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ABSTRACT
Asynchronously replicated primary-backup databases are com-
monly deployed to improve availability and offload read-only trans-
actions. To both apply replicated writes from the primary and serve
read-only transactions, the backups implement a cloned concur-
rency control protocol. The protocol ensures read-only transactions
always return a snapshot of state that previously existed on the
primary. This compels the backup to exactly copy the commit or-
der resulting from the primary’s concurrency control. Existing
cloned concurrency control protocols guarantee this by limiting
the backup’s parallelism. As a result, the primary’s concurrency
control executes some workloads with more parallelism than these
protocols. In this paper, we prove that this parallelism gap leads to
unbounded replication lag, where writes can take arbitrarily long
to replicate to the backup and which has led to catastrophic failures
in production systems. We then design C5, the first cloned concur-
rency protocol to provide bounded replication lag. We implement
two versions of C5: Our evaluation in MyRocks, a widely deployed
database, demonstrates C5 provides bounded replication lag. Our
evaluation in Cicada, a recent in-memory database, demonstrates
C5 keeps up with even the fastest of primaries.

PVLDB Reference Format:
Jeffrey Helt, Abhinav Sharma, Daniel J. Abadi, Wyatt Lloyd, and Jose M.
Faleiro. C5: Cloned Concurrency Control that Always Keeps Up. PVLDB,
16(1): 1 - 14, 2022.
doi:10.14778/3561261.3561262

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/princeton-sns/c5.

1 INTRODUCTION
Asynchronously replicated primary-backup databases are the cor-
nerstones of many applications [2, 23, 26, 35, 62]. In these systems,
after the primary executes a transaction, it sends the resultant writes
to a set of backups. The backups apply the writes to reconstruct the
primary’s state and execute read-only transactions against their
local state. To simultaneously execute writes and read-only trans-
actions, a backup implements a cloned concurrency control protocol.
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In addition to providing availability if the primary fails, these proto-
cols improve the database’s performance: throughput is increased
by serving reads from many backups and latency is reduced by
serving reads from a nearby backup.

To reap these benefits without breaking overlying applications,
a cloned concurrency control protocol must guarantee monotonic
prefix consistency, where it exposes a progressing sequence of the
primary’s recent states to read-only transactions. This ensures
backups never return values from states that did not exist on the
primary, thereby helping maintain application invariants.

But monotonic prefix consistency makes no guarantees about
how quickly writes replicate to the backup. In theory, they could be
delayed indefinitely. To be reliable, a cloned concurrency control
protocol must also guarantee bounded replication lag. Intuitively, a
transaction’s replication lag is the time between when its writes are
first observable by reads on the primary and backup. By guarantee-
ing bounded replication lag, a cloned concurrency control protocol
ensures transactions always appear promptly.

Guaranteeing bounded replication lag is important; significant
lag has led to catastrophic failures. For instance, GitLab was un-
available for eighteen hours after a workload change caused such
significant lag that replication stopped entirely. In the process of
fixing the issue, user data was lost [17, 18]. Similarly, several times
in past years, Meta routed all user requests away from a data center
because too many of that location’s backups had excessive lag.

To guarantee bounded replication lag, a cloned concurrency con-
trol protocol must apply writes with as much parallelism as was
used by the primary’s concurrency control protocol. But guaran-
teeing monotonic prefix consistency severely constrains the cloned
concurrency control protocol, making it difficult to execute with
sufficient parallelism. For example, consider two concurrent trans-
actions with both conflicting and non-conflicting writes. If the
primary employs two-phase locking [4], the non-conflicting writes
can execute in parallel, and the commit order is determined by
the lock acquisition order on the first conflicting write. Once their
commit order is chosen, however, monotonic prefix consistency
mandates that a backup’s state reflects it. Thus, the cloned concur-
rency control protocol must ensure the transactions are serialized
correctly, potentially constraining its parallelism.

In the past, slow I/O devices bottlenecked the primary and
backup, dominating differences in parallelism. But low-latency per-
sistent storage and large main memories removed this bottleneck,
so the primary’s concurrency control and the backup’s cloned con-
currency control protocols are now directly competing.

1

https://doi.org/10.14778/3561261.3561262
https://github.com/princeton-sns/c5
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3561261.3561262
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Existing protocols differ in how much parallelism they leverage
while executing writes. On one end of the spectrum are single-
threaded protocols [43, 51]. On the other are transaction- [21, 29, 40,
45] and page-granularity [2, 48, 62] protocols. The former execute
non-conflicting transactions in parallel; the latter execute writes
to different pages in parallel. Such protocols have the potential to
keep up with similarly restricted primaries, e.g., single-threaded
cloned concurrency control with a single-threaded primary. But no
existing protocol can keep up with an unrestricted primary.

In fact, existing protocols cannot keep up with a primary that
uses two-phase locking; there are workloads where such a primary
always executes with more parallelism. Using these workloads, we
prove neither class of protocols guarantees bounded replication lag.
In turn, implementations of these protocols are not reliable because
changes to the workload or the primary’s concurrency control can
suddenly lead to unbounded replication lag.

In this paper, we present C5, the first cloned concurrency control
protocol to provide bounded replication lag. To always keep up,
C5’s insight is that the backup’s protocol must execute writes at
the same granularity as the primary’s concurrency control protocol.
Thus, its cloned concurrency control has commensurate constraints
(C5) with the primary. Because the primary executes writes to non-
conflicting rows in parallel, C5 uses a row-granularity protocol.

But row-granularity execution introduces several challenges.
First, applying individual row writes to the backup’s state can lead
to permanent violations of monotonic prefix consistency, where the
backup’s state ceases to match the primary’s. To avoid such viola-
tions, C5’s scheduler calculates the necessary metadata for its work-
ers to correctly order writes to each row. Second, row-granularity
execution does not guarantee monotonic prefix consistency for
read-only transactions because transactional atomicity and commit
order are not necessarily respected. Imposing additional constraints
on workers, however, could reintroduce replication lag. Instead,
C5’s snapshotter uses three progressing snapshots, ensuring reads
observe a consistent state without constraining execution.

We show formally that a row-granularity protocol never imposes
more constraints on the backup’s execution than a valid concur-
rency control protocol imposes on the primary’s. Thus, C5 can, in
theory, always match the primary’s parallelism.

In practice, however, row-granularity execution is necessary but
not sufficient to provide bounded replication lag. Other bottlenecks,
such as a slow scheduler, may get in the way. We thus implement
two versions of C5, C5-MyRocks and C5-Cicada, to confirm it al-
ways keeps up. C5-MyRocks is backward-compatible and deployed
in production at Meta. Making it backward-compatible, however, re-
quired some additional constraints to the parallelism in our design.
We thus also implemented C5-Cicada, which faithfully implements
our design (without additional constraints) and demonstrates C5
can keep up with a cutting-edge concurrency control protocol.

We compare C5-MyRocks and C5-Cicada to a state-of-the-art,
transaction-granularity protocol [21]. While it keeps up on some
workloads, unbounded replication lag is lurking nearby: Simple
optimizations that improve the primary’s throughput cause the
protocol to lag. In contrast, our implementations always keep up.

In sum, this paper’s contributions stem from our key insight that
cloned concurrency control must have commensurate constraints
with the primary: first, we prove neither a transaction-granularity

Figure 1: Transaction processing in primary-backup.

nor a page-granularity protocol can always keep up with a two-
phase locking primary; next, we prove a commensurate-granularity
protocol has the potential to keep up with an unrestricted primary;
finally, we describe such a protocol, C5, implement two versions of
it, and demonstrate both always keep up in practice.

Further, Section 8 describes experience from deploying C5 at
Meta. Our experience echoes our evaluation: The simple single-
threaded cloned concurrency control that was previously deployed
could often keep up with the primary, but large replication lag
would be exposed by workload changes. The deployment of C5
eradicated these issues and led to noticeably better reliability.

2 BACKGROUND
This section provides background on primary-backup databases,
cloned concurrency control protocols, and their guarantees.

2.1 Motivating Example
Throughout the paper, we use the following motivating example.
Alice, Bob, and Charlie use a social media platform to share and
comment on videos. The platform stores its videos and comments
in a database. One table stores each video’s name and metadata,
including a per-video comment counter; a second table stores each
comment’s text and metadata. When a user comments on a video,
an application server executes a transaction of two operations: it
first inserts a new row in the comment table and then increments
the video’s counter.

The platform replicates the primary’s database at a set of backups.
The primary implements a concurrency control protocol, and each
backup implements a cloned concurrency control protocol.

2.2 Primary-Backup Replication
Figure 1 shows an overview of the primary and backup’s processing
as they execute transactions. For each operation in a read-write
transaction, the primary parses it and plans its execution. Each plan,
which may include row queries, local computation, and row writes
(i.e., inserts, updates, and deletes), is then executed. For instance,
to increment a video’s comment counter, the primary reads the
counter’s current value from the video’s row in the video table,
increments it, and writes the result back to the row. After all opera-
tions execute, the transaction commits by writing to the primary’s
database and flushing a log of its changes to stable storage.

The primary then sends a copy of its log to the backup. The log
reflects a total order of the writes applied by the primary, deter-
mined by the primary’s transaction commit order and the order of
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each transaction’s operations. The log includes, for each transac-
tion, the written rows and metadata to demarcate its writes from
those of others [11, 21, 29, 36, 40, 41, 43, 45, 49].

The backup’s cloned concurrency control protocol reads the op-
erations in the log and schedules them for execution by worker
threads, bypassing parsing and planning. The workers apply op-
erations to the backup’s copy of the database. The protocol also
executes read-only transactions using separate threads.

2.3 Monotonic Prefix Consistency
While an asynchronously replicated backup’s state inevitably lags, it
is ideally otherwise indistinguishable from the primary. Intuitively,
the backup should expose a progressing sequence of the primary’s
recent states. This intuitive behavior is provided by many existing
systems [2, 11, 21, 29, 36, 40, 41, 43, 45, 48, 49, 51, 62, 63]. We refer
to this guarantee here as monotonic prefix consistency (MPC).

We define monotonic prefix consistency relative to the primary’s
log of transactions. It comprises two guarantees: First, the backup’s
state must reflect the changes of a contiguous prefix of transactions.
Second, the sequence of states exposed to read-only transactions
must reflect prefixes of monotonically increasing length.

In our example application, MPC ensures read-only transactions
never see a mismatch between the number of comments on a video
and the video’s comment counter; each transaction’s changes ap-
pear atomically. Further, MPC ensures comments never seem to
disappear. Once a comment becomes visible to a user, all future
states exposed by the same backup will include it. Although beyond
our scope here, MPC can be guaranteed across multiple backups
using sticky sessions [57] or with client-tracked metadata.

Monotonic prefix consistency also maintains implicit application
invariants. For instance, suppose Alice first updates her default
video permissions to share her future videos only with Bob and
then uploads a new video. To make these changes, a transaction
first updates her default access control list to only include Bob, and
a subsequent transaction adds the new video. An implicit invariant,
that Charlie should not see the new video, is expressed by the order
of the two transactions. MPC preserves such invariants because
states always reflect contiguous prefixes of the log.

2.4 Bounded Replication Lag
Monotonic prefix consistency specifies a cloned concurrency con-
trol protocol’s correctness but does not clarify its performance
requirements. For instance, if Alice calls Bob after commenting on
his video, Bob should ideally see her new comment by the time he
receives her call. Given only MPC, the comment may be delayed at
the backup for an arbitrarily long time.

We define replication lag as the time between when a transac-
tion’s changes are included in the state returned by the primary and
backup. (For the purposes of this paper, we assume the log is always
delivered promptly to the backup.) More precisely, we say a trans-
action 𝑇 is included in the state returned by the primary or backup
once either its writes or later writes are returned to reads. To include
a transaction in the returned state requires the backup’s protocol
to do one of the following: (1) it can eagerly apply the transaction’s
changes to its copy of the database, making them visible to future
reads without additional processing beyond that required to exe-
cute the read at the primary [2, 21, 29, 36, 40, 43, 45, 48, 49, 51, 62];
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Figure 2: Primary (2PL) and backup (transaction-granularity
protocol) executions when three users comment on the same
video. Diagonal lines depict waiting for a lock.

or (2) it can defer part of the execution of the transaction’s changes
until a corresponding read arrives [63]. For each 𝑇 , we then define
𝑓𝑝 (𝑇 ) and 𝑓𝑏 (𝑇 ) as the real time when the primary and backup re-
spectively include 𝑇 in their state. For eager protocols, 𝑓𝑏 (𝑇 ) is the
first time at which an arriving read would see𝑇 . For lazy protocols,
𝑓𝑏 (𝑇 ) is the first time at which an arriving read would see 𝑇 , plus
the additional time required to finish any deferred execution.

A cloned concurrency control protocol guarantees bounded repli-
cation lag if there exists some finite time 𝐿 such that for all work-
loads𝑊 and for all transactions𝑇 in𝑊 , 𝑓𝑏 (𝑇 ) − 𝑓𝑝 (𝑇 ) ≤ 𝐿. (Trans-
actions and workloads are defined more precisely in Section 3.1.) In
practice, guaranteeing bounded lag ensures Bob never waits long
to see Alice’s comment.

3 UNBOUNDED LAG IN
EXISTING PROTOCOLS

Guaranteeing bounded replication lag is challenging. To satisfy
monotonic prefix consistency, the backup’s cloned concurrency
control protocol must ensure the backup’s state converges to the
primary’s. To accomplish this, existing protocols serialize conflict-
ing writes [2, 21, 29, 36, 40, 43, 45, 48, 49, 51, 62, 63].

Serialization limits the backup’s parallelism. But to always guar-
antee bounded replication lag, the backup’s protocol must be able
to match the parallelism used by an unrestricted primary’s concur-
rency control protocol on every workload. Otherwise lag can grow
arbitrarily large in some cases.

Transaction- and page-granularity cloned concurrency control
protocols are the current best approaches. The former assume log-
ical logs, and the latter assume physical redo logs [2, 48, 62]. In
transaction-granularity protocols, writes conflict if they modify the
same row, and the protocol serializes transactions with conflicting
writes [21, 29, 40, 45]. Page-granularity protocols serialize writes
to each page [2, 48, 62]. Both, however, fail to guarantee bounded
replication lag because for some workloads, a primary executes
with more parallelism.

We show how a transaction-granularity protocol can lag by re-
turning to our motivating example. Suppose Alice, Bob, and Charlie
simultaneously comment on the same video. Figure 2 shows a pri-
mary and backup’s executions of the six resultant operations. The
primary uses two-phase locking [4] and stored procedures (i.e.,
no parsing and planning). The backup implements a transaction-
granularity protocol [21, 29, 40, 45].

On the primary, three threads insert rows in the comments ta-
ble in parallel, but updates to the video’s comment counter are
serialized by a row lock. On the backup, however, the transaction-
granularity protocol serially executes all of the operations. Even if
the backup uses different workers to execute each transaction (as
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shown), their execution is not faster than that of one worker. Thus,
a fundamental gap exists between the parallelism available to the
primary and backup, which can cause arbitrarily long lag.

Page-granularity protocols have similar issues. Concurrency con-
trol protocols using logical locking may allow concurrent transac-
tions to update distinct rows residing on the same physical page [4,
47]. Such concurrency control can cause arbitrarily long replication
lag when paired with page-granularity cloned concurrency control
because writes that execute in parallel on the primary are serialized
on the backup. Thus, a fundamental gap again exists.

In the remainder of this section, we prove this problem is general
to all transaction-granularity protocols, and thus, no such protocol
guarantees bounded replication lag. We subsequently summarize
the comparable theorem for page-granularity protocols.

3.1 Transaction-Granularity Protocols
System Model. A database D stores sets K of keys and V of values.
The database’s state is a mapping from K to V . A transaction 𝑇
is an ordered set of operations (reads and writes) on individual
keys. For simplicity, we assume each value is uniquely identifiable,
so two identical transactions are, too. We define ℜ(𝑇 ) and𝔚(𝑇 )
as the sets of keys read and written by the operations in 𝑇 . We
define transaction arrival times at the primary and backup as 𝑎𝑝 (𝑇 )
and 𝑎𝑏 (𝑇 ), respectively. Finally, we define the real time at which a
transaction is included in the primary and backup’s state as 𝑓𝑝 (𝑇 )
and 𝑓𝑏 (𝑇 ), respectively (as in Section 2.4).

We assume a primary-backup system where both have𝑚 cores.
In isolation, the primary’s cores each execute an operation in 𝑒 > 0
time units. The primary uses 2PL [4], so an operation may wait for
a lock if there is a concurrent operation on the same key. If there
are multiple conflicting operations, assume they are granted the
lock in the order requested. To account for both eager and lazy
cloned concurrency control protocols, assume the backup’s cores
execute each operation in 0 < 𝑑 ≤ 𝑒 time units. We assume 𝑑 ≤ 𝑒

because backups often avoid some processing.
When the primary finishes executing transaction𝑇 ’s operations,

it records𝑇 ’s writes in its log.𝑇1 ≺ 𝑇2 denotes𝑇1 precedes𝑇2 in the
log. The log is then sent to the backup. For simplicity, we assume
this occurs instantaneously.

A workload𝑊 ∈ W is a tuple (T , 𝐴T ) where T is a set of trans-
actions and 𝐴T is a function from R to finite sets of transactions
𝑇 ∈ T representing the transaction arrival process at the primary.
W is the set of all definable workloads.

Transaction𝑇 ’s replication lag is given by 𝑓𝑏 (𝑇 )−𝑓𝑝 (𝑇 ). A cloned
concurrency control protocol has finite replication lag for workload
𝑊 = (T , 𝐴T ) if there exists some finite 𝐿 such that for all 𝑇 ∈ T ,
𝑓𝑏 (𝑇 ) − 𝑓𝑝 (𝑇 ) ≤ 𝐿, and it guarantees bounded replication lag if it
has finite replication lag for all𝑊 ∈ W.
Definitions & Assumptions. A transaction-granularity cloned concur-
rency control protocol guarantees that for all pairs of transactions
𝑇1 and 𝑇2, if 𝔚(𝑇1) ∩ 𝔚(𝑇2) ≠ ∅ and 𝑇1 ≺ 𝑇2, then all of 𝑇1’s
writes execute before any of 𝑇2’s. (This definition matches existing
implementations [21, 29, 40, 45].)

The proof below requires𝑚 >
⌈
𝑒
𝑑

⌉
, but this assumption is rea-

sonable in practice. Server CPUs commonly contain at least 64
physical cores [25]. Thus, the assumption is not satisfied only if
the backup executes operations more than 63 times faster than the

primary. Stored procedures and sophisticated concurrency control
protocols [30, 44, 61, 64] make such an advantage unlikely.

Theorem 1. If𝑚 >
⌈
𝑒
𝑑

⌉
, then a primary-backup system using two-

phase locking on its primary and a transaction-granularity cloned
concurrency control protocol on its backup cannot guarantee bounded
replication lag.

Proof. Assume we have a primary-backup system as described
above, and assume to contradict that it guarantees bounded repli-
cation lag. Then there exists some 𝐿 such that for all𝑊 ∈ W, the
system executes all transactions in𝑊 with replication lag ≤ 𝐿.

We now construct a workload𝑊 ∈ W that includes at least one
transaction with replication lag greater than 𝐿. Each transaction
comprises𝑚 ≥ 𝑛 >

⌈
𝑒
𝑑

⌉
writes, and there are

⌈
𝐿

𝑛𝑑−𝑒
⌉
such transac-

tions. Because 𝑛𝑑 > 𝑒 , the number of transactions is well-defined.
The first 𝑛 − 1 writes of each transaction modify unique keys, and
the last updates key 𝑘0. Define 𝐴T such that a new transaction
arrives at the primary every 𝑒 time units, starting at time 0.

Because the primary uses 2PL, it executes the first 𝑛 − 1 writes
of each transaction in parallel but serializes their final updates to
𝑘0. For convenience, we index the transactions in the order they
appear in the primary’s log.

For the first set of𝑚 transactions, 𝑓𝑝 (𝑇0) = 𝑛𝑒 , . . ., and 𝑓𝑝 (𝑇𝑚−1) =
(𝑛 +𝑚 − 1)𝑒 . Because𝑚 ≥ 𝑛, the core that executed𝑇0 is free when
𝑇𝑚 arrives. Thus, 𝑇𝑚 finishes 𝑒 time units after 𝑇𝑚−1. In general,
we see 𝑓𝑝 (𝑇𝑖 ) = (𝑛 + 𝑖)𝑒 .

The backup uses a transaction-granularity protocol, so it serially
executes all writes in the workload. Thus, the backup finishes exe-
cuting 𝑇0 at 𝑛(𝑒 + 𝑑). By construction, 𝑛𝑑 > 𝑒 , so 𝑓𝑏 (𝑇0) > 𝑓𝑝 (𝑇1).
Thus, the backup immediately starts executing 𝑇1 after 𝑇0. The
same is true for all subsequent transactions. In general, we see
𝑓𝑏 (𝑇𝑖 ) = 𝑛𝑒 + (𝑖 + 1)𝑛𝑑 .

Thus, in general, 𝑓𝑏 (𝑇𝑖 ) − 𝑓𝑝 (𝑇𝑖 ) = 𝑛𝑒 + (𝑖 + 1)𝑛𝑑 − (𝑛 + 𝑖)𝑒 =

𝑖 (𝑛𝑑−𝑒)+𝑛𝑑 . For the final transaction𝑇 in the workload, 𝑖 =
⌈

𝐿
𝑛𝑑−𝑒

⌉
,

and thus 𝑓𝑏 (𝑇 )−𝑓𝑝 (𝑇 ) =
⌈

𝐿
𝑛𝑑−𝑒

⌉
(𝑛𝑑−𝑒)+𝑛𝑑 ≥ 𝐿

𝑛𝑑−𝑒 (𝑛𝑑−𝑒)+𝑛𝑑 >
𝐿

𝑛𝑑−𝑒 (𝑛𝑑 −𝑒). Equivalently, 𝑓𝑏 (𝑇 ) − 𝑓𝑝 (𝑇 ) > 𝐿, a contradiction. □

The result above shows that if the primary has sufficient cores,
then a transaction-granularity protocol cannot guarantee bounded
replication lag. To simplify our formalism, the proof assumes the
primary uses 2PL and serializable isolation [3, 50]. We note three
important extensions: First, the theorem applies if the primary uses
weaker isolation [1] because it can only accelerate the primary.

Second, a similar result can be derived for some optimistic proto-
cols [4, 33]. For example, a similar execution to the one in Figure 2
is possible with multi-version timestamp ordering (MVTSO) [4]. Us-
ing MVTSO, the three transactions still insert comments in parallel.
If they then read the comment counter, write its new value, and per-
form validation serially, in timestamp order, all three transactions
will commit, and a fundamental gap will again exist. We leave the
generalization of our formal framework to optimistic concurrency
control to future work.

Third, because the above proof assumes 0 < 𝑑 ≤ 𝑒 , it also applies
if there is primary-specific processing, such as parsing and planning.
This additional processing can be accounted for by increasing 𝑒 ,
and the theorem holds as long as 𝑚 >

⌈
𝑒
𝑑

⌉
. If it does not, then

the primary-backup system may be able to guarantee bounded
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replication lag but only because bottlenecks on the primary make
it easy for an inefficient cloned concurrency control protocol to
keep up, for example, if bottlenecks in logging, persistence, or log
transfer restrict the primary’s parallelism.

Despite these cases, however, solving replication lag remains
urgent: First, there are many cases where these are not bottlenecks.
For parsing and planning, many deployments use stored procedures.
For persistence, mechanisms such as early lock release [7, 16, 27]
and epoch-based group commit [6, 61] help decouple transaction
throughput from I/O latency. Second, we expect advances in re-
search and technology, such as non-volatile memory [24], to even-
tually remove these bottlenecks.

3.2 Page-Granularity Protocols
Databases historically assumed their data resided on disk. Thus,
when persisting writes, they often locked data pages while flushing
changes to disk [47, 51]. Page-granularity cloned concurrency con-
trol protocols [2, 48, 62] leverage this fact to match their primary’s
granularity: Since writes to the same page are serialized on the
primary, the backup can keep up with it despite also serializing
writes to the same page.

The proof described below, however, shows page-granularity
protocols cannot keep up with an unrestricted primary. In practice,
we believe they are more likely to keep up with an unrestricted
primary than a transaction-granularity protocol because they im-
pose fewer constraints on parallelism. For instance, writes may
mostly be spread across different pages, which is the best case for
a page-granularity protocol. Yet our result shows they do not fun-
damentally solve the replication lag problem. Optimizations to the
primary and changes to workloads can lead to unbounded lag.

3.2.1 Proof Summary. We use a structurally similar proof for page-
granularity protocols, but we omit it for brevity. (It can be found
in our technical report [20].) The proof shows that if the primary
has sufficient cores, can fit enough rows on each page, uses 2PL [4],
and guarantees serializable isolation [50], then a page-granularity
protocol cannot guarantee bounded replication lag. It does so by
constructing a workload where many writes to the same page are
executed in parallel on the primary but are serialized on the backup.

The assumption about the number of cores is identical to the
one in the proof above. Unlike the previous proof, however, we
additionally assume that the number of rows that can fit on a page
is greater than

⌈
𝑒
𝑑

⌉
. But this assumption is again reasonable in

practice. With a typical cache line size of 64 B—more than enough
to store a row with two integer columns—and a page size of 4 KiB,
64 rows can be stored on the same page, each on a different cache
line. Thus this assumption will hold provided the backup cannot
execute operations more than 63 times faster than the primary.

4 C5 DESIGN
C5 achieves two competing goals: it ensures bounded replication
lag and guarantees monotonic prefix consistency for read-only
transactions. To accomplish this, C5 comprises three components:
a scheduler, a set of workers, and a snapshotter. The scheduler and
workers ensure bounded replication lag by executing writes at a
sufficiently fine granularity, and the snapshotter guarantees read-
only transactions only see changes that are valid under monotonic

Figure 3: C5’s scheduler, workers, and snapshotter.

prefix consistency. Together they implement C5’s row-granularity
cloned concurrency control protocol.

As shown in Section 3, transaction- and page-granularity pro-
tocols fail to provide bounded replication lag because they cannot
always execute with the same parallelism as the primary. The pri-
mary executes writes to different rows in parallel, so to provide
bounded lag, C5’s workers execute writes at row granularity.1

Unconstrained row-granularity execution, however, can lead
to permanent violations of monotonic prefix consistency because
conflicting writes may execute in the wrong order. For instance,
suppose two transactions 𝑇 and 𝑈 each update rows 𝑥 and 𝑦. If dif-
ferent workers execute the resultant writes (denoted𝑤𝑇 [𝑥],𝑤𝑇 [𝑦],
𝑤𝑈 [𝑥], and𝑤𝑈 [𝑦]),𝑤𝑇 [𝑥] may finish before𝑤𝑈 [𝑥] and𝑤𝑈 [𝑦] be-
fore𝑤𝑇 [𝑦]. If there are no further writes to these rows, the backup
will forever reflect𝑤𝑈 [𝑥] and𝑤𝑇 [𝑦], violating transactional atom-
icity and thus MPC. C5’s scheduler helps avoid permanent con-
sistency violations by constraining the workers’ execution. These
constraints ensure writes to each row are applied in the same order
as on the primary. Thus, each row reflects monotonically increasing
prefixes of the log.

But per-row monotonicity is insufficient to guarantee global
monotonic prefix consistency. In the example above, a write to a
third row 𝑧 from a third transaction𝑉 may be scheduled after𝑇 and
𝑈 but applied first. If this occurs, then a read-only transaction of
rows 𝑥 ,𝑦, and 𝑧 would violate monotonic prefix consistency. Instead,
C5’s snapshotter uses a set of three progressing database snapshots
to allow uninterrupted execution of non-conflicting writes while
guaranteeing MPC.

Figure 3 shows C5’s design. The scheduler orders writes and
schedules them for execution by the workers. The snapshotter
exposes a monotonic-prefix consistent view of the database to read-
only transactions, which are executed by a separate set of threads.
We now describe C5’s components in turn.

4.1 Row-Granularity Scheduling & Execution
As described in Section 2.2, the backup continuously receives a
log of operations from the primary, including the rows written by
each operation and metadata to delimit transactions. To guarantee
bounded replication lag, C5’s workers must execute individual row
writes while obeying the constraints specified by the scheduler.

1Some concurrency control protocols allow two transactions to update a row’s cells
in parallel [22]. For ease of exposition, we assume they cannot, but rows are not
fundamental to our design—C5 could be adapted for finer granularities.
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Figure 4: Left to right shows the scheduler’s queues as two
workers execute four writes. Grey writes are being executed.

To avoid permanent consistency violations, the scheduler logically
constructs a FIFO queue for each row whose order reflects the order
of the row’s writes in the log.

As the scheduler processes writes, it assigns each a sequence
number, which reflects the write’s position in the log. The scheduler
then enqueues the write in the appropriate FIFO queue.

A write is safe to execute when it reaches the head of its FIFO
queue and the prior head has finished executing. This assumes the
backup receives the log of each row’s writes and the scheduler
processes them in order. (The log shipping subsystems in many
commercial databases satisfy this assumption [43, 47, 51].) Given
this, the scheduler is assured that when it processes a write, all
conflicting writes that precede it in the log are either already in the
queue or executing.

To keep replication lag small, the scheduler ensures workers
execute safe writes promptly. To do so, the scheduler uses a FIFO
queue to order the queues described above. To avoid ambiguity,
we refer to a scheduler queue and per-row queues. Thus, a worker
chooses the next write for execution by first removing the per-row
queue at the head of the scheduler queue and then executing the
write at its head. When the worker finishes executing the write, the
per-row queue is reinserted into the scheduler queue.

To demonstrate how C5’s scheduler and workers operate, we
return to our motivating example when Alice and Bob concurrently
comment on the same video. Assume Alice’s transaction𝐴 commits
first. It performs two operations: operation 𝑎1 inserts one com-
ment row, and 𝑎2 increments the video’s comment counter. Bob’s
transaction 𝐵 performs comparable operations 𝑏1 and 𝑏2.

Figure 4 shows how two workers execute the four writes. The
first panel shows the initial data structures after processing all
operations. 𝑎1 and 𝑎2 then begin executing (second panel). (𝑏1
remains queued because there are only two workers.) 𝑎2 finishes
before 𝑎1, so its corresponding queue is reinserted at the tail of the
scheduler queue (third panel). Finally, 𝑏1 starts executing (fourth
panel). The workers continue until they execute all of the writes.

We now prove that row-granularity execution never imposes
more constraints on the backup than any concurrency control pro-
tocol imposes on the primary.

4.1.1 Row-Granularity Execution Can Keep Up. Both the primary’s
concurrency control and the backup’s cloned concurrency control
protocols can be viewed as functions from a set of logs to a set of
sets of execution schedules. Given a log, the primary’s threads and
the backup’s workers execute its writes according to one of the
schedules in its image. We say a schedule is valid if the schedule
of writes produces an equivalent database state as serially execut-
ing the writes in the log. In the remainder of this section, we only
consider the set of valid protocols, those whose images contain
only sets of valid schedules, and denote it as 𝔖. Note that a pri-
mary’s concurrency control protocol is always in𝔖 because the

primary’s durability guarantees that its log, when serially executed,
reproduces its state.

Let𝑤𝑇 [𝑥] denote a write to row 𝑥 by transaction 𝑇 . As before,
𝑇 ≺ 𝑈 denotes 𝑇 precedes 𝑈 in the log, and in a slight abuse of
notation, let 𝑤𝑇 [𝑥] ≺ 𝑤𝑈 [𝑦] denote write 𝑤𝑇 [𝑥] precedes write
𝑤𝑈 [𝑦] in the log. Similarly, 𝑤𝑇 [𝑥] < 𝑤𝑈 [𝑦] denotes 𝑤𝑇 [𝑥] pre-
cedes𝑤𝑈 [𝑦] in an execution schedule. A row-granularity protocol
guarantees that for all logs and all pairs of writes𝑤𝑇 [𝑥] and𝑤𝑈 [𝑦],
if 𝑥 = 𝑦 and 𝑇 ≺ 𝑈 , then𝑤𝑇 [𝑥] < 𝑤𝑈 [𝑦] in all of its schedules.

Theorem 2. Let 𝑅 ∈ 𝔖 be a row-granularity protocol. Given a
log, there does not exist a valid protocol 𝑃 ∈ 𝔖 that imposes fewer
constraints on its corresponding set of execution schedules than 𝑅.

Proof Sketch. Given a log and two transactions 𝑇 and 𝑈 such
that 𝑇 ≺ 𝑈 , 𝑅 imposes one constraint on the possible executions of
their writes: if𝑤𝑇 [𝑥] conflicts with𝑤𝑈 [𝑥], then𝑤𝑇 [𝑥] < 𝑤𝑈 [𝑥].

Assume to contradict there is a valid protocol 𝑃 that does not
impose the above constraint. Then in one of the resulting schedules,
𝑤𝑈 [𝑥] < 𝑤𝑇 [𝑥]. A serial execution of the log, however, always
executes 𝑤𝑇 [𝑥] before 𝑤𝑈 [𝑥] because 𝑇 ≺ 𝑈 and thus 𝑤𝑇 [𝑥] ≺
𝑤𝑈 [𝑥]. As a result, this execution is not equivalent to the serial
execution of the log, contradicting that 𝑃 is valid. □

The proof shows that all valid concurrency control protocols,
regardless of isolation level, must impose, at a minimum, the con-
straints imposed by a row-granularity protocol. If a backup employs
such a protocol, then regardless of how much parallelism is ex-
ploited by the primary’s concurrency control during its execution,
an execution with an equal degree of parallelism is available to the
backup. Thus, the proof shows row-granularity execution never
hampers the backup’s ability to keep up.

The proof, however, elides many practical details. As a result,
while it shows that a backup using row-granularity execution can
keep up in theory, it does not guarantee that a specific design or
implementation will actually execute according to the necessary
schedule to keep up in practice.

Regarding the design, a row-granularity scheduler, for instance,
may impose more constraints than are strictly necessary for row-
granularity execution, and these additional constraints may prevent
the backup from keeping up in some cases. Regarding the implemen-
tation, a poor one, such as one that improperly uses concurrency
mechanisms, may cause the scheduler to bottleneck the backup.
Similarly, components outside the scope of a cloned concurrency
control protocol may prevent it from keeping up. For instance, row-
granularity execution may reduce cache locality when executing
writes and could in theory make the backup’s workers slower than
the primary’s threads.

To avoid overly complicating the formalism above, we thus do
not claim to prove that a specific design or implementation guar-
antees bounded replication lag. (We leave these theoretical investi-
gations to future work.) Instead, our experimental evaluations in
Sections 6 and 7.3 verify that the principles learned here translate
into bounded lag in practice.

4.2 Snapshotter & Read-Only Transactions
C5’s snapshotter uses database snapshots to guarantee monotonic
prefix consistency without blocking workers. To do so, it requires
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Figure 5: C5’s snapshotter. Writes in color (grey) have fin-
ished (not finished) executing.

tight control over the creation and updating of the snapshots (as de-
scribed below). The required operations are not backward-compatible
with the storage engines in some commercial databases [12, 19, 42,
52] but can be implemented efficiently in many modern databases
where workers can assign timestamps to their writes [8, 28, 32, 33].
We elaborate on how this difference affects the snapshotters of
C5-MyRocks and C5-Cicada in Sections 5.2 and 7.2, respectively.

The snapshotter creates new snapshots from the database. Log-
ically, a snapshot is a sequence of writes and is initially empty.
Workers apply writes (i.e., inserts, updates, and deletes) to a snap-
shot. Two snapshots S1 and S2 can be merged to produce a third
S3 that reflects the writes applied to both, with all writes in S1
ordered before those in S2. Finally, the latest version of a row’s
value can be read from a snapshot.

The snapshotter uses the operations above tomaintain three data-
base snapshots, logically representing the current, next, and future.
The current snapshot is initially empty, always prefix-complete, and
serves read-only transactions. The next and future snapshots are
initially empty. Workers only modify the next and future snapshots.

Figure 5 illustrates how the snapshotter incorporates a write
into the current snapshot while maintaining monotonic prefix con-
sistency. C5’s snapshotter uses two sequence numbers to delimit
the three snapshots. The current snapshot includes all writes up to
sequence number 𝑐 . All writes with sequence numbers between 𝑐
and 𝑛 (inclusive) update the next snapshot; all writes with sequence
numbers greater than 𝑛 update the future snapshot.

When all writes with sequence numbers between 𝑐 and 𝑛 finish
executing, the current and next snapshots together form a new,
prefix-complete snapshot. The snapshotter then merges them, and
the result replaces the current. At the same time, it performs four
additional operations: 𝑐 is updated to reflect the new current snap-
shot; 𝑛 is advanced; the next snapshot is replaced with the future
snapshot; and a new future snapshot is created. (We elaborate on
how these steps are implemented in Sections 5.2 and 7.2.)

To satisfy monotonic prefix consistency, the snapshotter always
aligns 𝑛 with a transaction boundary. Thus, the next snapshot
always reflects a set of complete transactions before being merged.

Because they execute against different snapshots, workers and
read-only transactions execute in parallel. But to guarantee bounded
replication lag, workers must be given higher scheduling priority
than read-only transactions threads. To avoid starvation, we as-
sume they execute on separate cores (beyond the 𝑚 assumed in
Section 4.1.1), or if they execute on the same cores, there are enough
spare CPU cycles to process all read-only transactions.

5 C5-MYROCKS IMPLEMENTATION
C5-MyRocks was developed to solve replication lag at Meta, so
backward compatibility and ease of deployment were primary con-
cerns. To remain backward-compatible with MyRocks (a fork of
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(a) C5-MyRocks (b) C5-Cicada
Figure 6: Scheduling and execution in each implementation.
Refer to the accompanying text for details.

MySQL that uses RocksDB as its storage engine [11, 12, 43]), C5-
MyRocks imposes some additional constraints on its execution,
beyond those discussed in Section 4. In this section, we describe the
implementation, highlighting how it leverages MyRocks’s existing
features [11, 43] and differs from our design.

5.1 Scheduling & Execution
The scheduler leverages MyRocks’s row-based-logging subsys-
tem [11, 43], so C5-MyRocks does not require any changes to the
primary or its log. For each operation, the log includes the set of
written keys and corresponding values.

The logging subsystem assumes all of a transaction’s writes are
executed by the same worker. To keep its changeset small (630 lines
of C++ code), C5-MyRocks thus also enforces this constraint.

To do so, the scheduler processes a transaction in the log in three
steps: First, it builds a linked list of its writes. Second, it adds each
write to their per-row queues. Third, it puts the transaction’s first
write in the scheduler queue. After a worker dequeues one such
write, it repeats the following for each write in the transaction:
First, it waits until the write reaches the head of its per-row queue
(i.e., it is safe to execute), and second, it follows the pointer to the
next write, if any, in the transaction.

Figure 6a illustrates C5-MyRocks’s data structures after the
scheduler processes the two transactions described in the exam-
ple in Section 4.1. The red arrows here denote pointers linking
each transaction’s writes, and the blue denote pointers from the
scheduler queue to each transaction’s first write. Unlike in Figure 4,
𝑏1 (as opposed to 𝑎2) is executed second. Further, when the sec-
ond worker finishes executing 𝑏1, it will always execute 𝑏2 next,
after waiting until 𝑎2 is executed and dequeued. In C5’s design,
the second worker would be free to execute another write that is
immediately safe to execute.

C5-MyRocks’s one-thread-per-transaction execution model and
having workers pick up transactions in commit order greatly sim-
plified the implementation, but as demonstrated above, its imple-
mentation is more constrained than our design. It thus executes
some workloads with less parallelism. Nonetheless, our evaluation
demonstrates C5-MyRocks keeps up with its primary.

5.2 Snapshotter & Read-Only Transactions
The storage engines in some widely deployed databases [12, 19, 42,
52], including MyRocks, cannot easily implement the operations
described in Section 4.2. Unfortunately, they are also complex, com-
prising tens to hundreds of thousands of lines of code [12, 19]. To
again keep C5-MyRocks’s changeset small, we opted to implement
its snapshotter without requiring changes to RocksDB.

InMyRocks, snapshots are read-only and can only be taken of the
database’s current state. Neither workers nor the snapshotter have
fine-grained control over which writes are included in a snapshot
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(e.g., by taking a snapshot as of some specified timestamp or version
number). As a result, the snapshotter must impose some additional
constraints on the workers to ensure the entire database is prefix-
consistent when taking a new snapshot.

Instead of three snapshots, C5-MyRocks’s snapshotter logically
maintains two: It uses a current snapshot, which is always prefix
consistent and used to serve read-only transactions. The next snap-
shot, however, is replaced by the database. 𝑐 still tracks the writes
included in the current snapshot.

To merge the current and next snapshots, the snapshotter per-
forms the following: First, it chooses 𝑛, the sequence number of the
last write to be included in the next snapshot. To ensure the merged
snapshot is prefix-consistent, choosing 𝑛 also blocks workers from
executing writes with sequence numbers greater than 𝑛 until after
the snapshot is taken. (If the storage engine supports transactions,
as in RocksDB [12], the workers only need delay committing these
writes.) Second, after all writes with sequence numbers between 𝑐
and 𝑛 (inclusive) execute, the snapshotter takes a new snapshot of
the database and replaces the current one. 𝑐 and 𝑛 then advance as
described previously. Advancing 𝑛 also allows blocked workers to
proceed with their writes.

If taking a snapshot is computationally expensive, the blocking
above may lead to spikes in replication lag. To combat this, our
implementation allows database administrators to tune the approx-
imate snapshot frequency, 𝐼 , in milliseconds. Because the storage
engine may not be prefix consistent exactly every 𝐼 milliseconds,
the snapshotter advances 𝑛 by an estimate of the number of writes
workers will execute in the next 𝐼 milliseconds.

By tuning 𝐼 , administrators can ensure replication lag returns to
satisfactory levels between snapshots provided lag can decrease be-
tween snapshots. This implies the backup must execute each write
marginally faster than the primary. But we found this assumption
reasonable in practice, and our evaluation further supports this.

6 C5-MYROCKS EVALUATION
Our evaluation explores the following questions:
(1) Does C5-MyRocks help engineers avoid potential disasters

caused by optimizations of realistic workloads? (§6.1)
(2) Does C5-MyRocks always keep up with the primary? (§6.2)
(3) Does C5-MyRocks guarantee MPC for read-only transactions

without causing unbounded replication lag? (§6.3)

Experimental Setup. All experiments ran on the CloudLab Wiscon-
sin platform [9] with three servers located in one data center: one
for load generation, the primary, and the backup. Round-trip times
betweenmachines were less than 100 µs. Eachmachine had two 2.20
GHz Intel Xeon processors with ten cores each, hyper-threading
disabled, 192GB of RAM, a 10Gb NIC, and a 480GB SSD.

For each experiment, a fixed number of closed-loop clients exe-
cuted read-write transactions at the primary. The log of writes was
then sent to the backup and executed by the cloned concurrency
control protocol’s workers. The number of clients and workers were
set to maximize the primary and backup’s throughput, respectively,
and there were always fewer workers than primary threads.

For experiments including both read-write and read-only trans-
actions (i.e., Section 6.3), an additional set of closed-loop clients
sent read-only transactions to the backup. The backup’s workers

and read-only threads were pinned to separate cores, and their
throughput is shown separately.

All results were from 120-second trials. We omit all data from the
first and last 15 seconds of each trial to avoid experimental artifacts.
Unless otherwise specified, we ran each experiment five times and
report the median result.

To stress the cloned concurrency control, the primary used read
committed isolation [3]; further, the log and MyRocks’s state on
the primary and backup were kept in memory [12]. For all imple-
mentations, we used read-free replication and disabled MyRocks’s
2PL on the backup [11, 12] since the scheduler already prevents
conflicting writes from executing concurrently. In all experiments,
memory bandwidth and the network were not bottlenecks.

Workloads. We use three workloads. The first is TPC-C [60], an
OLTP benchmark simulating an order-entry application. All ex-
periments use one warehouse, so the database initially contains
about 300,000 rows. The other two, insert-only and adversarial, are
synthetic. In each, the database contains one table, initially with
one row, with two integer columns: a primary key and a value.

Each transaction in the insert-only workload comprises a vari-
able number of unique inserts. Each transaction in the adversarial
workload comprises a variable number of unique inserts and one
update. The updates set the same row’s value to a random integer,
so all transactions conflict.

Baselines. KuaFu [21], a state-of-the-art, transaction-granularity
cloned concurrency control protocol, is our baseline. KuaFu’s pro-
tocol is nearly identical to MySQL 8’s write-set-based parallel repli-
cation [40] and is strictly better than the database-granularity and
epoch-based protocols used in earlier versions of MySQL [41, 43]
and its variants [36]. We re-implemented KuaFu in MyRocks.

6.1 C5-MyRocks Prevents Potential Disasters
Because software and hardware improvements have accelerated the
primary’s processing, primary-backup systems using transaction-
granularity protocols are brittle. Simple changes to a workload may
cause unbounded replication lag. To demonstrate this problem, we
use TPC-C [60]. While KuaFu [21] keeps up on the standard bench-
mark workload, simple optimizations and non-standard transaction
mixes cause unbounded replication lag with the same protocol [21].
We discuss the optimizations and our results in turn.

We optimize two of TPC-C’s transactions: the NewOrder and Pay-
ment transactions [60]. In both cases, we defer higher-contention
operations as much as possible while preserving application seman-
tics. (Similar optimizations were observed in prior work [66].) In
the NewOrder transaction, the highest contention write is the in-
crement of the district’s next order ID. In the Payment transaction,
it is the update to the warehouse’s balance [60]. Deferring these
writes allows more parallelism on the primary.

Figure 7 shows the primary and backup’s throughput while
executing read-write transactions for a 100% NewOrder and a
Payment workload, each before and after optimization. (TPC-C’s
read-only transactions were not used in these experiments.) For
the NewOrder workload, the optimization increases the primary’s
throughput from 2,527 to 4,067 transactions/s. For the Payment
workload, the primary’s throughput increases by over 700% from
1,249 to 9,105 transactions/s.
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KuaFu keeps up with the optimized NewOrder workload. Data
dependencies between operations limit how late the district row
write can be deferred within each transaction and in turn, limits the
primary’s parallelism. But KuaFu cannot keep up on the optimized
Payment workload; its throughput peaks at 6,889 transactions/s.
Conversely, C5-MyRocks keeps up.

If the optimization to the Payment transaction were made to a
production workload, KuaFu would cause significant replication
lag, with 2,216 transactions queuing at the backup every second.
This rate is larger than the one that induced replication lag of nearly
2 hours in production at Meta (discussed further in Section 8). On
the other hand, C5-MyRocks thwarts such a disaster.

6.2 C5-MyRocks Always Keeps Up
To validate that C5-MyRocks always keeps up, we measured the
primary and C5-MyRocks’s throughput using the insert-only and
adversarial workloads. The two are on opposite ends of the con-
tention spectrum: no transactions conflict in the former, while all
do in the latter. We also present KuaFu’s results.

Because all transactions are non-conflicting, the insert-only
workload stresses the primary’s concurrency control and backup’s
cloned concurrency control. Here, MyRocks’s throughput is about
40,500 transactions/s. C5-MyRocks keeps up with the primary, in-
dicating that its scheduling mechanisms have sufficiently low over-
head. As expected, KuaFu also keeps up. With both protocols, in-
coming writes can be executed immediately.

To verify C5-MyRocks’s scheduler is not a bottleneck, we ran
the same experiment offline. We loaded the primary with inserts as
above but delayed replication. Once all writes finished and the resul-
tant log was transferred, we enabled C5-MyRocks’s scheduler and
workers. We used sufficient workers, so the scheduler was the bot-
tleneck. C5-MyRocks’s scheduler processed 95,683 transactions/s,
more than double MyRocks’s throughput.

Figure 8 shows each implementation’s performance on the ad-
versarial workload. We plot the backup’s throughput relative to
the primary’s as we vary the number of non-conflicting inserts per
transaction from 1 to 64. Every transaction updates the same row.
Despite the high contention, the primary, using 2PL [4], executes
the non-conflicting inserts that precede the conflicting update in
parallel. Because all transactions conflict, KuaFu serializes them.
Thus, the primary’s advantage over KuaFu increases with the num-
ber of inserts. KuaFu’s throughput drops from 70% to just 38% of
the primary’s. On the other hand, C5-MyRocks executes the non-
conflicting inserts in parallel so always keeps up.
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Figure 10: Backup’s read-only and read-write transaction
throughput as the read-only load increases.

6.3 C5 Serves Reads with Bounded Lag
C5-MyRocks’s implementation blockswrites from committingwhile
taking a snapshot. But it also exposes a parameter to tune the fre-
quency of snapshots. With periodic snapshots, C5-MyRocks serves
read-only transactions in parallel with writes, and thus, steady-
state replication lag remains bounded despite additional load from
read-only clients. To validate these claims, we measure replication
lag as we increase the read-only load on C5-MyRocks.

Figure 9 plots the distribution of replication lag for read-write
transactions over three 30-second periods with the insert-only
workload. The whiskers show the minimum and maximum, and
the boxes show the quartiles. We show one trial; the results from
others were similar. For each read-write transaction, we measure
replication lag as the difference between when it commits on the
primary and when it is included in the current snapshot. Snapshots
were taken every 10ms. Each read-only transaction executes a ran-
dom point query on the table’s primary key; queries could select a
nonexistent key. We vary the number of clients from 0 to 16.

Replication lag remains bounded in all cases and across all time
periods. With 16 read-only clients, the median and maximum lag
are about 88ms and 135ms, respectively. With zero clients, the
median lag is about 73ms. The latter is lower because it avoids
contention on some of MyRocks’s internal data structures between
the read-only threads and workers. We expect this contention can
be removed with further optimizations.

Figure 10 plots the backup’s throughput of read-only and read-
write transactions for the same experiment. C5-MyRocks’s through-
put always matches the primary’s. (Differences in the primary’s
throughput from prior experiments is due to variations in My-
Rocks’s performance across trials.) Further, C5-MyRocks isolates
workers from read-only transactions. With steady write through-
put, read-only throughput increases from 4,755 transactions/s with
1 client to 46,500 transactions/s with 16.
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7 C5-CICADA
Unlike C5-MyRocks, our implementation of C5 in Cicada [33], an
in-memory multi-version database, is faithful to our design. In this
section, we first provide background on Cicada. We then describe
the implementation of C5-Cicada’s scheduler, workers, and snap-
shotter. We conclude with our evaluation, which demonstrates C5
can keep up with a modern concurrency control protocol.

7.1 Cicada Background
Cicada’s multi-version storage engine supports reads, inserts, up-
dates, and deletes. The storage engine is implemented as an array
indexed by an internal row ID. (Externally meaningful keys are
mapped to row IDs through indices.) Array entries are linked lists
of row versions in descending timestamp order. In addition to a
pointer to the next oldest version, a row version contains data, a
status, and read and write timestamps. The latter three are used by
Cicada’s concurrency control protocol.

Cicada uses a variant of multi-version timestamp ordering [4, 33].
Each client thread maintains a local clock. (Cicada does not support
networked clients.) The local clocks are loosely synchronized and
individually return increasing values.

A client uses its clock to assign a unique timestamp to each
transaction. As the transaction executes, each write creates a new
row version, and the transaction’s timestamp becomes the version’s
write timestamp. Further, reading a version updates its read times-
tamp to the max of the transaction’s timestamp and the version’s
current read timestamp. Cicada uses the timestamps to check if a
transaction can commit under serializability [50]. Ordering trans-
actions by their timestamps yields a valid serial schedule.

Logging & Replication. Because Cicada does not support network-
ing, logging, persistence, or replication [33], we emulate primary-
backup replication on one server.

To this end, we implement a minimal prototype logger to allow
replay of the primary’s writes on the backup. The primary only
writes logs to memory. After execution and validation but before
committing, each client thread logs its changes to a per-thread log.
The per-thread logs are coalesced into a single, totally ordered log
before the backup’s scheduler, workers, and snapshotter start.

The log is divided into fixed-size segments, each backed by a
2MiB huge page [34]. Each segment’s header indicates the num-
ber of log records it contains. For simplicity, the logger ensures
transactions never span segment boundaries.

A client creates a log record for each write in a transaction. Each
record contains the following: a table ID, a row ID, the write’s times-
tamp, and a full copy of the row version. Further, the log contains
two metadata fields to be used by the scheduler, as described below:
First, each segment header contains a Boolean preprocessed flag.
Second, each record contains a 64-bit prev_timestamp field.

Each log record is split into a header and data, with the former
containing everything except the row version. Headers are written
from the beginning of the segment, and data are written from the
end. Co-locating all headers in a segment was critical for reducing
the amount of data the scheduler (discussed further below) needed
to process and prevented its throughput from being limited by
memory bandwidth, especially in the face of concurrent workers.

7.2 Implementation
Scheduling & Execution. For simplicity, the description below as-
sumes we are replicating one table. The implementation supports
multiple tables using a queue for each table and row ID pair.

Because dynamically allocating per-row FIFO queues would pre-
vent the single-threaded scheduler from matching Cicada’s high
throughput, it instead (logically) embeds the per-row FIFOs in the
log. More specifically, it sets each log record’s prev_timestamp to
the timestamp of the write to the same row that precedes it. To
do so, it maintains a map of row IDs to write timestamps, initially
zero. Then to process a record, the scheduler first reads the value
from the map using the log record’s row ID, updates the record’s
prev_timestamp, and finally updates the map’s value with the
record’s write timestamp. After the scheduler processes all of a
segment’s records, it sets its preprocessed flag to true.

Workers are assigned to log segments in a round robin fashion.
Once the scheduler processes a segment, the assigned worker starts
executing its writes, one for each log record, in three steps: First,
it uses the record’s prev_timestamp to see if the write is safe to
execute. If prev_timestamp is equal to the write timestamp of the
row version at the head of the storage engine’s version list, then
the write should be executed next. Otherwise it is deferred. Second,
if the write is safe, the worker allocates a new row version and
copies in the necessary data from the log. Third, the new version is
installed at the head of row’s version list. Each worker maintains a
local FIFO of deferred writes and periodically (after each segment)
re-checks them to see if they are now safe to execute.

Figure 6b illustrates the scheduler and workers’ data structures
as they execute three transactions of the type described in Sec-
tion 4.1. The bold black line delimits the two log segments, and
the scheduler has finished embedding the per-row queues in both.
Workers one and two have started processing the left and right
segments, respectively, and the former already executed 𝑎1 and the
latter 𝑏1. Worker two has deferred executing 𝑏2 since worker one is
still executing 𝑎2. Instead, worker two executes 𝑐1, which is already
safe to execute. As shown, C5-Cicada thus maintains a distributed,
approximate version of the scheduler queue described in Section 4.1
comprising the log and each worker’s deferred queue.

Snapshotter. Cicada’s storage engine can efficiently implement the
operations described in Section 4.2 because workers can explicitly
assign timestamps to their writes. This allows workers to write
to specific snapshots. Further, read-only transactions can execute
against the current snapshot simply by using the sequence number 𝑐
as a timestamp. Their reads will then reflect any previously executed
writes with lesser timestamps. The storage engine thus logically
contains the current, next, and future snapshots.

This simplifies C5-Cicada’s snapshotter. To merge the current
and next snapshots, it simply advances 𝑐 to 𝑛, and replacing the
next snapshot with the future snapshot and creating a new future
snapshot occur implicitly when 𝑐 and 𝑛 advance.

Before advancing 𝑐 to 𝑛, however, the snapshotter must guar-
antee all writes with timestamps less than or equal to 𝑛 finish
executing. To do this, it cooperates with the workers.

Worker 𝑖 maintains a local variable 𝑐𝑖 as one less than the times-
tamp of the write it most recently executed. Because log records
are ordered by timestamp and each worker processes segments in
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hours daily and take 2 hours to recover.
With C5, it remains below 3 seconds.

log order, the worker can guarantee it will never execute another
write with a timestamp less than or equal to 𝑐𝑖 (assuming no writes
are deferred). Each 𝑐𝑖 is thus an upper bound on 𝑐 . When a worker
defers a write, it also defers updating 𝑐𝑖 until the write executes.

The snapshotter’s implementation is simple: in a separate thread,
it periodically calculates a new 𝑛 as the minimum across all 𝑐𝑖 and
then advances 𝑐 to 𝑛. Since each 𝑐𝑖 has only one reader and one
writer, no coordination or atomic instructions are needed. With
x86’s total store order, the snapshotter may read a stale copy of a
worker’s 𝑐𝑖 , but this does not violate correctness.

7.3 Evaluation
Our evaluation of C5-Cicada explores whether our design can keep
up with advanced concurrency control protocols.

Experimental Setup. Experiments ran on the same machines as
described in Section 6. For the primary, each thread is pinned to
its own physical core, and for the backup, the same is true of the
scheduler, workers, and snapshotter.

As mentioned in Section 7.2, our C5-Cicada implementation
emulates primary-backup replication. As a result, unlike in our
prior evaluation, the primary and backup ran consecutively on the
same machine. We consider a cloned concurrency control protocol
as keeping up if its throughput matches or exceeds the primary’s.

Because logging slows Cicada, we compare against Cicada’s
performance without logging, which is an upper bound on that
with logging enabled. We again use the optimal number of primary
threads and backup workers, with the latter never exceeding the
former. We ran experiments five times and report the median. Error
bars show the minimum and maximum.

The workloads are the same as in Section 6, and we re-implement
KuaFu in Cicada for fair comparison. In fact, we implement two ver-
sions of KuaFu, one optimized for low contention and the other for
high contention. (The lattermatches the published pseudocode [21].)
We report whichever achieves better performance.

C5-Cicada Prevents Potential Disasters. Cicada’s concurrency con-
trol is much better than MyRocks’s at handling contention. Thus,
we expect significantly more potential for replication lag.

Our results support this: C5-Cicada is necessary to prevent
replication lag with the standard 50%-50% NewOrder-Payment
workload after applying similar optimizations as in Section 6. Ci-
cada achieves 716,950 transactions/s while KuaFu manages only
596,310 transactions/s, lagging by about 17%. C5-Cicada easily keeps
up, committing 1,062,533 transactions/s. The results on the unop-
timized workload are similar. The primary’s throughput is lower,
but KuaFu still lags by about 13,000 transactions/s (3%).

We also explore how the primary and two backups behave under
varying levels of contention. Figure 11 compares the throughputs
of Cicada, C5-Cicada, and KuaFu on a 50%-50% workload as we
vary the number of districts from 10 (the standard setting) to 1.
As contention increases (i.e., districts decrease), KuaFu lags until 4
districts, but below that, the additional contention harms Cicada’s
throughputmore than KuaFu’s by causing significantly higher abort
rates (up to about 75%). Thus, with fewer districts, KuaFu keeps up.

To help confirm KuaFu lags due to the constraints imposed
on its execution, we re-ran the experiment above but disabled its
scheduler’s calculation of transaction-granularity constraints. For
each number of districts, we compared KuaFu’s throughput while
using the same number of workers as shown in Figure 11, and
in all cases, KuaFu kept up. For example, with 10 districts and
6 workers, KuaFu’s throughput nearly doubles from 596,310 to
1,101,491 transactions/s when its execution is unconstrained. This
far exceeds the primary’s throughput of 716,950 transactions/s.

These results highlight the complexity of predicting when exist-
ing cloned concurrency control protocols will be sufficient to avoid
replication lag. As shown in Figure 11, C5-Cicada always keeps up
and thus removes the potential for disasters.

C5-Cicada Always Keeps Up. We again validate C5-Cicada using
the insert-only and adversarial workloads. On insert-only, Cicada
achieves its best performance with transactions of 16 inserts each,
amortizing its per-transaction overhead. Here, Cicada inserts about
87M rows/s with 20 threads. KuaFu (96M rows/s with 12 workers)
and C5-Cicada (99M rows/s with 10 workers) both keep up. In each
case, the scheduler provides sufficient performance.

Figure 12 compares each cloned concurrency control protocol’s
performance to Cicada’s on the adversarial workload. We plot the
backup’s throughput relative to the primary’s median as we vary
the number of non-conflicting inserts per transaction.

C5-Cicada mirrors the primary and executes the non-conflicting
inserts in parallel, so it always keeps up. This advantage is especially
evident as the number of inserts per transaction increases from 4
to 8. With more parallel work per transaction, C5-Cicada leverages
additional workers and its relative throughput actually increases.

On the other hand, the primary’s advantage over KuaFu increases
with the number of inserts per transaction. With 128 inserts per
transaction, KuaFu’s throughput is just 40% of the primary’s.

8 DEPLOYMENT EXPERIENCE
MyRocks databases are deployed and used inside the globally dis-
tributed data centers at Meta. Each shard of their social graph uses
asynchronous primary-backup replication. Further, their internal
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cloud provides asynchronously replicated, multi-tenant MyRocks
instances. Before deploying C5-MyRocks, ensuring short replication
lag throughout their infrastructure was a persistent challenge.

A version of C5-MyRocks has been deployed in production since
mid-2017, and full deployment finished in early 2019. Deploying
C5-MyRocks at Meta has notably improved the reliability of their
applications built atop asynchronous primary-backup databases.
Since its deployment, anecdotally, the number of complaints about
replication lag by on-call engineers drastically decreased.

Figure 13 shows one example of significant lag fixed by C5-
MyRocks. It plots throughput over time for one shard. During daily
periods of high insert load, the primary’s throughput exceeded the
backup’s, and lag grew to over two hours both with MySQL 5.6’s
default, single-threaded cloned concurrency control [11, 43] and
Meta’s earlier table-granularity protocol. After the load spike ends,
both protocols took two hours to return lag to zero. C5-MyRocks
eradicated the issue, keeping lag below three seconds.

Similarly, after live videos were deployed, popular videos became
significant sources of contention. Like in the motivating example
in Section 2.1, all comments on a video caused writes to a single
row. With prior cloned concurrency control protocols, popular
videos caused significant replication lag. Although this problemwas
initially fixed by batching comment-update requests, C5-MyRocks
would have avoided the problem entirely.

Solving replication lag also had secondary benefits: First, deploy-
ing C5-MyRocks revealed bottlenecks in downstream systems [56],
which have since been fixed by Meta’s engineers. Second, Meta
uses cross-region replication. Multiple copies of the data exist on
servers within a primary region, and writes asynchronously repli-
cate to backups in other regions. Short lag reduces the number
of times that data must be fetched from other regions to satisfy
read-your-writes consistency for clients with recent writes. Fur-
ther, if the entire primary region fails while all machines in the
backup region are lagging, some unreplicated writes may be lost.
With C5-MyRocks, the probability of user data loss and the magni-
tude of such loss if it occurs are both significantly reduced. Finally,
C5-MyRocks eliminated a noisy-neighbor problem experienced by
applications deployed on Meta’s internal cloud. Applications us-
ing a multi-tenant MyRocks instance previously would sometimes
experience replication lag caused by others sharing the instance.

9 RELATEDWORK
Deterministic Concurrency Control.Deterministic concurrency
control protocols [13–15, 54, 59, 65] ensure that database state
is a deterministic function of the input log. C5’s processing of
writes from the primary is inspired by such protocols. These include
the up-front resolution of write-write conflicts prior to executing
them [13] and its representation of permissible execution schedules
of writes [15, 65]. Databases employing deterministic concurrency
control, however, do not designate a single replica as a primary and
others as backups. They instead employ active replication [58, 59].
C5, on the other hand, is applicable to primary-backup systems
where the primary is non-deterministic.
Database Recovery & Replication. Database recovery [5, 31, 38,
55, 68] and replication [37, 39, 46, 53, 67] are two problems closely
related to cloned concurrency control. In database recovery, changes

to the database are logged and stored on stable storage. If a data-
base fails, a recovery protocol creates a new copy of the database.
Database replication extends database recovery to reduce recovery
time by replicating and applying changes to the backup while the
primary executes transactions. If the primary fails, the backup exe-
cutes a synchronization protocol to bring it into a consistent state
before processing new transactions. But database replication (and
thus recovery) is simpler than cloned concurrency control because
backups do not serve read-only transactions, so the backup only
needs to be prefix-consistent before processing new transactions. A
cloned concurrency control protocol must always be able to serve
read-only transactions from a prefix-consistent state.
Cloned Concurrency Control.No existing asynchronous or semi-
synchronous cloned concurrency control protocol can guarantee
bounded replication lag. (Semi-synchronous protocols require a log
of a transaction’s writes to be persisted at the backup before the
transaction commits at the primary.) Synchronous protocols [10]
trivially guarantee it because the primary and backup coordinate
before a transaction commits, but they reduce the primary’s per-
formance. Thus, asynchronous and semi-synchronous are more
widely deployed [2, 23, 26, 35, 62].

Transaction- [21, 29, 40, 45] and page-granularity [2, 48, 62]
protocols cannot guarantee bounded replication lag. By similar
reasoning, coarser granularity protocols, such as those using groups
of transactions [36, 41, 49], cannot either.

To the best of our knowledge, Query Fresh [63] is the only ex-
isting row-granularity cloned concurrency control protocol, but as
discussed below, it does not guarantee bounded lag. It is a semi-
synchronous protocol, and to reduce its workers’ processing, instan-
tiation of the backup’s copy of the database is deferred to read-only
transaction threads. These threads load row versions as necessary to
return correct results (as defined by monotonic prefix consistency).

On one hand, Query Fresh’s lazy instantiation can cause arbitrar-
ily large replication lag by forcing read-only transaction threads to
traverse large portions of the log. We provide a detailed description
of this case in the appendix of our technical report [20]. On the
other, lazy instantiation allows Query Fresh to avoid some of the
work that C5 does by applying all writes. An interesting avenue of
future work could explore a partially lazy approach.

10 CONCLUSION
We presented C5, the first cloned concurrency protocol to provide
bounded replication lag. C5 comprises three parts: a scheduler,
workers, and a snapshotter. C5 is backed by multiple theoretical
results showing the necessity of its row-granularity protocol. We
also presented two implementations: C5-MyRocks and C5-Cicada.
The former is backward-compatible with MyRocks and deployed at
Meta, while the latter faithfully implements our design. We demon-
strated experimentally they always keep up with their primaries.
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