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ABSTRACT

As it becomes increasingly common for transaction process-
ing systems to operate on datasets that fit within the main
memory of a single machine or a cluster of commodity ma-
chines, traditional mechanisms for guaranteeing transaction
durability—which typically involve synchronous log flushes—
incur increasingly unappealing costs to otherwise lightweight
transactions. Many applications have turned to periodi-
cally checkpointing full database state. However, existing
checkpointing methods—even those which avoid freezing the
storage layer—often come with significant costs to operation
throughput, end-to-end latency, and total memory usage.
This paper presents Checkpointing Asynchronously using
Logical Consistency (CALC), a lightweight, asynchronous
technique for capturing database snapshots that does not
require a physical point of consistency to create a check-
point, and avoids conspicuous latency spikes incurred by
other database snapshotting schemes. Our experiments show
that CALC can capture frequent checkpoints across a vari-
ety of transactional workloads with extremely small cost to
transactional throughput and low additional memory usage
compared to other state-of-the-art checkpointing systems.

1. INTRODUCTION

As the size of main memory on modern servers continues
to expand, an increasingly large number of transactional,
Web, and ERP applications can fit their datasets entirely
in the physical memory of an individual server or across
the main memories of a cluster of servers using a shared-
nothing architecture. This has led to the release of a flurry
of new main memory database products, including Microsoft
Hekaton [4], SAP HANA [10], VoltDB [23], Hyper [7], several
main memory NoSQL products, and even a refresh of Oracle
TimesTen [8].

A fundamental issue that all main memory database sys-
tems face is how to guarantee the 'D’—durability—of ACID
when all data sits in volatile main memory. Historically,
main memory databases have done this by retaining the log-
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ging component of traditional database systems, and forcing
log records to stable storage before committing each trans-
action. Unfortunately, this solution removes several of the
advantages of having the data in memory—transactional la-
tency is still bounded by the time it takes to force all log
records generated by a transaction to stable storage, and the
CPU and memory bandwidth required to generate the log
records take a significant toll on the otherwise extremely low
overhead main memory transactions. One study indicated
that 30% of the CPU cycles of a transaction are devoted to
generating log records [6].

Furthermore, as high availability becomes increasingly cru-
cial, the newer generation of database systems tend to build
replication into the system from the beginning in order to en-
sure continued operation of the system in the face of failures.
This requirement is reinforced by the fact that another trend
is to deploy databases on failure-prone commodity hardware
or on virtual machines in the cloud. Once data is replicated,
recovering from a log upon a failure is typically far slower
than copying database state from a replica [9)].

Some main-memory systems, such as H-Store [20] and
the early versions of VoltDB [23], and even some disk-based
systems like C-Store [19] and HARBOR [9] abandoned log-
ging protocols such as ARIES[14] altogether and rely on “K-
safety” mechanisms for guaranteeing durability. As long as
the effect of a transaction has made it to K+1 replicas (even
if it is only in main memory in all these replicas), the sys-
tem can survive K failures and still ensure full durability of
transactions.

Unfortunately, in many cases, failures are not independent
events. Rather, they can highly correlated. Catastrophic
failures such as cluster-wide power outages or deterministic
bugs in the database code can cause more the K simultane-
ous failures, which can lead to disastrous losses if none of the
data is on stable storage. Indeed, VoltDB moved away from
K-safety-based durability and instead released a “command
logging” feature [13]. This feature, which is based on de-
terministic database system research [21], causes the system
to log all transactional input. After a failure, the recovery
process replays all input transactions that occurred after
the latest full checkpoint, which recreates the in-memory
database state that existed before the failure. The advan-
tage of such a protocol is that logging of transactional input
is generally far lighter weight than full ARIES logging.

It is clear that to avoid traditional logging, modern main
memory database systems must implement some sort of check-
pointing or backup algorithm in order to avoid catastrophic
data loss. For some applications, especially those running



on NoSQL database systems, checkpointing alone is suffi-
cient: even though transactions that were committed after
the checkpoint may be discarded, the application does not
require full durability. For other applications, checkpoint-
ing combined with k-safety is sufficient—data will only be
lost in the case of K+1 correlated failures, and even in this
case, the checkpoint limits the amount of data that is lost.
For yet other applications, checkpointing combined with a
deterministic replay of post-checkpoint transactional input
is required to ensure no loss of data at all.

For all three types of applications mentioned above, the
database system must be able to checkpoint its state with
extremely low overhead in order to receive the benefits of
main memory execution without having to log transactional
actions to stable storage.

The lack of a log makes database checkpointing much
more challenging, as the majority of the high performance
checkpointing literature in database systems take the ap-
proach of creating “fuzzy” or non-transactionally-consistent
checkpoints, and rely on the log along with key data struc-
tures found in these checkpoints to recreate a consistent
state of the database. Without the log, these fuzzy schemes
cannot be used. Instead, traditional techniques such as qui-
escing the database system (as done in Oracle TimesTen),
obtaining read locks on the entire database, or requiring a
hot spare server to take the checkpoint can be used. How-
ever, the performance of these techniques is far from ideal.

Recent work by Cao et al. [2] presented some promis-
ing results for taking low overhead complete checkpoints of
database state without requiring a database log. This work
focused on applications that have frequent points of consis-
tency, such as massive multiplayer online games that have
distinct steps in game states. In particular, Cao et al. pre-
sented the Zigzag and Ping-Pong algorithms, which allow an
asynchronous thread to capture a snapshot of the complete
database state after a point of consistency while simultane-
ously allowing a separate mutator thread to make concurrent
modifications to a different copy of the database state.

Unfortunately, most transactional applications do not guar-
antee frequent physical points of consistency. Furthermore,
the implementation presented by Cao. et al. assumes that
the database state is stored in fixed-width vectors, which is
not flexible enough for relational tables that have variable
length attributes. In addition, it requires multiple copies of
the application state at all times.

In this paper, we present CALC, a checkpointing algo-
rithm with significantly lower overhead than the state of the
art, and which does not require physical points of consis-
tency. In particular, our algorithms use “virtual” points of
consistency. The basic idea is to declare a virtual point of
consistency to exist at a particular place in the sequence of
transaction commits. All state changes to the database by
transactions that commit before this point are considered
to be part of a checkpoint, while subsequent transactions’
mutations are not reflected in the checkpoint. In order to
achieve this, the first state change to each data item by a
transaction after this point is redirected to a separate copy
of the data item (so that the last value of the item before
the checkpoint will not be overwritten, and can be captured
by an asynchronous thread which reads this final value).

In addition to our algorithm for taking a low-overhead
checkpoint at a virtual point of consistency, we are also able
to further reduce the overhead of the checkpointing process

by only taking partial checkpoints containing database state
which may have changed since the last checkpoint. These
partial checkpoints are merged together by a background
thread, in order to reduce the checkpoint reconstruction cost
at recovery time.

2. ASYNCHRONOUS CHECKPOINTING

When we refer to checkpoints, we denote a set of records,
each uniquely identified by a primary key, that are writ-
ten out to stable storage. The set of all of these records
represents the full state of the database, also referred to as
application state, at a given point in time, t.

It is desirable for checkpoint capture algorithms to have
the following properties:

1. The process should not significantly impede the sys-
tem’s transactional throughput (even if the system is
running at maximum capacity).

2. The process should not introduce unacceptable laten-
cies in transaction or query execution.

3. Although the price of memory is rapidly dropping, it
is still relatively expensive to store many OLTP ap-
plications entirely in main memory, and main mem-
ory becomes a limited resource. Therefore, complete
multi-versioning (where database updates do not over-
write previous values, but rather add another version
to a new place in memory) is likely to be too expensive
in terms of memory resources for many applications.
Ideally, the checkpointing process should require min-
imum additional memory usage.

In order to achieve the first two of these properties, it is
desirable for checkpointing to occur asynchronously with re-
spect to other transaction processing tasks. Since records
continue to be updated during the process of logging the set
of all records to disk, it is therefore important to consider
methods of ensuring that a snapshot of the database remains
available to the background thread performing the check-
point. However, in order to achieve the third of these proper-
ties, this snapshot should be as small as possible, since com-
plete database multi-versioning or application state replica-
tion in memory is not possible for many applications.

2.1 Physical versus virtual points of consistency

A database is defined as being at a point of consistency if
its state reflects all changes made by all committed transac-
tions, and no change made by any uncommitted, in-progress
transaction. A checkpoint taken at a particular point of con-
sistency is generally called “transaction-consistent (TC)”.

Most database systems achieve asynchronous checkpoint-
ing by not taking transaction-consistent checkpoints. They
rely on mechanisms such as fuzzy checkpointing that include
snapshots of key data structures of database system opera-
tion so that it is possible to recreate a transaction-consistent
state of the database with the help of the database log during
recovery. However, without the help of the log, checkpoint-
ing algorithms that do not produce transaction-consistent
checkpoints are unable to recreate a consistent state of the
database.

Certain applications, such as many massive multiplayer
online games, naturally reach points in the process of nor-
mal execution in which no transactions are actively execut-
ing. This is termed a physical point of consistency. Most



applications, however, are not guaranteed to reach physical
points of consistency at regular intervals. Although it is al-
ways possible to force the database system to reach such a
point by quiescing it entirely (disallowing new transactions
from beginning to execute until all currently active transac-
tions complete), quiescing a database system can have sig-
nificant detrimental effects on both throughput and latency.
Therefore, one of the primary goals of the work discussed
in this paper is to achieve fast checkpointing even in the
absence of physical points of consistency.

We introduce the notion of a virtual point of consistency.
A virtual point of consistency is a view of the database that
reflects all modifications committed before a specified time
and none after—but obtained without quiescing the system.
Virtual points of consistency are instead created using full
or partial multi-versioning.

Systems implementing snapshot isolation via MVCC im-
plement full multi-versioning. In such schemes, a full view
of database state can be obtained for any recent timestamp
simply by selecting the latest versions of each record whose
timestamp precedes the chosen timestamp. Since MVCC is
specifically designed such that writes never block on reads,
a virtual point of consistency can be obtained inexpensively
for any timestamp.

However, as described above, many main memory database
systems do not implement full multi-versioning since mem-
ory is an important and limited resource in these systems.
Therefore, precise partial multi-versioning is preferable.

The general idea of precise partial multi-versioning is the
following: while a checkpoint is being captured, track two
versions of each record: (a) the live version, which represents
the most current state of the record, and (b) a stable ver-
sion, which represents the state of the record as of the virtual
point of consistency. Any transaction that commits before
the point of consistency must update both versions of each
record it writes, while transactions that commit after the
point of consistency only overwrites the live version. How-
ever, a mechanism is needed for ensuring that each transac-
tion updates the correct version(s) of the record.

In the Zigzag and Ping-Pong algorithms presented by Cao
et al., a global flag specifies whether the point of consistency
has been reached yet. The flag (and certain other corre-
sponding metadata) are only updated at a physical point of
consistency—therefore any update operation is guaranteed
to precede the point of consistency if and only if the transac-
tion’s commit will also occur before the point of consistency.
Zigzag and Ping-Pong pre-allocate memory for two or three
(respectively) copies of each record to use as live and stable
versions of that record.

2.2 The CALC Algorithm

We present here the CALC (Checkpointing Asynchronously
using Logical Consistency) algorithm, which is designed to
have the advantages of asynchronous checkpointing but with
four additional benefits:

e No requirement for a database log. CALC is able
to create a transaction-consistent checkpoint without
relying on any kind of database log except for a simple
log containing the order in which transactions commit.

e Uses virtual points of consistency. CALC does
not require quiescing of the database in order to achieve
a physical point of consistency. It therefore is able to

avoid throughput drops and latency spikes for transac-
tions that are submitted during and after checkpoints,
which is critical for maintaining database service level
agreements.

e Reduced memory usage. At most two copies of
each record are stored at any time. Memory usage is
minimized by only storing one physical copy of a record
when its live and stable versions are equal or when no
checkpoint is actively being recorded.

e Low overhead. CALC’s overhead is smaller than
other asynchronous checkpointing algorithms.

CALC implements a storage structure where each record
key is associated with two record versions—one live and
one stable. Initially, the stable version is empty, indicating
that the stable version is not actually different from the live
version, and that a checkpointing thread may safely record
the live version. CALC also needs to maintain a bit vector
called stable_status. Each record corresponds to a bit in sta-
ble_status to indicate whether its stable version is empty®.
For the purposes of this discussion, we assume that transac-
tions are executed using a pessimistic (lock-based) concur-
rency control algorithm in a multi-threaded execution envi-
ronment, since this is the most common concurrency control
implementation. We also assume that there exists a commit-
log, and each transaction commits by atomically appending
a commit token to this log before releasing any of its locks.

A system running the CALC algorithm cycles through five
states, or phases:

1. the rest phase, in which no checkpoint is being taken,

2. the prepare phase, immediately preceding a virtual
point of consistency,

3. the resolve phase, immediately following a virtual point
of consistency but before the asynchronous checkpoint
capture has started,

4. the capture phase, during which a background thread
records the checkpoint to disk, and meanwhile deletes
stable versions,

5. the complete phase, which immediately follows the com-
pletion of capture phase.

Each transition between phases of the algorithm is marked
by a token atomically appended to the transaction commit-
log. Therefore it can always be unambiguously determined
which phase the system was in when a particular transaction
committed. Additionally, each transaction makes note of
the phase during which it begins executing. The algorithm
proceeds as follows.

2.2.1 Rest phase

While in the rest phase, every record stores only a live
version. All stable versions are empty, and the bits in sta-
ble_status vector are always equal to not_available. Any
transaction that begins during the rest phase uses only the
live version for its read and write operations, regardless of
when it commits.

nserts and deletes are handled via two additional bit vec-
tors, called add_status and delete_status. However, we only
focus on updates in our discussion to keep the explanation
simple.



Initialized Database status:

bit not_available = 0;

bit available = 1;

bit stable_status/[DB_SIZE],

foreach key in Database
db[key].live contains actual record value;
dblkey].stable is empty;
stable_status[key] = not_available;

function ApplyWrite(txn, key, value)

if (txn.start—phase is PREPARE)
if (stable_status[key] == not_available)
dblkey].stable = db[key].live;
else if (txn.start—phase is RESOLVE OR CAPTURE)
if (stable_status[key] == not_available)
dblkey].stable = db[key].live;
stable_status[key] = available;
else if (txn.start—phase is COMPLETE OR REST)
if (db[key].stable is not empty)
Erase db[key].stable;
dblkey].live = value

function Execute(txn)
txn.start—phase = current—phase;
request txn’s locks;
run txn logic, using ApplyWrite for updates;
append txn commit token to commit—log;
if (txn.start—phase is PREPARE)
if (txn committed during PREPARE phase)
foreach key in txn
Erase db[key].stable;
else if (txn committed during RESOLVE phase)
foreach key in txn
stable_status[key] = available;
release txn’s locks;

function RunCheckpointer()
while (true)
SetPhase(REST);
wait for signal to start checkpointing;
SetPhase(PREPARE);
wait for all active txns to have
start—phase == PREPARE;
SetPhase(RESOLVE);
wait for all active txns to have
start—phase == RESOLVE ;
SetPhase(CAPTURE);
foreach key in db
if (stable_status[key] == available)
write db[key].stable to Checkpoint;
Erase db[key].stable;
else if (stable_status[key] == not_available)
stable_status[key] = available;
val = dblkey].live;
if (db[key].stable is not empty)
write db[key].stable to Checkpointing;
Erase dblkey].stable;
else if (db[key].stable is empty)
write val to Checkpointing;
SetPhase(COMPLETE);
wait for all active txns to have
start—phase == COMPLETE,
SwapAvailableAndNotAvailable ();

Figure 1: CALC algorithm pseudocode.

2.2.2  Prepare phase

When the checkpointing process is triggered to begin, the
system enters the prepare phase. Transactions that start
during the prepare phase read and write live record versions,
just like transactions that started during the rest phase.
However, before updating a record, if the stable version is
currently empty and unavailable, a copy of the live version is
stored in the stable version prior to the update. This is done
because the system is not sure in which phase the transac-
tion will be committed. For example, a transaction T that
begins during the prepare phase and writes a record R1—
overwriting a previous value Rop—makes a copy of Ry in its
stable version before replacing Ro in the live version. Im-
mediately after committing, but before releasing any locks,
a check is made: if the system is still in the prepare phase
at the time the transaction is committed, the stable version
is removed.

2.2.3 Resolve phase

The prepare phase lasts until all active transactions are
running in prepare phase—that is, until all transactions that
started during the rest phase have completed. At this point,
the system transitions to the resolve phase (appending a
phase-transition token to the commit-log). This transition
marks the virtual point of consistency. All transactions that
have committed before this point will have their writes re-
flected in the checkpoint, whereas transactions that commit
subsequently will not.

If a transaction that started during the prepare phase com-
mits in resolve phase, the stable version is not deleted, and
the corresponding bit in stable_status is set to available. For
example, suppose the transaction Tp (discussed above) com-
mitted during the resolve phase. When it performed its
check to see what phase it committed in, it discovers this,
and then sets the corresponding bit in stable_status. Now
subsequent transactions will see R; as the live version, but
the background checkpoint recorder will see Ry as the stable
value when it runs.

Transactions that start during the resolve phase are al-
ready beginning after the point of consistency, so they will
certainly complete after the checkpoint’s point of consis-
tency. Therefore, they always copy any live version to the
corresponding stable record version before updating it, un-
less the record already has an explicit stable version.

2.2.4 Capture phase

The resolve phase lasts until all transactions that began
during the prepare phase have completed and released all
their locks.

The system then transitions into the capture phase. Trans-
action write behavior is the same during the capture phase
as during the resolve phase, both for new transactions, and
for transactions that were already active when the capture
phase began.

Once this phase has begun, a background thread is spawned
that scans all records, recording stable versions (or live ver-
sions for record versions that have no explicit stable version)
to disk. As it proceeds, it erases any explicit stable versions
that it encounters. This can be accomplished with no addi-
tional blocking synchronization. The capture phase section
of the RunCheckpointer function outlined in Figure 1 shows
the pseudocode for this process. Note that the bit in sta-
ble_status is set to available after the background thread ac-



cesses the record. This prevents other transactions running
during the capture phase from creating the stable version
again.

2.2.5 Complete phase

Once the checkpoint capture has completed, the system
transitions into the complete phase. Transaction write be-
havior reverts to being the same as in the rest phase. Once
all transactions that began during the capture phase have
completed, the system transitions back into the rest phase,
and awaits the next signal to take a checkpoint.

However, before transitioning back to the rest phase, the
function SwapAvailableAndNotAvailable() is called to swap
the variables not_available and available, in order to reverse
their mapping to 1’ and ’0’ values in the bit vector. In one
iteration of the checkpointing algorithm, not_available maps
to “1” and awvailable maps to “0”; in the next not_available
maps to “0” and available maps to “1”. This allows the sys-
tem to avoid a full scan to reset the stable_status bits, since
after the capture phase all the stable_status bits are set to
available, but at the beginning of the rest phase we want all
the stable_status bits to be set to not_available.

Figure 1 shows pseudocode for the CALC algorithm. In
particular, it outlines the initialized database status and the
status of variables that are used in CALC algorithm. It also
shows the ApplyWrite function called directly by transaction
logic, the Execute function, which outlines all steps taken
by a worker thread executing a transaction, and the basic
steps taken by the CALC background thread over the course
of a checkpointing cycle (in the RunCheckpointer function).

2.3 Partial checkpoints

In the CALC algorithm described above, each capture
phase takes a complete checkpoint of the entire database.
Even though this can be done in an asynchronous back-
ground thread which runs with low overhead, if very few
records were updated since the last checkpoint (either be-
cause there is transaction skew where the same records get
updated repeatedly or because the workload is mostly 'read-
only’), it is wasteful to take a complete checkpoint if there
are very few differences from the last checkpoint.

Therefore, as an alternative to the CALC algorithm, we
also propose a pCALC option, that takes partial checkpoints
that contain only records that may have been changed since
the most recent checkpoint. These partial checkpoints can
be merged together to create a complete checkpoint either
at recovery time or as a background process during normal
operation.

In order to take partial checkpoints, pCALC keeps track of
keys that were updated after the most recent virtual point of
consistency. We explored three alternative data structures
for keeping track of keys that are updated. In the first ap-
proach, we stored each updated key in a hash table. In the
second approach, we used a bit vector where the ith bit is
set if the ith value had been updated since the most recent
checkpoint. In the third approach, we used a bloom filter
to decrease the size of the aforementioned bit vector. The
main disadvantage of the bit vector approach is that it al-
ways consumes one bit per record in the database — even if
that record has not been updated. The first approach never
wastes space on irrelevant records and the third approach
falls somewhere in between these two extremes. Nonethe-
less, in practice we found that the bit vector approach usu-

ally outperformed the other two approaches. This is because
the entire database already fits in main memory (since this
is the application space for which we are designing CALC).
If each record consumes 50 bytes (400 bits), then the bit vec-
tor only extends memory requirements by 1/400 = 0.25%.
Although smaller data structures have better cache proper-
ties, we found that the additional work required by the other
approaches were slightly more costly than the performance
savings from improved cache locality. Therefore, we settled
on the bit vector approach in our final implementation.

Bit vectors are atomically cleared during the checkpoint-
ing period. This can be accomplished with no blocking
synchronization by keeping two copies of the structure, and
flipping a bit specifying which is active at the beginning of
the resolve phase, and clearing the inactive one during each
checkpointing period. For transactions that start in the pre-
pare phase and commit in the prepare phase, we update the
bit vector associated with current upcoming partial check-
point; for those that commit in the resolve phase, we update
the bit vector associated with the later partial checkpoint.
For those transactions that start in (or after) the resolve
phase, the bit vector associated with the later partial check-
point is updated.

Although the bit vector must be cleared during each check-
point period, note that pCALC does not require a full scan
of the database. This can lead to a significant reduction in
overhead of checkpointing relative to CALC.

2.3.1 Background merging of partial checkpoints

The cost at recovery time of taking partial checkpoints
can be ameliorated by periodically collapsing pCALC’s par-
tial snapshots in a background thread. This is done in a
low-priority thread to take advantage of moments of sub-
peak load, while refraining from limiting peak throughput.
Furthermore, this task can optionally be offloaded to dif-
ferent machines that do not stand in the critical path of a
high-volume OLTP application pipeline.

The collapsing process itself is a simple merge of two or
more recent partial checkpoints, where the latest version is
always used if a record appears in multiple partial check-
points. Old checkpoints are discarded only once they have
been collapsed. Thus a system failure during the collapsing
process or before some recent set of partial snapshots has
been collapsed has no effect on durability.

3. RECOVERY

Thus far we have discussed two types of checkpoints: CALC
and pCALC. We now discuss how to recover from each type
of checkpoint.

3.1 Recovery Using CALC

A CALC checkpoint is a complete snapshot of database
state as of a particular point it time. It is guaranteed to be
physically consistent — it reflects the state of the database
after all transactions that committed prior to the checkpoint
have been processed and no intermediate or temporary state
from ongoing transactions that had not committed prior to
the checkpoint. This makes recovery very easy for the use
cases discussed in Section 1: for the use cases that find it ac-
ceptable to lose transactions that committed after the most
recent checkpoint (e.g. the NoSQL and K-Safety use cases
mentioned above), the database state is created via loading
in the most recent completed checkpoint. For use cases



that rely on determinism to avoid losing committed trans-
actions [22, 13, 20, 23, 21], the database state is created via
a two-step process. First, the most recent completed check-
point is loaded to create a temporary database state. Then
the commit log is read to see which transactions committed
after this checkpoint that was loaded. These transactions
are then replayed, leveraging determinism to ensure that the
serialization order and states are equivalent to the original
order before the crash.

Note that all of CALC’s data structures — the “stable”
record versions, the stable_status bit vector, etc., get wiped
out along with the rest of volatile memory upon a crash.
So there is no clean-up that has to occur upon recovery.
The most recent completed checkpoint is loaded and all of
CALC’s data structures are initialized as shown in Figure 1.

3.2 Recovery Using pCALC

Recovery from partial checkpoints is slightly more compli-
cated since there is not necessarily a single checkpoint which
can be loaded in order to get a consistent database state.

A naive algorithm would be to collapse all partial check-
points that exist on stable storage into a single checkpoint
using the merge process described in Section 2.3.1. Obvi-
ously, although correct, this is unacceptably slow, since par-
tial checkpoints are continuously generated since the begin-
ning of the installation of the database system.

A less naive algorithm is to occasionally take a full check-
point so that only the partial checkpoints that were taken
since this full checkpoint need to be merged. This leads to
a recovery time vs. runtime tradeoff. Full checkpoints are
more expensive to generate than partial checkpoints, so op-
timizing for runtime implies that full checkpoints should be
taken rarely. However, this increases recovery time since on
average there will be more partial checkpoints to merge since
the last full checkpoint.

Note that if a full checkpoint is merged with all partial
checkpoints that were taken subsequent to it, the result is
a new full checkpoint that is accurate as of the most recent
partial checkpoint. Therefore, as an alternative to occasion-
ally taking full checkpoints, the system can instead collapse
a series of partial checkpoints and a older full checkpoint.
This has the advantage of being a process that can be run
entirely asynchronously, in the background. This is the ap-
proach that we take in our implementation. However, the
recovery time vs. runtime tradeoff remains — it is now ex-
pressed as the size of the batch of partial checkpoints that
are allowed to exist before performing this merge process.
We revisit this tradeoff experimentally in Section 5.1.3.

Once a full checkpoint has been created via merging par-
tial checkpoints, recovery proceeds as discussed in Section
3.1 above.

4. EXPERIMENTAL SETUP

To evaluate the CALC algorithm side-by-side with other
state-of-the-art checkpointing approaches, we implemented
a memory-resident key-value store with full transactional
support. Transactions in our system are implemented as
C++ stored procedures, and are executed by a pool of worker
threads, using a pessimistic concurrency control protocol to
ensure serializability. In order to eliminate deadlock as an
unpredictable source of variation in our performance mea-
surements, we implemented a deadlock-free variant of strict
two-phase locking.

All experimental results shown here were obtained on Ama-
zon EC2 using a c3.4xlarge instance, which has 16 virtual
cores (Intel Xeon E5-2680 v2 (lvy Bridge) Processors) run-
ning 64-bit Ubuntu 12.04.2 LTS with 30GB RAM and a
160GB magnetic disk that delivers approximately 100-150
MB/sec for sequential reads and writes. Of the 16 cores,
we allocated 15 cores to transaction processing and check-
pointing threads, and devote the remaining core to shared
database components and infrastructure necessary to take
statistics for these experiments.

4.1 Benchmarking CALC

In order to compare the performance of CALC under dif-
ferent transactional throughputs and contention rates, we

implemented two different versions of our checkpointing scheme.

The first, labeled CALC, is the rudimentary version of our
algorithm. The second, labeled pCALC, is a version of our
algorithm that captures partial checkpoints.

We compare the performance of CALC and pCALC to
four other comparison points, described in the following sec-
tions.

4.1.1 Naive Snapshot

We implemented a simple version of “naive snapshot” in
our database. A naively taken snapshot involves acquiring
an exclusive lock on the entire database, iterating through
every existing key, and writing its corresponding value to
disk. Recent work by Lau et al. favors “round-robin” naive
snapshot as a low-cost way of achieving durability in highly-
replicated systems [9)].

4.1.2  Fuzzy Checkpointing

The naive snapshot algorithm incurs a long interruption of
normal processing during checkpointing. The fuzzy check-
pointing algorithm was invented to avoid this, as it only in-
terrupts normal processing to write two relatively small data
structures to the log, instead of a full snapshot of database
state. As a result, it has become an extremely popular (per-
haps even the most popular) checkpointing algorithm used
in database systems — especially those systems that use the
ARIES recovery algorithm.

Although there exist several proposals and optimizations
of fuzzy checkpointing, the simple version of the algorithm
is done as follows [1, 18]: (1) The DBMS stops accepting
new update, commit, and abort operations. (2) It creates
a “checkpoint” log record which contains a list of all the
dirty pages in the cache, and also a list of all active trans-
actions along with pointers to the last log record that these
active transactions have made. (3) It writes this checkpoint
record to the log. (4) The DBMS allows normal operation
to resume. At this point, the pages marked as dirty in the
checkpoint record can be flushed to disk in parallel with the
DBMS running new update, commit and abort operations.

It has repeatedly been pointed out in the literature that
the traditional version of the fuzzy checkpointing algorithm
is designed for disk resident DBMSs, and does not adapt
well to main memory DBMSs [12, 5]. The main issue is
that while the granularity of a write to disk is a page, the
granularity of a write to main memory is typically a sin-
gle record. Therefore, the dirty page table in the fuzzy
checkpoint (along with the pageLSN header of disk pages)
need to be modified to work with record-level granularity.
This increases the size of these structures. Furthermore, the



higher throughput of main memory database systems tend
to result in more dirty records per checkpoint than seen in
disk-based systems. Combined these two issues cause much
more to be written to a checkpoint record, and therefore a
longer interruption of normal database processing. There
have therefore been several proposals for reducing the size
of this interruption (e.g. splitting the checkpoint record to
begin_checkpoint and end_checkpoint records) and to gener-
ally improve the performance of checkpointing in main mem-
ory database systems. We have implemented that which we
believe to be the most performant of these proposals (IPP),
which we describe in the next section. However, we nonethe-
less also run a version of basic fuzzy checkpointing since it
can serve as familiar comparison point that is well-known to
most database researchers.

Our implementation of fuzzy checkpointing uses bit vec-
tors to keep track of dirty keys (like we do in pCALC —
see Section 2.3). Furthermore, in order to directly compare
this approach to our implementations of CALC and pCALC,
we created full and partial versions of the fuzzy checkpoint-
ing. The default implementation is the partial version —
pFuzzy — since that corresponds to the traditional approach
to fuzzy checkpointing. To create the full version, we main-
tain an extra copy of the database in main memory which is
the latest consistent snapshot, so the full checkpoint can be
generated by merging dirty records with the latest snapshot.

4.1.3 Ping-Pong

As a third comparison point, we implemented the “Inter-
leaved Ping-Pong” (IPP) checkpointing algorithm [2]. IPP
is an asynchronous method that accomplishes the capture of
entire snapshots of a database without key locking by trip-
licating application data and relying on physical points of
consistency. In this scheme, the storage layer maintains an
application state composed of a simple byte array, and two
additional byte arrays of size equal to the application state
labeled odd and even. In addition to representing applica-
tion data, odd and even maintain a single dirty bit for each
element in the array.

Data is initially stored in the application state and even
arrays. In the latter, every key’s bit is marked dirty. In
addition, odd is marked as the current array. The appli-
cation then proceeds to execute, during which time writes
are performed not only on the application state array, but
also on the array pointed to by current. Any key that is
updated has the corresponding dirty bit turned to “on” in
the current array. At a physically consistent point, even be-
comes the current array, marking the switch into the first
checkpoint period. During this period, a background process
asynchronously finds all the values that have been labeled
as dirty during the first period, and merges them with the
last consistent checkpoint in order to construct a new con-
sistent checkpoint that can be written to disk. After each
element is written to disk, the corresponding dirty bit is set
to “off”. Once completed, the process alerts the scheduler
that at the next physical point of consistency the process
can begin again.

4.14 Zig-Zag

As a fourth comparison point, we implemented the Zig-
Zag checkpointing algorithm [2]. Zig-Zag starts with two
identical versions of each record in the datastore: AS[Keylo
and AS[Key]i, plus two additional bit vectors, M R[Key]

and MW [Key]. M R[Key] indicates which version should be
used when reading a particular record, Key, and MW [Key]
indicates which version to overwrite when updating Key.
New updates of Key are always written to AS[Key|yw [key]s
and M R[Key] is set equal to MW [key] each time Key is up-
dated. The bit vector M R is initialized with zeros and MW
with ones, and each checkpoint period begins with setting
MW [Key] equal to =M R[Key] for all keys in the database.
Thus AS[Key|pmwikey always stores the latest version of
the record, and the asynchronous checkpointing thread can
therefore safely write AS[Key] nwikey to disk.

IPP and Zigzag make several assumptions about the ap-
plication and data layers that do not necessarily apply to all
use cases. First, they assume that the application layer has
some physical point of consistency at which the database
does not contain any state that has been written by a trans-
action that is not yet committed. For applications that do
not naturally have such points of consistency, the database
can enforce one by blocking any incoming transactions from
starting until after all existing operations finish.

Second, IPP and Zigzag assume that the storage layer
uses simple array storage using fixed-length values. Al-
though some applications are possible to be implemented
over fixed-length array-based storage (including the mas-
sive multiplayer online game applications for which IPP and
Zigzag were designed), many applications have data that
cannot easily be managed via array-based storage (which is
why most modern database systems do not use array-storage
backends). In order to be general and make an apples-to-
apples comparison, we implemented a modified version of
IPP and Zigzag that use the same hash-table-based storage
engine that is used for CALC. Nonetheless, we maintain the
cache optimizations of these algorithms For example, IPP
stores all three copies of each record continuously in mem-
ory in order to keep as much data as possible for a record
in the same cache line. We maintain the same optimization
— maintaining all three copies of each record contiguously
in the same hash entry of the database.

IPP and Zigzag both take full checkpoints and are thus
best compared to CALC. However, in order to addition-
ally compare them with pCALC, we implemented a second
version of the IPP and Zigzag implementations that take
only partial snapshots using the same bit vectors as used for
pCALC. In this way, the advantage of pCALC of not having
to write entire database snapshots to disk at each checkpoint
can also be attained by IPP and Zigzag. These secondary
implementations are labeled "pIPP” and "pZigzag” in the
experiments.

S. EXPERIMENT RESULTS

In this section we run experiments to benchmark CALC
against the naive snapshot, fuzzy, IPP and Zigzag algo-
rithms described in the previous section. We run our ex-
periments using two benchmarking applications: The first is
a microbenchmark similar to the one used in recently pub-
lished transactional database system papers [22, 16]. The
second is TPC-C, which we implemented by writing stored
procedures in C++.
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Figure 2: Full checkpointing, Microbenchmark experiments.

5.1 Microbenchmark experiments

The microbenchmark operates on a collection of 20 million
records, where each record is 100 bytes and has an 8 byte
key. We experiment with two versions of the microbench-
mark. The first version consists entirely of transactions that
read and update 10 records from the database, and do some
simple computing operations. The second version contains
99.999% of transactions that are the same type as the first
version, but 0.001% of transactions are long-running batch-
writes which take approximately two seconds to complete.
We keep contention low for both versions of the microbench-
mark. This enables worker threads to fully utilize all cores
on the experimental system, instead of becoming blocked on
acquiring locks. This ensures that the overhead of check-
pointing is clearly visible.

5.1.1 Full Checkpointing

We first compare CALC with the other checkpointing al-
gorithms for the “full” checkpoint case, where each scheme
must create a complete snapshot of the database before the
end of the checkpoint interval. Figure 2(a) shows the system
throughput over time for the first version of the microbench-
mark (the version without long-running transactions). Fig-
ure 2(b) shows the results for the second version of the mi-
crobenchmark (the version with .001% long-running trans-
actions). This experiment runs over the course of a 200
second period, where the first checkpoint is taken, starting
at time 30 seconds, and the second checkpoint is taken 80
seconds after the first one. We run database system under
peak workload (the database system is 100% busy).

For the naive snapshot algorithm, the throughput drops
to 0 transactions per second while the checkpoint is being
taken. However, the time to take this checkpoint is very
small, since all database resources are devoted to creating
the checkpoint during this period. After the checkpoint com-
pletes, database throughput returns to normal.

For the fuzzy checkpointing algorithm, the database sys-
tem is quiesced to write the dirty record table to disk (which
results in a sharp drop in database throughput), but then
continues to process transactions after the data structure
is written. Since the size of the dirty record table is much
smaller than the size of a full database checkpoint, the time
that the database is quiesced is smaller for the fuzzy case
than the naive snapshot case. However, after the database
returns to processing transactions, database throughput does
not fully return to normal, since some processing resources
need to be allocated to asynchronously creating the full

checkpoint from the data structures written out in the pre-
vious step.
The IPP algorithm’s performance (even before the check-

point period begins) is around 25% worse than the no-checkpoint

baseline, since it needs to maintain two copies of the database
state at all times, which involves memory copy operations
during normal operation. Even though we utilize the IPP
optimization of ensuring that both copies of each record are
stored contiguously in memory, and thus this copy operation
is as cache-local as possible, nonetheless the overhead is no-
ticeable given the write-intensive nature of the workload.

We found that the Zigzag algorithm performed better
than IPP. At rest, before the checkpoint period begins, Zigzag
results in only a 4% decrease in throughput relative to the
baseline. This is because, unlike IPP, Zigzag only has to
perform writes once, without any additional copying. The
only extra ongoing cost at rest is that it needs to read and
update two bit vectors that control access to the two copies
of the data. Once the checkpoint period begins, its drop
in throughput relative to its baseline is larger than the cor-
responding drop for IPP. Nonetheless, since its baseline is
so much higher than IPP for this workload, its throughput
remains higher than IPP throughout the experiment.

The naive algorithm has to quiesce the database system
to perform the entire checkpoint, and the fuzzy checkpoint-
ing algorithm has to quiesce the system while certain data-
structures are written (see above). These needs to qui-
esce the system are mostly independent from the workload.
Therefore, the precipitous drop in throughput during this
quiescence period is approximately the same in Figure 2(a)
and Figure 2(b) for both the naive and fuzzy algorithms.
In contrast, IPP and Zigzag only have to quiesce the system
until all active transactions at the start of a checkpoint com-
plete (this enables the system to get into a physical point of
consistency which are required by these algorithms). This
type of quiescence is very workload dependent. When every
active transaction is short (as for the workload in Figure
2(a)), the period of time for which the database must qui-
esce is essentially invisible. However, where there are long-
running transactions in the workload (as for Figure 2(b)),
the period of time for which the database has to reject new
transactions until these long transactions complete is notice-
able. Therefore, there is a visible drop to zero transactions
a second at the beginning of the checkpoint period for both
IPP and Zigzag in Figure 2(b) but not in Figure 2(a).

In contrast, CALC does not require physical points of con-
sistency, instead relying on a virtual point of consistency.
Therefore, the performance of CALC is similar for both ver-
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Figure 3: Partial checkpointing with Long-running transactions.

sions of the microbenchmark in Figures 2(a) and Figure 2(b).
Furthermore, it does not suffer from performance degrada-
tion in baseline performance, since unlike IPP and Zigzag,
it does not have to maintain multiple copies of the data
outside of checkpoint periods — either via making multi-
ple copies of each write, or by controlling access to different
copies though bit vectors. It does, however, have a 10%
performance degradation relative to its baseline during the
asynchronous parts of the checkpoint process. This drop rel-
ative to its baseline is slightly larger than the corresponding
drops for the other algorithms because in addition to writ-
ing the checkpoint, CALC requires some additional memory
copy operations during the checkpoint period (in particular,
it has to copy the live version to the stable version in the
database the first time a record is written after the beginning
of the checkpoint period).

In general, the different checkpointing algorithms have dif-
ferent shapes in Figures 2(a) and Figure 2(b). Some have
short periods of zero transactions per second being run,
while some have longer periods of reduced performance dur-
ing asynchronous checkpointing processes, and some have
both. In general, the total transactions that were completed
is the area underneath each line in the graph, and the total
cost of checkpointing is thus the difference between these
areas. Therefore, in order to present the total cost of check-
pointing, we measured, for each algorithm, the total number
of transactions that were completed during the 200 second
window of our experiment. We then subtracted this number
from the total number of transactions that would have com-
pleted if no checkpointing code had been performed. The
result is the total cost of checkpointing — the number of
transactions that were not processed during this period in
order to devote database resources to checkpointing.

Figure 2(c) shows the result of this cost summary calcu-
lation. It is perhaps more clear from this graph than the
previous graphs how much lower overhead CALC has rel-
ative to the other algorithms. Even relative to Zigzag for
the workload without long transactions (when Zigzag does
not have to noticeably quiesce the database), CALC still
significantly outperforms Zigzag by almost 40%.

5.1.2  Partial Checkpointing

We now compare the partial versions of the checkpointing
algorithms. In this case, instead of being required to create
a full snapshot of the database at each checkpoint, the al-
gorithms only have to checkpoint the records that had been
modified since the most recent checkpoint.

The write locality conditions can make a big difference
for the partial checkpointing schemes. High write locality
means that most transactions update the same “hot” subset
of the records in the database, so that the total number
of records modified between two consecutive checkpoints is
small. Hence, the size of the partial checkpoints will also be
small. It is very common to see this kind of skew in data
access patterns in real-world applications.

Therefore we vary the write locality conditions for our
partial checkpoint experiments. Figure 3(a), 3(b) shows the
performance of the partial checkpointing algorithms where
there is 10% and 20% data access skew respectively. The
workload we run is the microbenchmark with long-running
transactions. Similarly to the previous experiment, the ex-
periment lasts 200 seconds and contains 2 checkpoints.

Overall, the relative performance of CALC vs. Zigzag,
IPP, fuzzy, and naive are the same for this set of experi-
ments as they were for the previous set of experiments. The
only difference is that the amount of time spent writing the
checkpoint data is smaller for all 5 algorithms, since only
modified records need to be written. For Zigzag, IPP, fuzzy,
and CALC, this results in a much shorter window of time
that the system is running at 7% to 10% lower than max-
imum capacity. For naive, this results in a much shorter
window of time that the system must be quiesced.

In all five cases, the total cost of checkpointing is pro-
portionally reduced, as shown in Figure 3(c). Interestingly,
as data access skew increases, the relative cost of CALC
vs. the other algorithms improves, since the time to take
a checkpoint gets increasingly small for all four algorithms,
and therefore baseline performance and the time required to
manufacture a physical point of consistency start to domi-
nate the overall checkpointing cost. Since CALC has almost
no overhead at rest and does not require a physical point of
consistency, its relative performance to the other algorithms
improves.

5.1.3 Recovery Time

Section 3 discussed the recovery time vs runtime trade-
off for CALC vs. pCALC. In both cases, recovery involves
loading a complete checkpoint, and (potentially) replaying
committed transactions since this checkpoint. Since both
the loading cost and the replaying of committed transac-
tions is a constant for both CALC and pCALC, and their
costs are entirely independent of the checkpointing scheme,
we ignore them from our recovery time analysis.

Thus, the recovery time for CALC is effectively zero in
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our analysis — no additional work has to occur aside from
loading the most recent checkpoint and replaying commit-
ted transactions. However, if the most recent checkpoint
is a partial checkpoint instead of a full checkpoint, addi-
tional work must be performed in order to merge all par-
tial checkpoints that have occurred since the most recent
full checkpoint. As mentioned in Section 3.2, we can use
a background process during runtime to continuously merge
together partial checkpoints so that the distance to the most
recent full checkpoint is limited. However, there remains a
recovery time vs runtime tradeoff — the less frequently this
background merge process happens, the less cost there is at
runtime, but the longer the recovery time.

To investigate this process further, we experimented with
three different configurations for this background process —
it runs after 4, 8, and 16 partial checkpoints have been taken.

Figure 4(a) shows the results of this experiment when par-
tial checkpoints are merged with the most recent full check-
point after every 4 partial checkpoints. The experiment lasts
300 seconds and checkpoints are taken at 10 seconds, 80 sec-
onds, 150 seconds and 220 seconds. For the pCALC algo-
rithm, the four partial checkpoints are merged together with
the most recent full checkpoint 5 seconds after the fourth
checkpoint completes. We benchmark with three write lo-
cality skew cases(10%, 20% and 50% of records modified).

The left 4 bars in Figure 4(b) summarizes the number of
transactions lost for this graph, analogously to how Figure
2(c) showed the transactions lost for Figures 2(a) and 2(b).
The number of transactions lost is an indication of the run-
time cost for each experiment. Above each bar in the graph
shows the recovery time needed in the worst case scenario
were all four partial checkpoints have to be merged at recov-
ery time in order generate a full checkpoint. The remaining
8 bars in Figure 4(b) summarize the runtime and recovery
time costs for the case of partial checkpoints being merged
after 8 and 16 partial checkpoints have been taken.

When focusing on runtime, it is clear that despite the ad-
ditional time to merge the partial checkpoints, the overall
cost of checkpointing is much smaller for the partial check-
pointing algorithms than the full checkpointing algorithm
with higher locality skew(10% and 20%). However, there is
less advantage for pCALC with lower locality skew(50%).

The runtime vs recovery time tradeoff is clear as one com-
pares the three different sets of bars corresponding to the
partial checkpoint batch sizes of 4, 8, and 16. pCALC’s run-
time improvement relative to CALC increases as the batch
size of partial checkpoints to merge increases. However, re-

covery time increases linearly. Nonetheless, we expect that
pCALC with batch sizes within our experimental range will
be the preferred option for most workloads, since the back-
ground merge process keeps the recovery time tractable.

5.1.4 Transaction Latency

Next, we measure transaction latency for each checkpoint-
ing algorithm. We collect transaction latency from the ex-
periments run in Section 5.1.1, in which we run the database
system for 100 seconds and take a checkpoint at the 30 sec-
ond mark. Figures 5(a) and 5(b) show cumulative distri-
bution functions for latencies observed when the database
receives transactions at a rate that keeps it running at 90%
of its maximum capacity. We also measure transaction la-
tency for a less intense input transactional workload that
keeps the database at 70% maximum capacity in Figures
5(c) and 5(d).

When the input transactional workload is intense (keeping
the database system at 90% of its maximum capacity) the
latencies of the naive and fuzzy schemes are very poor. This
is because the naive and fuzzy schemes quiesce the database
temporarily during the checkpoint period. All transactions
that enter the system during this period thus get queued
and wait for the database to resume processing. This queue
gets continuously bigger during the checkpoint period. After
the database resumes processing, the transactions in this
queue get processed. However, new transactions continue
to the enter the system and get placed at the end of the
queue. Since the input transactional workload is so close
to the database system’s maximum capacity, the database
never gets a chance to “catch up” and shrink the size of
the queue. Therefore, all transactions that enter the system
after the first time the database is quiesced experience the
latency of the quiesce period — even those transactions that
enter the system substantially after this period has ended.
Thus, the latencies for the naive algorithm are the worst,
since its quiesce period is the longest. However, even Zigzag
and PP, which temporarily quiesce the database to create a
physical point of consistency when there exist long-running
transactions in the database system, experience poor latency
in Figure 5(b).

Figures 5(c) and 5(d) show the latencies in perhaps the
more realistic scenario, where the database is not running at
full capacity, and can use its additional headroom to catch
up after transactions get queued during periods of unavail-
ability. In these figures, the latencies of Zigzag, IPP, fuzzy,
and naive are much better than than the previous case, but
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the short period of unavailability while the database was qui-
esced, in addition to the short catch-up period thereafter, do
take their toll on the latency distribution.

For all of these latency experiments, CALC performs very
similarly with the “no checkpointing” scheme because CALC
does not require physical points of consistency, and never
has to quiesce the database system. This experiment shows
amajor advantage of CALC relative to the other checkpoint-
ing schemes. While it is common for main memory database
systems to experience hiccups in latency during checkpoint-
ing periods, CALC manages to avoid these hiccups entirely.

5.1.5 Scalability

We also ran some experiments to see if the database size
effects the overhead of CALC. In particular, experimented
with database sizes of 10 million records, 50 million, 100
million, and 150 million. We found that the checkpoint du-
ration was linearly correlated with database size. This is not
surprising — if the database is larger, so too is the check-
point. Thus if the database is twice as large, twice as much
work has to happen during checkpointing as far as scanning
through the stable records and writing them to disk. Ac-
cordingly, the total overhead of checkpointing, expressed in
terms of total transactions lost, is also linear in database
size. Due to lack of space and lack of surprise in the results,
we do not present these results in more detail here. However,
more detailed results are provided in Appendix A.

5.1.6  Physical Memory usage

One advantage of the naive and fuzzy checkpointing schemes
is that they do not need to keep around extra copies of the
data in memory.

In contrast, IPP requires keeping 3 copies of all records.
Furthermore, during the checkpointing period, IPP must
merge the updated records with the last consistent check-
point in order to construct a new consistent checkpoint that

can be written to disk. Therefore, in practice, IPP requires
up to 4 copies of the database in memory. Zigzag requires
keeping 2 copies of all records.

In the worst case, CALC requires two copies of each record
to be stored. However, in practice, the actual memory needed
is much less than this. CALC does not require any extra
memory until the checkpoint process begins. When CALC
enters the prepare phase, transactions begin inserting sta-
ble record versions on all writes. Once the capture phase
begins, the checkpointing thread begins erasing these stable
versions. Thus CALC only requires extra space for records
written during the short period of time in between these
two phases, which is generally much smaller than the total
number of records updated since the last checkpoint.

Figure 6 summarizes the space required for each algorithm
over the course of a 100 second experiment where a check-
point is taken at 20 seconds for a 50 million record database.
Naive, fuzzy, IPP, and Zig-zag all require constant space.
Naive and fuzzy require almost no extra space beyond the
original database size. Zigzag and IPP require 2X and 4X
database size, respectively. CALC requires no extra space
most of the time, but requires around 1.2X database size
during its peak requirements during the checkpointing pe-
riod.

In practice, in order to avoid frequently allocating and
erasing stable records, our implementation pre-allocates a
pool of space for stable records, so that when a transaction
needs to insert stable record, it simply allocates memory for
the stable record from the pool. When transactions need to
erase the stable record, they simply release the space back
into the pool. Therefore, in practice, CALC’s memory usage
is also flat — it needs as much space as peak requirements
— 1.2X database size. Nonetheless, it is clear that its overall
memory requirements are much smaller than IPP and Zigzag
and similar to Naive and Fuzzy.

5.2 TPC-C experiments

Finally, we examined the overhead of the checkpointing
schemes on the TPC-C benchmark at a scale of 50 TPC-
C warehouses. For this experiment, we run a mix of 50%
NewOrder and 50% Payment transactions. These two trans-
actions make up 88% of the default TPC-C mix and are the
most relevant transactions when experimenting with check-
pointing algorithms since they are write-intensive. Figure
7(a) shows TPC-C throughput under maximum load for
each checkpointing scheme when a checkpoint is taken at
the 50 second mark, and Figure 7(b) plots the total trans-
actions lost during the checkpoint period of Figure 7(a).

The result is very similar to our earlier results for the
microbenchmark without long-running transactions, since



) = —~ -
@ ) o IS
= = = =

throughput (txns/sec)
; :

1 10 20 30 40 50 _SO 70 80 90 100 110 120 130 140 150
time (seconds)

(a) Throughput over time.

60.0 M

50.0 M

40.0M |-

30.0M

20.0M

10.0M |

TPC-C

(b) Transactions lost.

Figure 7: TPC-C workload.

TPC-C does not have a non-read-only transaction of sub-
stantial length. However, one interesting difference between
these results and the microbenchmark is that Zigzag per-
forms relatively worse relative to CALC on TPC-C. This is
because the TPC-C New Order transaction (the most com-
mon transaction in the workload) contains many more writes
to records than the microbenchmark, which introduces more
overhead for Zigzag since it needs to maintain two copies of
the record upon each write, even when checkpointing is not
actively ongoing.

6. RELATED WORK

There have been several previous attempts to capture
checkpoints asynchronously. Dewitt et al. [3] discuss the
implementation of a main memory system that uses check-
points to prevent massive data loss due to system interrup-
tions and crashes. Their scheme begins writing values to
stable storage, marking pages in the buffer pool that have
been updated after being checkpointed as belonging to a
set AMem. Once the checkpoint completes, the pages in
AMem are written to their old location on disk. However,
this algorithm not only requires a physical point of consis-
tency to record the time at which a checkpoint begins, it also
requires at worst a doubling of disk IO in order to reconcile
the inconsistent state created by pages in AMem.

Granular tuple locking allowing for incremental check-
point captures has also been previously investigated by Pu
[15]. However, this “on-the-fly” checkpointing does not allow
transactions that touch checkpointed and non-checkpointed
keys to execute. This causes numerous non-deterministic
aborts, possibly causing the throughput to drop dramati-
cally during the checkpoint period.

Some other asynchronous methods have traditionally re-
lied on the availability of a spare hot server to duplicate
transactions and intermittently quiesce the database to cap-
ture a full snapshot [24]. However, despite the assumption
that there exists an available spare server to perform no
tasks other than checkpointing, this technique is extremely
vulnerable to network delays or failures, which could result
in costly latency spikes.

Zheng et al. presented SiloR [25], a logging, checkpoint-

ing, and recovery subsystem for a very fast in-memory database.

However, they do not create transaction-consistent check-
points.

VoltDB [13] proposed an asynchronous checkpointing tech-
nique which takes checkpoints by making every database

record ’copy-on-write’. However, like many of the other
schemes presented in the paper, it requires a physical point
of consistency — a key requirement that CALC drops. Fur-
thermore, their scheme relies on VoltDB’s deterministic de-
sign, and is thus not generally applicable to all database
systems.

Fuzzy checkpointing has become an extremely popular
checkpointing algorithm in database systems. There have
been several proposals for applying it to main memory [12,
5, 11]. Salem et al. argues that fuzzy checkpointing is
the most efficient [17]. Oracle’s main memory database
TimesTen[8] also supports fuzzy checkpointing. However,
fuzzy checkpointing requires a database log, a requirement
that we avoided in our work.

Microsoft’s main memory database system, Hekaton [4],
proposed a fast partial checkpoint algorithm. The basic
idea is to continually scan the tail of the log and create
data and delta checkpoint files. In contrast, CALC is de-
signed for an entirely different type of main memory system
— a system that does not have any redo log at all. Fur-
thermore, the Hekaton technique is specifically designed for
multi-versioning systems, while CALC is more general.

Hyper proposed a consistent snapshot mechanism through

a UNIX system call to fork(), and OS-based copy-on-update [7].

However, it requires the physical point of consistency and
does not support partial checkpoints.

7. CONCLUSION

We have presented CALC and pCALC, novel methods
for asynchronous checkpointing that require minimum ad-
ditional memory usage, no physical point of consistency in
the application state, and extremely low runtime overhead.
Our experiments show that CALC and pCALC have an over-
head that is 2-10X less than alternative approaches — even
promising approaches that were introduced recently. Fur-
thermore, it avoids the temporary latency spikes that are
common in other checkpointing approaches.
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APPENDIX
A. SCALABILITY RESULTS

Figure 8 shows the result of an experiment in which we
examine the scalability for the CALC algorithm. We scale
from 10 million records to 150 million records. We mea-
sure the checkpoint duration and total transactions lost for
each database size setting when running 300 seconds that
contains one full checkpoint. As can be seen, the CALC al-
gorithm is linearly scalable. If the database is twice as large,
twice as much work has to happen during checkpointing as
far as scanning through the stable records and writing them
to disk. Accordingly, the total overhead of checkpointing,
expressed in terms of total transactions lost, is also linear in
database size.

Note that since the recording of a checkpoint is limited by
disk bandwidth in our system, the time to complete a check-
point is a direct measure of total disk IO. Therefore, using
higher bandwidth disks will reduce both the checkpoint du-
ration and transactions lost.



