerless.md
https://www.percona.com/blog/2017/07/12/gh-ost-benchmark-against-pt-online-schema-change-performance/
https://www.percona.com/blog/2017/07/12/gh-ost-benchmark-against-pt-online-schema-change-performance/
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2
https://cloud.google.com/solutions/database-migration-concepts-principles-part-2

	Abstract
	1 Introduction
	2 Request-Driven Lazy Migration
	2.1 Basic approach
	2.2 Background migrations
	2.3 Consistency
	2.4 Limitations

	3 Lazy Migration, Concurrently
	3.1 Migration categories
	3.2 Migration transaction processing
	3.3 Bitmap migrations
	3.4 Hashmap migrations
	3.5 Migration aborts
	3.6 Joins
	3.7 Discussion: Conflict detection

	4 Experimental Evaluation
	4.1 Table split migration
	4.2 Aggregate Migration
	4.3 Join Migration
	4.4 Tracking Overhead
	4.5 Integrity Constraints

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References

