
Lazy Evaluation of Transactions in Database Systems

Jose M. Faleiro
Yale University

jose.faleiro@yale.edu

Alexander Thomson
Google∗

agt@google.com

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT

Existing database systems employ an eager transaction process-
ing scheme—that is, upon receiving a transaction request, the sys-
tem executes all the operations entailed in running the transaction
(which typically includes reading database records, executing user-
specified transaction logic, and logging updates and writes) before
reporting to the client that the transaction has completed.

We introduce a lazy transaction execution engine, in which a
transaction may be considered durably completed after only partial
execution, while the bulk of its operations (notably all reads from
the database and all execution of transaction logic) may be deferred
until an arbitrary future time, such as when a user attempts to read
some element of the transaction’s write-set—all without modifying
the semantics of the transaction or sacrificing ACID guarantees.
Lazy transactions are processed deterministically, so that the final
state of the database is guaranteed to be equivalent to what the state
would have been had all transactions been executed eagerly.

Our prototype of a lazy transaction execution engine improves
temporal locality when executing related transactions, reduces peak
provisioning requirements by deferring more non-urgent work until
off-peak load times, and reduces contention footprint of concurrent
transactions. However, we find that certain queries suffer increased
latency, and therefore lazy database systems may not be appropriate
for read-latency sensitive applications.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems–Transaction processing
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1. INTRODUCTION
For decades, transactional database systems have worked as fol-

lows: upon receiving a transaction request, the database system
performs the reads, writes, and transactional logic associated with
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the transaction, and then commits (or aborts). Upon receiving a
query request, the database system performs the reads associated
with the query and returns these results to the user or application
that made the request. In both cases, the order is fixed: the database
first performs the work associated with the transaction or query, and
only afterwards does the database returns the results — read results,
and/or the commit/abort decision.

In this paper, we explore the design of a database system that
flips this traditional model on its head. For transactions that return
only a commit/abort decision, the database first returns this deci-
sion and afterwards performs the work associated with that trans-
action. The meaning of “commit” and “abort” still maintain the full
set of ACID guarantees: if the user is told that the transaction has
committed, this means that the effects of the transaction are guar-
anteed to be durably reflected in the state of the database, and any
subsequent reads of data that this transaction wrote will include the
updates made by the committed transaction.

The key observation that makes this possible is inspired by the
lazy evaluation research performed by the programming language
community: the actual state of the database can be allowed to differ
from the state of the database that has been promised to a client —
it’s only if the client actually makes an explicit request to read the
state of the database do promises about state changes have to be
kept. In particular, writes to the database state can be deferred, and
“lazily” performed upon request — when a client reads the value
of the state that was written.

Therefore, when a client issues a transaction and only expects a
commit/abort decision as a result, the work involved in processing
the transaction can be replaced by a simple “promise” to the client
that it was done. Only when the state that is affected by this trans-
action needs to be returned to a client does the promise have to be
kept, and the work associated with the transaction performed.

However, even if a promise made to a client does not have to
be immediately kept, every promise that is made must be theoret-
ically possible to keep. Therefore, in the context of database sys-
tems, some amount of work is necessary to return the correct com-
mit/abort decision. There are two classes of scenarios that could
cause a transaction to abort: (1) transaction logic can cause a trans-
action to abort that is dependent on the state of the database and
the particular requests made by a transaction (e.g. if the transaction
will cause an integrity constraint violation), and (2) the database
decides to abort a transaction for nondeterministic reasons that are
totally independent of database state (e.g. a deadlock is encoun-
tered, or if the database crashes in the middle of processing the
transaction).

Given the nondeterministic nature of the second class of scenar-
ios that could cause a transaction to abort, it is impossible in tradi-
tional database systems to make promises in advance that a trans-
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action will commit without running the transaction to completion
and then actually committing it. Hence, lazy evaluation of transac-
tions has not been a viable option for traditional database architec-
tures. However, an increasing number of deterministic databases
have been introduced in the last few years, such as Calvin [22], H-
Store [20], VoltDB [23], and Hyder [2], which completely disallow
nondeterministic aborts. Once these types of aborts are removed,
transactions can only abort due to client-defined transaction logic.
Lazy evaluation therefore becomes possible by performing enough
work during transaction initiation to determine if, given the current
state of the database, transaction logic will cause an abort. If not,
a “commit” decision can be immediately promised to the client,
with the actual transaction processing performed lazily. Further-
more, the deterministic guarantees of the database are leveraged to
ensure that when the database eventually gets around to processing
the transaction, it will be processed over the snapshot of database
state that existed when the transaction was originally submitted (in-
stead of the current state) so that the same database state that was
used to determine whether or not the transaction will commit will
still exist at the time the transaction is processed.

In this paper, we describe how deterministic database systems
can be extended to allow lazy evaluation of transactions, and ex-
plore the tradeoffs involved in this lazy transactional processing. In
particular we find that laziness provides the following advantages:

• Improved overall cache/buffer pool locality. If record X is
modified several times before its value is requested by a client
query, it only needs to be accessed via an IO operation and
brought into memory/cache once, when the writes and final
read all occur together (§2.7).

• Temporal load balancing. Deferring execution of transactions
requested at peak load times can reduce workload skew be-
tween peak and non-peak hours, lowering resource provision-
ing requirements (§2.6).

• Avoiding unnecessary work. Transactions need not ever run
to completion fully if their write-sets are never read. This can
happen, for example, if the write set of a transaction is over-
written by a blind write (a write that is not dependent on the
current value of a data item).

• Reduced contention footprint. Contention can be reduced by
only executing high-contention operations within a transaction
eagerly (the rest of the work is executed at a later time, lazily).
This reduces the size of the critical section around contended
data access (§2.3 and §2.4).

• Reduced transaction execution latency. If a client is only
expecting a commit/abort decision as a result of submitting a
transaction to the database system, lazy evaluation allows this
decision to be returned before the execution of most transac-
tional logic, thereby significantly reducing the transactional la-
tency that is observable by the client.

On the other hand, lazy transactions introduce certain hazards,
and in parting with traditional transaction processing dogma, they
introduce new challenges:

• Higher read latencies. A request by a client to read a data item
may incur delay while writes to that item from other transac-
tions have to be performed prior to the read.

• Dependencies between deferred transactions. If many con-
flicting transactions have been deferred, then substantiating one
data item may involve running transactions that require sub-
stantiation of other data items (§2.2).

• Overhead of determining the write set of a transaction. In
order to know what promises have to be kept before reading a
data item, any transaction that is processed lazily must mark

in some way all items that it will write, so that the database
can ensure that these writes will occur before the data item is
read. If the user does not explicitly provide the write set of a
transaction, additional work is required to determine the write
set before promises can be made (§2.3).

Given this new set of tradeoffs that lazy processing of transac-
tions introduce, it is clear that some workloads are poorly suited
for lazy evaluation, while other workloads will see significantly
improved throughput, latency, and provisioning characteristics if
transactions are executed lazily.

2. LAZY TRANSACTIONS
In order to illustrate and motivate our approach to implementing

lazy transactions, we first examine a naïve implementation of a lazy
database system. For the purposes of this example, let us begin
by considering only transactions that do not contain logic that can
cause them to abort (this restriction will be lifted shortly).

Our naïve lazy system logs transaction requests as it receives
them, and replies to each client with a commit “promise” as soon
as the request is durably written to the log. However, no additional
action is taken immediately to execute the transaction and apply its
effects.

When a client goes to read some record(s) in the database at
some later time v, this prompts the log to be played forward, so that
all transactions that appear before v are executed—then the client
can safely read from a snapshot at time v. This playing-forward
of the log may involve executing transactions in the log serially,
or it may use a locking mechanism that guarantees equivalence to
serial execution in the order specified in the log—e.g. deterministic
locking [21, 22] or VLL [18]—to parallelize transaction execution
and increase resource utilization.

In fact, deterministic database systems such as Calvin and VoltDB
already implement exactly the machinery required for this type of
lazy execution—but they replay the log eagerly rather than wait-
ing for new read requests to prompt them along. This is because
very little is gained by this implementation of lazy transactions—
exactly the same transactions are executed using exactly the same
scheduling mechanisms, but with artificial delays inserted.

The basic problem is that the naïve system has to play forward
the entire log up to v in order to perform any read at timestamp v—
even if many of the transactions that were executed had no effect
whatsoever on the result of the client’s read. Below, we describe an
approach to implementing lazy transactions using “stickies” that
has considerably more useful properties.

2.1 Stickies
We introduce our lazy execution technique with an example.

Consider a transaction T that writes out a set of records {x, y, z}
whose values depend on the current values of a (possibly overlap-
ping) set of records {a, b, c}, implemented as a stored procedure as
follows:

T ({a, b, c}, {x, y, z}) {

Read a.

Read b.

Read c.

Perform local computation.

Write x.

Write y.

Write z.

Commit.

}
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Note that T has two useful properties: (a) T ’s write-set is known at
the time the transaction is invoked (since it is provided as an argu-
ment), and (b) like the transactions handled in the naïve approach
described above, T will always commit if executed to completion.
For ease of explanation, we will assume that all transactions have
these properties for now, and describe how our lazy execution en-
gine handles lazy transactions that do not have these properties in
§2.3. We will also assume for now a data storage structure that sup-
ports full multiversioning. Each write inserts a new record without
deleting the previous version of the record, even if the write logi-
cally clobbers the previous value.

A traditional (eager) database system executing T at time v would
read the latest versions of {a, b, c}, perform whatever computation
is specified by the transaction code, and write the resulting new
versions {xv, yv, zv} to the storage system.

When T is processed by our lazy execution system, however,
records {a, b, c} are not read, nor is any of T ’s local computation
executed—but new records are written out to {xs

v
, ys

v
, zs

v
} nonethe-

less. Since no actual values have been computed, these records are
stickies—temporary place-holders for the real values that provide
the reader just enough information to evaluate the specific record
when needed. (The superscript ‘s’ denotes here that a record is a
sticky.) For example, the sticky written to xs

v
in our example indi-

cates to future readers of the record:

This record is a sticky and does not store

an actual value. To compute this record’s

value, execute transaction Tv.

After stickies have been created for each element of T ’s write-set
and written out to the database’s storage engine (and the transaction
request Tv is appended to the transaction input log), T is considered
to have been durably committed at time v. We refer to this process
as stickification, and we refer to a transaction such as Tv that has
committed by passing the stickification phase—but whose client-
specified transaction logic has not yet been fully executed—as a
deferred transaction.

2.2 Substantiating stickies
If a client subsequently looks up the record x at a timestamp

v′ > v and finds that xs

v
is the most recent version of x, the server

retrieves the transaction request Tv , executes it fully (including per-
forming all reads and computation), and overwrites the stickies
{xs

v
, ys

v
, zs

v
} with the actual values produced, so that subsequent

readers need not re-evaluate Tv again. We refer to this process as
substantiation of xv .

Note that Tv’s read-set {a, b, c} (specifically, the latest versions
of these records that precede v) may also contain stickies written
by earlier transactions. For example, when Tv attempts to read the
latest version of a preceding v, it may find a sticky as

u
inserted by

an earlier transaction at time u (let’s call that transaction Tu). In
order to substantiate xs

v
, as

u
must first be substantiated by looking

up Tu’s entry in the transaction request log and fully executing Tu.
In general, there may be many transactions on whose write-sets

Tv (transitively) depends—all of which must be executed in order
to finally substantiate xs

v
.

Transactional dependencies can be represented graphically, as
shown in Fig 1. In Fig 1(a), T1 is ordered before T2 in the log.
However, because T1’s read and write sets are mutually exclusive
from T2’s, both may be executed independently. Fig 1(b) illustrates
the distinction between the transaction ordering as imposed by the
log and the actual data dependencies among transactions. The log
ordering between transactions is shown by dotted lines. The data
dependencies between transactions are depicted by solid lines.

Figure 1: Transaction Ordering in the Log

Data dependencies between transactions form a partial order.
The substantiation process needs to obey this partial order, not the
stricter total order imposed by the stickification log.

A consequence of the partial order among transactions is that
substantiation of transactions that do not have any data dependen-
cies between them can be completely independent. Referring to Fig
1b again, a lazy database system could choose to substantiate the
set {T1, T2, T4, T5} today, and T3 at a later time.

Any partial order can be represented by a directed acyclic graph
(DAG). Note that in order to substantiate a transaction T , we have
to first substantiate every transaction T transitively depends on. For
instance, consider again the data dependencies between transac-
tions as depicted in Fig 1(b). T5 depends on T4 and T2, but it
transitively depends on T1. To substantiate T5, we must substan-
tiate T2, T4 and T1.

2.3 Partially Lazy Transactions
Up until now, we have considered only transactions (a) whose

write-sets are known in advance and (b) that cannot abort due to
specified transaction logic (e.g., integrity constraint checks). In or-
der to handle the more general class transactions for which these
properties need not hold, our execution engine actually executes
transactions “partially lazily”, dividing each transaction into two
phases:

• a now-phase, executed immediately, and

• a later-phase, which may be deferred until some element of
the transaction’s write set actually needs to be substantiated.

A transaction’s now-phase generally includes:

• All constraint checks and client-specified logic needed to de-
termine commit decisions.

• Any reads from the database state that are necessary to deter-
mine a transaction’s read/write set. One example of this is a
transaction that reads a record via a secondary-index lookup.
Without doing the lookup, it is not possible to determine which
record must be read. For example, in TPC-C, all OrderStatus

transactions must read a customer record, and for some fraction
of these transactions the record’s primary key must first be de-
termined by a secondary index lookup on the customer’s name.
If no secondary index is maintained on that field, a full table
scan must be performed during the now phase, exactly as it
would be with an eager execution mechanism.

• Inserting stickies for each element of the write-set that will be
written to during the transaction’s later-phase. In addition, sec-
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ondary index records must be updated to reflect any changes
that the transaction will make to indexed fields.

In order to provide full serializability, transactions’ now-phases
must be executed in a manner that guarantees equivalence to se-
rial execution in log order. This is one of the places where the
use of a deterministic system such as Calvin [22], H-Store [20],
VoltDB [23], and Hyder [2] is very helpful — these systems are
capable of performing transactions in parallel while still guarantee-
ing equivalence to a deterministic sequential execution in a specific
predetermined order.

Determining a transaction’s commit decision in the now-phase
is not necessarily straightforward. To examine some common pat-
terns, we examine TPC-C’s NewOrder transaction.
NewOrder transactions make up the bulk of the TPC-C bench-

mark in terms of transaction numbers, work done when running the
benchmark, and total contention levels between transactions. Each
NewOrder simulates a customer placing an order for between 5
and 15 items from an online retailer, and consists of several steps1:

1. Constraint check. Abort if a requested item has an invalid
ID. The TPC-C specification states that 1% of all NewOrder

transactions should fail this constraint check.

2. One high-contention Read-Modify-Write (RMW) operation.

Increment one of ten Districts’ next_order_id counters.

3. 8-18 no-contention reads. Read records from the Warehouse,
District, Customer, and Item tables.

4. 5-15 low-contention RMW operations. Update Stock records
for each item purchased.

5. 8-18 blind writes. Insert records into the Order, OrderLine,
NewOrder, and History tables.

Since a TPC-C NewOrder transaction only aborts in the event
of an invalid item request, including operation 1 above in the now-
phase while leaving the rest of the transaction’s logic in the later-
phase is sufficient to determine the commit decision. (Performing
checks of this kind at the beginning of a transaction’s code is a
common idiom in transactional applications.)

Uniqueness constraints are also common and can be handled spe-
cially. Suppose that NewOrder’s blind write into the History table
required a uniqueness check on its primary key2. Database systems
often use bloom filters for uniqueness checks, and this technique
can be applied here. Whenever a record is inserted into a relation,
the primary key of this record is checked and inserted into a bloom
filter. Note that even unsubstantiated records for whom a sticky
has been created but not yet substantiated can be included in this
bloom filter since all stickies include the primary key value. In this
scenario, the now-phase would first check the bloom filter for the
record in question (let’s call it h). If the bloom filter indicated that
no previous version exists, the check passes, and h must be inserted
into the bloom filter (in addition to the sticky hs

v
being inserted into

the History table). If the bloom filter showed that a previous ver-
sion of h may in fact exist (which might be a false positive)—or
if a bloom filter were not used—the NewOrder transaction then
performs a non-substantiating read of h. Such a read looks up h

in the History table, and if it finds a sticky hs

u
, it does not attempt

to substantiate it or discern its value by recursively executing the
transaction that inserted it, since the precise value is not needed to
discern that the uniqueness check has failed.

1For brevity, we examine here a TPC-C deployment consisting of
a single warehouse.
2This is only a hypothetical scenario—History record primary keys
are guaranteed to be unique, so this is not actually necessary ac-
cording to the TPC-C specification.

For uniqueness checks on non-primary-key columns, secondary-
indexes on those columns would have to be maintained in the now-
phase in order to avoid full table scans (as mentioned earlier).

A third possibility is that a transaction may violate other types of
integrity constraints or have user-specified conditional logic trig-
gering an abort. For example, a system may abort any transaction
that would result in a negative stock level. In such a case even more
of the transaction logic is forced to execute within the now-phase—
limiting the amount of laziness that is achievable for certain classes
of transactions.

2.3.1 Specifying now and later-phases

In order to maximize the benefits of lazy execution, transactions
need to be divided into the now and later-phases. There are two op-
tions for doing this: user-driven or automatically-driven. In our im-
plementation discussed below, we choose the user-driven approach.
Clients specify transaction logic by registering C++ stored proce-
dures. In each procedure, all code is executed in the now-phase
up until a special EndNowPhase() method is called. When the
stored procedure code calls EndNowPhase(), stickies are writ-
ten out to all not-yet-updated elements of the transaction’s write
set, and control passes back to the calling thread at the call site of
the stored procedure. Execution resumes from the same place only
when a sticky written by the transaction is substantiated.

Stored procedures whose logic does not contain any call to End-
NowPhase() execute entirely eagerly and insert no stickies; it is
safe for workloads to mix eager and lazy transactions.

Depending on client-provided annotations to determine how much
of each transaction to defer to a lazy phase has a clear cost: it im-
poses an additional burden on database system users, who must rea-
son carefully about data dependencies to safely use lazy transaction
evaluation. To ameliorate this, it is possible to introduce automated
dependency analysis tools (similar to those commonly used in com-
pilers) that could statically detect the earliest place in the stored
procedure logic where it would be safe to call EndNowPhase().
For example, in the case of the TPC-C NewOrder stored proce-
dure, it could be statically determined that no operations after the
constraint check could lead to an abort decision or modify the write
set. By carefully choosing what work to defer, clients can also re-
duce lock contention as a bottleneck in high-contention workloads,
as we discuss in the following section.

2.4 Transaction Contention in Lazy Database
Systems

A transaction’s contention footprint is the duration of time that
it limits the total concurrency achievable in the system. If transac-
tions are executed serially in a single thread, each one has a con-
tention footprint of its entire active duration, since no other transac-
tion may execute until it completes. In systems that use locking for
concurrency control, contention footprint corresponds to the length
of time that a transaction holds locks, thereby preventing conflict-
ing transactions from executing. In systems that use optimistic con-
currency control, a transaction’s contention footprint is the time
period from when it starts executing until the critical section of its
validation phase—the period during which other transactions may
have performed writes that then cause it to fail validation.

The contention footprint of a transaction executing in a lazy database
system is more complex, since transactions are not executed all at
once. In general, total system throughput can be limited by either
now-phase contention or later-phase contention.

Two transactions’ now-phases conflict with one another if the
two transactions would have conflicted had they been executed ea-
gerly. However, when blocking on another transaction’s now-phase,
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it is only necessary to block until that transaction’s now-phase (in-
cluding stickification) completes. The blocked transaction can be-
gin executing its now-phase before the first transaction’s later-phase.
Thus, although the likelihood of transactions conflicting is no dif-
ferent, the total contention between now-phases footprint is re-
duced compared to eager execution.

Later-phase “contention” manifests as dependencies when sub-
stantiating stickies: when multiple transactions’ later-phases re-
quire a single sticky to be substantiated, the amount of parallelism
that can be achieved is reduced, since the worker threads processing
those later-phases block on that one substantiation operation.This
blocking behavior mirrors that which would be observed when ex-
ecuting the same transactions eagerly using a lock-based concur-
rency control scheme—readers block getting read locks until writ-
ers release their exclusive write locks.

Note that unlike traditional locking protocols, and even MVCC,
later-phase contention does not reflect write-write conflicts, but only
read-write conflicts, since it is only necessary to substantiate exist-
ing stickies when reading a record, not when overwriting it with a
new value3.

Furthermore, later-phase dependencies between transactions only
appear for read-write conflicts on records on which the earlier trans-
action inserted a sticky. If the earlier transaction wrote out a record’s
actual value (not a sticky) during its now-phase, then later readers
of that record need not block on the transaction’s later-phase, since
the value does not need to be substantiated.

This last observation introduces a subtle but powerful opportu-
nity to reduce transactions’ contention footprints by pushing high-
contention RMW operations into the now-phase and leaving low-
contention reads and writes in the later-phase. For example, while
TPC-C NewOrder’s constraint check is the only step that must

execute during the now-phase, incrementing the high-contention
District.next_order_id counter could also be done dur-
ing the now-phase, while leaving the remaining operations (around
13 contention-free reads, around 10 low-contention RMWs, and
around 13 blind writes) in the later-phase. This allows both the
now-phase contention and the later-phase contention to be much
lower than contention levels observed when executing NewOrder

transactions eagerly. Now-phases still conflict with high probabil-
ity, but are very short, consisting of only the constraint check and
incrementing a counter, so blocked transactions need not block for
long before running their now-phases. Later-phases do not need to
do the RMW operation on any Districts’ next_order_id coun-
ters, and so each transaction only depends on earlier transactions
that updated conflicting sets of Stock records, resulting in a much
lower contention rate.

2.5 Foundations of Laziness
Our work builds on the theoretical foundations and early imple-

mentations of lazy programming languages [24, 10, 6, 11]. In par-
ticular, this early work defines a pure expression as one whose eval-
uation depends neither on any external behavior (such as a globally
mutable variable being modified by another thread) nor performs
any externally visible action (such as printing output or sending
messages over a network). A pure expression always evaluates to
the same value, regardless of whether eager or lazy evaluation is
used. A function is considered pure if, when applied to a pure ex-
pression, the resulting expression is also pure.

Existing transaction processing systems constrain themselves to
eager transaction execution due to an implicit assumption that un-

3Note that if a transaction does a RMW operation on a value, it
does conflict with earlier writers of that value due to the read part
of the RMW operation.

predictable events during transaction evaluation may cause trans-
actions to abort. In other words, transactions are presumed not to
be pure functions from one database state to the next.

The key observation underlying this work is that database trans-
actions can often be formulated as pure functions on database state,
introducing the possibility of lazy evaluation. However, this is only
possible if deterministic database techniques are used to ensure
non-deterministic aborts do not happen [21, 22, 20]. These systems
accomplish this by ordering all transactions into a single serial or-
der before executing them, and writing out this order to a log on
stable storage (or across the network). They then use a deadlock-
free concurrency control protocol that guarantees equivalence to
this serial order that had been defined in advance. A node failure
cannot cause a transaction to abort; instead the ordered transaction
log is replayed upon a failure (from the most recent checkpoint) to
get the database into the same state that it was in at the time of the
failure and finishes all in-process transactions from there.

2.6 Reducing Peak Provisioning Requirements
Partitioning data across multiple machines is currently the most

popular method of servicing high transaction throughput. Repar-
titioning data on-the-fly to make use of a varying number of ma-
chines is challenging, so most practical systems provision a large
number of machines, in order to deal with peak traffic. However,
these extra machines are not fully utilized most of the time.

A lazy database system can deal with bursty traffic more ele-
gantly. A lazy database can choose to limit the rate of substantia-
tion while dedicating more resources to stickification. When traffic
subsides, it can begin substantiating transactions at a higher rate.
Since the stickification of a transaction in a lazy database is much
less expensive than evaluating a transaction in a conventional sys-
tem, a lazy database deals with an increased rate of traffic without
resorting to adding more machines to the system.

It should be noted, however, that this bursty traffic must be mostly
transactions that return only commit/abort decisions. If there are
many read queries in this burst of traffic, then stickification is not
able to get much farther ahead than substantiation, and lazy execu-
tion does not help with peak provisioning.

2.7 Improving Cache (Buffer Pool) Locality
Consider the case of any two transactions that have a data de-

pendency. We would expect better performance if they were sub-
stantiated together, than if their substantiations were separated by
a large period of time. Substantiating a transaction involves bring-
ing its records into a processor’s cache (and also to the buffer pool
for non-main memory systems). If the transactions were substan-
tiated together, then the records the second transaction shares with
the first will be cache (buffer pool) resident. Thus, evaluating such
transactions together yields better cache (and buffer pool) locality.
A lazy database system can delay substantiating transactions un-
til the size of a set of data dependent transactions is large enough
to take advantage of cache locality over large sets of transactions.
Since conventional database systems evaluate transactions immedi-
ately, they cannot exploit such data sharing between transactions if
the difference between the times the transactions enter the system
is sufficiently large. In other words, eager databases systems can
only expect records to be read from cache if there is temporal and

spatial locality. Lazy database systems artificially create temporal
locality and do not require it to exist naturally in the workload.

2.8 Logging and Recovery
As mentioned in §2.3, in order to provide full serializability,

transactions’ now-phases are executed in a manner that determin-
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istically guarantees equivalence to serial execution in transaction
log order. Given a transaction log, there is only one possible final
state of the database system. Therefore, as long as the transaction
log is persisted to stable storage, the database system can recover
by replaying the log, a concept introduced by other deterministic
systems [22, 14]. In order to avoid replaying the entire history of
all transactions, checkpointing is necessary. Checkpoints must in-
clude a complete snapshot of the database as of a particular point in
the log where all operations for all transactions before this point are
reflected in the database state in the checkpoint, and no operations
from future transactions are reflected in the checkpoint — i.e. the
checkpoint must be taken at a “point of consistency” with respect
to the transaction log. In the case of a lazy database system, a point
of consistency cannot be reached unless there are no unsubstan-
tiated transactions present in the system. Although quiescing the
database system and finishing the execution of all unsubstantiated
transactions before new transactions enter the system is one way to
achieve a point of consistency, we use Calvin’s mechanism of cre-
ating a virtual point of consistency without quiescing the system,
and creating a checkpoint over a period of time as transactions that
were unsubstantiated at the time of the virtual point of consistency
get substantiated [22].

3. IMPLEMENTATION
We have taken a clean slate approach to building our lazy database

prototype. We have implemented our prototype based on the idea
of separating the execution of transactions into two phases; a stick-
ification phase, and a substantiation phase (§2). Corresponding to
the two transaction execution phases, our system architecture is di-
vided into two layers; a stickification layer, and a substantiation
layer. The stickification layer is responsible for returning a com-
mit/abort decision to clients and determining the dependencies be-
tween transactions; once it determines that a transaction can com-
mit, the stickification layer analyzes the transaction’s read set, and
determines which prior transactions it depends on. The substan-
tiation layer is responsible for executing transactions; it uses the
dependency information determined by the stickification layer to
batch the execution of a set of dependent transactions. The rest of
this section discusses the implementation of the stickification and
substantiation layers in detail.

3.1 Stickification Layer
The stickification layer is the component that receives external

input. Processing a transaction involves three steps: first, deter-
mining the transaction’s commit/abort decision and finding its de-
pendencies, second, maintaining heuristics to process transactions,
and third, handing transactions to the substantiation layer.

3.1.1 Dependency Maintenance

When the stickification layer takes a transaction, T , from its in-
put queue, it first executes the transaction’s now-phase in order to
determine the transaction’s commit/abort decision. If the trans-
action commits, the stickification layer must determine the prior
transactions T depends on. It determines T ’s dependencies based
on T ’s read set; for each record in T ’s read set, T depends on the
last transaction to have the record in its write set. We keep track of
the last transaction to have written each record in the system using
auxiliary tables mapping primary keys to a 128-bit pair of two 64-
bit values: first, a 64-bit transaction identifier corresponding to the
record’s last writer, and second, a 64-bit counter (§3.1.2). For each
record in T ’s read set, we look up the auxiliary table and record
a reference to the record’s last writer within T . Finally, for each

Figure 2: Work flow of Lazy Transaction Execution. White

circles correspond to Stickified transactions. Red circles corre-

spond to Substantiated transactions.

record in T ’s write set, we update the auxiliary table to reflect T as
the record’s last writer.

In addition to writing the auxiliary table, the stickification thread
uses an array local to T to keep track of T ’s dependencies. As
a consequence of tracking dependencies within transactions, the
stickification thread maintains an implicit dependency graph of trans-
actions. Fig 2 shows the work flow of transaction processing in a
lazy database system. It shows the stickification layer processing
transactions from an input queue, analyzing the transactions, and
maintaining the dependency graph. The transactions that make up
the graph correspond to as yet unevaluated transactions. In order
to evaluate a particular transaction T , we have to first recursively
evaluate all the transactions T depends on. For instance, if we wish
to evaluate transaction T5 in Fig 2, we need to have evaluated T1,
T2 and T4.

3.1.2 Heuristics

If the dependency graph is allowed to grow arbitrarily, then the
latency of an external read (a read that must be returned to a database
user) is adversely affected. External read latency increases with the
size of the dependency graph because the external read might have
a very long chain of transactions it depends on, and this chain of
transactions must be executed before the external read can be exe-
cuted. As a consequence, an external read incurs the latency cost
of executing every transaction it depends on.

To ensure that the dependency graph does not grow unreasonably
large, we keep track of the total number of unexecuted transactions
that access each record. We store this information in the second
counter field of the value in the auxiliary last-writer table (§3.1.1).
Whenever a transaction looks up the value keyed by a particular
record in the last-writer table, we update the counter field of the
value. When we update the counter, we check to see if it exceeds a
certain user-defined threshold; if it does, we hand the current trans-
action to the substantiation layer and reset the counter to 0. Intu-
itively, the larger the value of the threshold, the longer the chain of
transactions that access a particular record.

3.2 Substantiation Layer
The substantiation layer takes transactions that are handed to it

by the stickification layer and executes them to completion. Our
implementation of the substantiation layer consists of multiple worker
threads evaluating transactions in parallel. The execution of a trans-
action on the worker thread proceeds in two steps:

1. Recursive Dependency Evaluation. Before executing a trans-
action’s logic, we first need to ensure that its dependencies have
been evaluated. The stickification layer ensures that every trans-
action maintains a reference to each of its dependencies (§3.1.1).
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The worker thread looks up each of a transaction’s dependen-
cies and checks to see if the dependency has been evaluated; if
it has not, then the dependency itself must be recursively evalu-
ated. Fig 2 shows the set of transactions that are executed when
the substantiation layer is handed transaction T5. The worker
thread must first recursively evaluate T5’s dependencies before
it can evaluate T5.

Two different substantiation layer worker threads working in
parallel on different transactions may have an overlapping de-
pendency graph. In order to ensure that transactions within the
overlapping subgraph are not processed more than once, each
transaction structure is augmented with a single bit which serves
as a spinlock. The spinlock protects internal transaction state by
ensuring that only one worker thread may substantiate the trans-
action.

2. Transaction Logic Evaluation. Once all of a transaction’s de-
pendencies have been evaluated, the thread can proceed with
evaluating the transaction’s logic; the worker thread reads the
records in the transaction’s read set, and writes out the records
in the transaction’s write set.

Executing dependent transactions immediately one after another
in the two steps outlined above allows the worker thread to amortize

the cost of bringing a particular record into on-chip cache across all
the transactions that access the record. For instance in Fig 2, when
the worker thread executes T5, it can re-use the records brought into
cache when it executed T1, T2, and T4 (assuming all their records
together fit in cache).

4. EXPERIMENTAL EVALUATION
Our prototype lazy database consists of a single-threaded stick-

ification layer and a multi-threaded substantiation layer (§3). As
a comparison point, we implemented a system which uses a tra-
ditional two-phase locking concurrency control mechanism. Our
two-phase locking prototype is built by replacing our lazy database
prototype’s concurrency control module.

Our experimental evaluation is conducted on a 10 core Intel Xeon
E7-8850 processor using 64GB of memory. Our operating system
is Linux 3.9.2. We dedicate 8 out of the 10 cores to the transaction
processing engine for both 2PL and the lazy system in each of our
experiments; both systems use the same number of cores. In the
2PL system, each of these 8 cores is utilized by a worker thread. In
the lazy system, we dedicate 1 core to the stickification layer, and
7 cores to the substantiation layer. Of the two cores that remain
on the system, one is used to drive the database input, while the
other is used to measure performance. The measurements for all of
our throughput experiments are averaged over 10 runs, the variance
across runs in each of our experiments is negligible. Each line in
our CDF plots shows a distribution over at least 500,000 points.

This section is organized as follows. §4.1 describes a set of
microbenchmarks designed to evaluate the basic tradeoffs of lazy
transaction processing relative to conventional eager processing.
§4.2 evaluates the benefit of deferring transaction execution in the
presence of load spikes. In §4.3 we explore the benefits of elimi-
nating the need for evaluating transactions in the presence of blind
writes. Finally, §4.4 evaluates the benefits of laziness in a high-
contention multithreaded environment using the TPC-C benchmark.

4.1 Microbenchmarks
We begin our experimental evaluation using a simple microbench-

mark involving transactions that perform read-modify-write opera-
tions on 10 distinct records The database consists of a single table
with 1,000,000 records. Each record has a size of 1024 bytes, and
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Figure 3: Microbenchmark Throughput

is indexed by a 64-bit primary key. We pick unique records in each
transaction’s read-write sets from two different distributions:

1. Uniform. We pick 10 unique records among the 1,000,000 uni-
formly at random.

2. Normal. We first select a single record among the 1,000,000
records uniformly at random. The remaining 9 are selected ac-
cording to a Gaussian distribution around the first record using a
standard deviation of 30. The effect of selecting records in this
manner is that if two transactions have conflicting read-write
sets, then they often conflict on several records. This workload
is designed to model applications for which there are correla-
tions in data access; users that buy item X tend to also buy Y in
an online shopping scenario, or friends (followers) of X tend to
also be friends (followers) of Y in a social networking platform.

4.1.1 Throughput

We first compare the transactional throughput of the lazy and ea-
ger systems. Throughput is defined as the rate at which transactions
are fully processed. For the lazy scheme, only transactions that
have finished both the stickification and substantiation phases (i.e.,
are completely finished) count towards throughput. The lazy exe-
cution scheme is parameterized by the length of the longest chain
of unsubstantiated transactions that are allowed to exist before they
get automatically substantiated (§3).

Fig 3 shows how the throughput of lazy transaction processing
varies with the bound on the longest chain of unexecuted transac-
tions. We plot two graphs, one for the Uniform workload and the
second for the Normal workload.

For the Normal workload, we see that the lazy system gets sig-
nificantly better throughput than the eager system. This is due to
the improved cache locality of the lazy system — when substan-
tiating a chain of transactions, the later transactions in the chain
find many of the records they access already in cache, having been
brought into cache by earlier transactions in the chain. The cost of
the initial access of a record (to bring it into cache) is amortized
over the number of subsequent accesses in the chain. Therefore,
the throughput difference between the lazy system and eager sys-
tem increases as the maximum chain size increases.

In contrast, for the Uniform workload, we see that the through-
put of the lazy and eager systems is very similar; and furthermore,
the chain bound has no effect on the throughput of the lazy sys-
tem. This is because in the Normal workload, when two transac-
tions overlap in their data access, they tend to overlap on multiple
records. Therefore, substantiating a chain of transactions will lead
to cache benefits for multiple records. However, in the Uniform
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workload, two transactions almost never overlap on more than one
record. Therefore, the only cache benefits from substantiating a
chain of transactions together is just for the one shared record in
the chain. This cache benefit is almost completely offset by the
additional overhead of maintaining the dependency graph.

4.1.2 End-to-End Latency of Queries

Fig 4 shows the latency incurred when the lazy and eager sys-
tems receive a query whose evaluation cannot be delayed, because
it contains a read request that must be returned to the user. In partic-
ular, the query reads a single record from the database. We measure
end-to-end latency from the time it begins execution to the time the
query result is generated. We generate such “external read” queries
at a rate of 1 in every 1000 transactions. In order to execute the
logic of an external read query in the lazy system, we have to first
execute all unevaluated dependencies of the records that the query
reads (§3.2). Thus, the latencies in this experiment include over-
head that is involved in maintaining and traversing the dependency
graph of transactions, as well as the latency of executing an entire
batch of transactions.

As shown in Fig 4, the end-to-end query latency of the lazy sys-
tem improves with lower limits on transaction chain length. Intu-
itively, this occurs because a lower limit on transaction chain length
forces batches of transactions to be evaluated before they get too
large. Meanwhile, the eager system always outperforms the lazy
system, because when the eager system takes the query off its input
queue, it can immediately begin executing it. In contrast, the lazy
system first needs to execute the query’s unevaluated dependencies
before it can begin processing the query. For the Normal workload,
which has better cache locality, the cost of evaluating these depen-
dency chains is smaller, which results in a better latency relative to
the uniform workload. However, the eager system, which doesn’t
have any unevaluated dependencies at all, still yields smaller laten-
cies than the lazy system on the Normal workload.

The main conclusion we draw from from this experiment is that
when external read queries are rare, the latency to execute such
queries can sometimes be much slower in lazy systems than in ea-
ger systems, due to the need to process unsubstantiated transactions
before beginning query execution (note that the latency graphs used
a log scale on the x-axis). In our experimental evaluation of TPC-
C, we show the differences between lazy and eager systems when
external read queries are more frequent (§4.4.1).
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4.2 Temporal Load Balancing
In this section, we experiment with a lazy database system’s abil-

ity to deal with bursty traffic. We set up the experiment in the same
manner as those in the previous section. We experiment with the
Uniform workload so that the lazy and eager databases will have the
same baseline throughput, and changes to the baseline as a result of
the load burst will be easier to observe. The lazy database’s bound
on maximum length of a chain of transactions is set to 100. During
the course of the experiment, we sample the number of stickified
transactions and the number of transactions that have been executed
to completion. We sample these statistics every 100 milliseconds,
and our plots show how these statistics vary over the course of time.

The experiment lasts for 300 seconds. During the time interval
of 0-60 seconds, we warm up the lazy and eager databases with
a load of about 100,000 transactions per second. At time t=60s,
we simulate a load spike by suddenly increasing the input load to
660,000 transactions per second. We maintain this load during the
time interval of 60-120 seconds. At time t=120s, we decrease the
load down to 100,000 transactions per second, and maintain it dur-
ing the time interval of 120-300s. The experiment ends at t=300s.

Fig 5 shows the results of the experiment. The topmost graph
shows how the input load varies over the course of the experiment.
The second graph shows the throughput of the systems as a func-
tion of time. For the lazy system, we measure two different types of
throughput: (1) throughput observed by the user in terms transac-
tions that have been committed (but in reality have only passed the
stickification step) and (2) actual throughput of the system in terms
of transactions that complete execution of both the stickification
and and substantiations phases. We label the former throughput
“stickification” in the figure, and the latter “lazy”.

During the time interval of 0-60 seconds (when the offered load
is 100,000 transactions per second), we see that both databases are
able to keep up with the input load. The lazy database’s stickifi-
cation throughput (i.e. the throughput observed by the user) and
the eager database’s execution throughput both mirror that of the
input load. In contrast, the “actual” transactional throughput of the
lazy database is bursty. The reason for this behavior is that the lazy
database does not substantiate transactions as soon as they enter the
system. Instead, it accumulates batches of transactions until one of
two scenarios occurs: either a chain of dependent transactions gets
too long and needs to be pruned (so as to adhere to the bound on the
maximum length of a chain), or it receives a transaction/query that
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must be immediately evaluated (and its dependencies must there-
fore also be immediately evaluated).

During the time interval of 60-120 seconds, we increase the of-
fered load to about 650,000 transactions per second. The through-
put of the eager database increases to its maximum, but it is not
enough to keep up with the offered load. As a consequence, the
eager database begins dropping transactions as its internal queues
begin to fill up. This can been seen in the bottommost graph, which
shows the percentage of transactions that were able to be success-
fully processed. We see that the eager database can only success-
fully handle about 45% of the offered load. The second graph in-
dicates that the substantiation throughput is identical to that of the
eager system. However, despite substantiation being unable to keep
up with the load, the lazy system does not drop transactions; it is
able to handle 100% of the offered load. This is because the sticki-

fication layer is able to keep up with the offered load.
During the time interval of 120-300 seconds, we lower the of-

fered load back to 100,000 transactions per second. Fig 5 shows
that the eager system’s throughput mirrors that of the offered load;
it is now able to keep up with the offered load. In contrast, the
throughput of the lazy system remains higher than the offered load.
This occurs because the transactions that were processed by the
stickification layer but not processed by the substantiation layer re-
sult in a backlog. This backlog of transactions to be substantiated
is processed concurrently with incoming transactions. The sub-
stantiation layer finishes processing the backlog at around t=240
seconds. Once the backlog is processed, the throughput of the lazy
system once again becomes bursty.

This experiment demonstrates that in a situation where the sub-
stantiation layer is not able to keep up with the load, substantiation
can gracefully fall behind stickification and wait until the load burst
is complete before catching up (this is why the “actual” throughput
of the lazy system remains temporarily high after the load burst is
complete). Unlike the eager system, the lazy system is able to defer

the processing of transactions during resource constrained execu-
tion to a time when there are more resources available.

4.3 Blind Writes
Until this point, we have only experimented with transactions

where all writes to a record are preceded by a read to that same
record. However, some workloads contain “blind writes” to data
(writes that are not preceded by reads to the same records). Blind
writes are particularly beneficial to lazy systems, since by delaying
writes to an item, these writes may never have to be performed if
they are rendered unnecessary by a blind write.

Before getting into a discussion about our experiment, we first
describe a scenario where blind writes may occur in practice. Con-
sider the case of a customer using an online shopping portal. The
shopping portal’s database consists of two base tables – first, an in-
ventory table of items a user can buy online, and second, a shopping
cart table, each of whose records corresponds to a particular user’s
shopping cart. Every customer with an account on the shopping
portal has a private shopping cart. The state of the shopping cart
reflects the items on the shopping portal’s catalog that the user is
interested in purchasing. During a typical session on the shopping
portal, she browses the portal’s online catalog for items of interest
(the online catalog may be a view of the inventory table). If she
finds an interesting item, she adds it to her shopping cart, which
causes a read of the online catalog to find the primary key of the
item in order to add it to the shopping cart. Eventually a check-out

operation is performed on her shopping cart. We define a check-
out operation as one in which one of the two following possibilities
occurs:
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Figure 6: Blind Writes

• Type 1. The user may decide that she wants to buy the items in
her shopping cart. In this case, the shopping portal’s database
back-end must read all the items in the user’s shopping cart, and
update the inventory table.

• Type 2. The user may decide that she does not want to buy any
of the items she just added to her shopping cart. Instead she
clears the contents of the cart. Alternatively, her session times
out, and her shopping cart is cleared automatically. (We still use
the term “checkout” for these two cases, even though many Web-
sites would not call a cart clearing operation a “checkout”.) The
clearing of a shopping cart is a blind-write – the clear operation
resets the state of the cart without performing any reads. The
transactions that added items to the cart are no longer relevant
because their effects were “clobbered” by the clear operation.

Our blind-write experiment is motivated by the scenario described
above. The workload for our experiment is as follows: each client
adds 20 items to its shopping cart and then proceeds to check-out
according to one of the two cases described above. Adding an item
to the shopping cart involves reading a particular record in the in-
ventory table, and writing the shopping cart record. For simplic-
ity, in the lazy database, we require check-out transactions to be
evaluated immediately (even though in many cases a commit/abort
decision may be all that is necessary to be returned to the user, and
check-outs could therefore be executed more lazily).

The topmost graph in Fig 6 shows the throughput of the lazy
and eager databases as we vary the fraction of blind writes. The
throughput of the lazy database increases as we increase blind-
write fraction because transactions whose results are clobbered by
a blind-write do not need to be executed at all. However, these
transactions still count towards throughput because they are “com-
mitted”. The throughput of the eager database does not vary with
blind-write fraction, since it is unable to benefit from not doing
work that will eventually be rendered unnecessary.

The plot at the bottom of Fig 6 shows a CDF of the end-to-end
latency of executing a check-out transaction. In the case of the lazy
database, we plot the CDF of check-out latency for two different
fractions of blind-writes (1/4 and 1/2), while in the case of the eager
database, we plot just for the fraction of 1/2. For the lazy database,
the end-to-end latency varies depending on the type of check-out. If
the check-out is a blind-write, the lazy database must only evaluate
a single transaction (which clears the state of the shopping cart).
On the other hand, if the check-out is not a blind-write, it incurs
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a higher latency penalty because the database must first execute
all the transactions the check-out depends on (adding items to the
shopping cart). Therefore, the latency distribution is bimodal. As
we vary the fraction of blind-writes, the fraction of check-outs with
low latency is precisely the same as the fraction of blind-writes.

The latency of a blind-write check-out in the lazy system is com-
parable to the latency of a check-out in the eager system. This is be-
cause both systems perform a similar amount of work — they both
evaluate a single transaction. Since the blind-write check-out trans-
action (clearing the cart) is more lightweight than the non-blind
check-out (making a purchase), the distribution of transaction ex-
ecution latency in the eager system is also bimodal. However, the
latency of executing a non-blind checkout (purchase) in the eager
system is far less expensive than in the lazy system (the x-axis in
the second graph is log-scale) since it has already processed all of
the transactions that add items to the shopping cart.

In the scenario mentioned above, the blind-writing “checkout”
transaction does not perform any reads. As a consequence, it does
not need to wait for the result of any other transaction, and can
execute immediately. A lazy database system may not be able to
immediately execute transactions in workloads where blind-writing
transactions have non-empty read sets. However, even in such a
scenario, a lazy database will still never need to process transac-
tions whose effects are clobbered by a blind-write.

4.4 TPC-C
Our final set of experiments are designed to evaluate the perfor-

mance of lazy transaction evaluation on a known benchmark: TPC-
C. The two differences we found in TPC-C relative to the other ex-
periments we ran in this paper are that (1) External read queries ap-
pear more frequently (the StockLevel, and OrderStatus queries)
and (2) TPC-C contains many contended data accesses. In partic-
ular, the two transactions that make up the bulk of TPC-C’s work-
load mix, NewOrder (45%) and Payment (43%), write records
that are highly contended. Every NewOrder transaction updates
a District record, and every Payment transaction updates a Dis-
trict record and its corresponding Warehouse record (each District
record contains a foreign key, corresponding to a particular Ware-
house’s primary key). As a consequence, NewOrder and Payment

transactions submitted to the database system will conflict with
concurrently executing transactions involving the same District and
Warehouse. In a traditional multithreaded database system, such
conflicts inhibit scalability; the number of concurrently executing
transactions is limited by the number of Warehouses in the system
(the number of Districts per Warehouse is limited to 10).

Lazy transaction processing allows for an elegant solution to
this scalability problem. Instead of executing writes to highly-
contended records in worker threads, highly-contended records can
be written solely by the stickification thread(s).

§2.3 explained that the stickification layer can partially execute

part of a transaction immediately. We referred to the stickifica-
tion layer’s immediate partial execution of a transaction as a now-

phase. In §2.4 we explained that the contention footprint of a trans-
action can be decreased by moving highly contended accesses to
the now-phase, which, for the case of TPC-C, involves moving up-
dates to the district and warehouse records (in the NewOrder and
Payment transactions) to the now-phase.

4.4.1 TPC-C Commit Latencies

We now closely analyze the latency distribution of two transac-
tions that are running in the context of the full TPC-C transaction
mix: NewOrder and StockLevel. We choose these two because
they are representative of two fundamental types of transactions:
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Figure 7: Client-observed latency for NewOrder and Stock-

Level transactions.

those that only have to immediately return a commit or abort deci-
sion (NewOrder), and those that need to immediately return the
value of database state (an external read) to the user (StockLevel).

We plot the client-observed latency of NewOrder and Stock-
Level transactions while varying the contention in the system. Con-
tention in the TPC-C benchmark is inversely proportional to the
number of warehouses in the system. We therefore run each of
our systems against two TPC-C warehouse configurations; the first
with 1 warehouse (which has high contention), the second with 20
warehouses (which has low contention).

The top of Fig 7 shows the CDF of the client-observed latency of
executing NewOrder transactions. Lazy transactions clearly have
at least an order of magnitude better latencies than eager transac-
tions. This is because the client-observed latency is only the time
it takes to receive the commit or abort decision. Since the lazy sys-
tem does not have to process the entire transaction before returning
the decision, it achieves much lower latencies. Meanwhile, the ea-
ger system must process the entire transaction before returning the
decision to the client.

Furthermore, we see that the latency of eager transactions is sig-
nificantly impacted by data contention. When there is only 1 ware-
house, contention is very high, and most NewOrder transactions
must wait in lock queues before they can acquire locks and pro-
ceed. At 20 warehouses (low contention), these queuing delays are
not present.

Since the lazy system also reduces contention by shrinking the
contention footprint of the NewOrder and District transactions,
its latencies are not affected by the number of warehouses. Lazy
transactions thus have two advantages for transactions that only re-
turn commit/abort decisions: (1) they can return to the client with-
out processing the whole transaction and (2) they reduce queuing
delays due to contention.

The graph at the bottom of Fig 7 shows the CDF of client-observed
latency to execute StockLevel transactions. Since StockLevel is
an external read query, the lazy system no longer has the advantage
of being able to return early, and therefore no longer outperforms
the eager system by an order of magnitude. However, in contrast
to the external read latencies for the microbenchmark presented in
§4.1.2, the latencies for the lazy system are comparable to the ea-
ger system. To understand why this is the case, recall from §4.1.2
that the reason why lazy systems have high latencies for external
reads is that they first need to execute the entire transitive closure
of dependencies. In TPC-C, the transitive closure is generally much
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Figure 8: TPC-C throughput varying number of warehouses

smaller than in the microbenchmark because TPC-C contains more
frequent external-read queries. In particular, the two external-read
queries in TPC-C, StockLevel and OrderStatus, each make up
approximately 5% of the workload (recall that the microbench-
marks had one external read per 1000 transactions). These fre-
quent external reads keep the dependency graph from getting large,
which reduces the latency of other external reads (keeping them
close in cost to reads in the eager system). On the other hand, the
smaller dependency graph results in smaller transaction batches and
reduced cache locality relative to the microbenchmarks (which we
will discuss in more detail for the throughput experiments in the
next section).

Unlike the eager system, the latency of the lazy system is greater

for the 20 warehouse (low contention) case than the 1 warehouse
(high contention) case. This is because with more warehouses, the
stickification layer experiences larger costs for maintaining the de-
pendency graph, which we explain in detail in the next section.

4.4.2 TPC-C Throughput

In order to analyze the effect of lazy transactions on TPC-C
throughput, we run two configurations of the lazy system. The
first is the same configuration of the lazy system we have been
using in the experiments up until this point, with a bound on the
maximum chain length of stickified transactions of 100 (henceforth
called “lazy-100”). The second sets the maximum chain length to
1 (henceforth called “lazy-1”). Setting the maximum length chain
to 1 forces each transaction’s later-phase to be executed as soon as
its now-phase completes. This ensures that there is no batching of
transactions; when the maximum length is 1, the system is still able
to achieve the contention benefits of lazy decomposition of trans-
actions into the now-phase and later-phase, but all cache benefits of
laziness are eliminated. By comparing the lazy-100 scheme with
the lazy-1 scheme, we are able to distinguish between the cache
locality and contention benefits of lazy transactions on TPC-C.

Fig 8 shows the results of our experiment. When the system runs
with 1 warehouse, we see that both lazy-1 and lazy-100 achieve
a substantially higher throughput than the eager system, while the
difference between the two lazy systems is more modest. Recall
that lazy-100 is able to achieve both the cache benefits and con-
tention benefits of lazy processing, while lazy-1 is only able to
achieve the contention benefits. Therfore, the difference between
these two lines can be attributed to the cache effects of lazy exe-
cution. The rest of the difference of the lazy systems relative to
the eager system is due to the contention benefits of lazy execution.
We therefore conclude that lazy transaction execution benefits both
from improved cache locality and reduced contention, but the ben-

efits of reduced contention are larger for TPC-C. The reason why
the cache benefits are not large in this case is explained in the pre-
vious section — the large number of external read queries reduces
the size of the dependency graph, limiting the amount batching that
the lazy system is able to perform.

As the number of warehouses increases, the contention in the
system decreases. As a result of the reduced contention, we see that
the throughput of the eager system steadily increases until about 12
warehouses, after which contention is no longer the bottleneck, and
throughput stabilizes.

In contrast to the eager system’s increase in throughput, the through-
put of lazy-1 and lazy-100 decreases as we add more warehouses.
This decrease in throughput occurs because the throughput of both
lazy-1 and lazy-100 is limited by the throughput of the stickifica-
tion layer. The stickification layer performs two tasks for every
transaction that enters the system; first, it processes the transac-
tion’s now-phase, and second, it maintains a dependency graph of
transactions to be processed by the substantiation layer. While the
now-phase is short for TPC-C (only reads or writes to records in
the Warehouse and District tables are performed), the overhead of
dependency graph maintenance is much higher. Maintaining the
dependency graph of transactions involves tracking the last trans-
action to write a particular record by maintaining an inverted index

from each record to its last writer (§3.1.1). Since the inverted index
tracks the last writer of every record in the database, the size of the
inverted index increases as we increase the number of records in
the database. As the size of the inverted index increases, a smaller
percentage of it remains in cache, and the stickification layer must
may a higher cost to update it.

The fact that the stickification layer becomes the lazy system’s
primary bottleneck as the size of the database scales is specific to
our current implementation, and not fundamental to lazy execution.
As mentioned above, our implementation of the stickification layer
consists of just a single thread executing every transaction’s now-
phase and maintaining the dependency graph. Multithreading the
stickification phase is an important avenue for future work.

5. RELATED WORK
Although database system researchers often use the term “lazy”

specifically to describe database replication strategies [9, 3, 16],
often in the context of eventually-consistent replication schemes,
we use it in this paper in a completely orthogonal context. We
talk about laziness in the context of programming language theory,
where lazy evaluation is an evaluation strategy in which the evalu-
ation of an expression is delayed until the value of the expression
is actually needed. This is in contrast to eager or strict evalua-
tion, in which an expression is evaluated as soon as it is bound to a
variable. Most programming languages use eager evaluation by de-
fault, while a few choose lazy evaluation [12]. Our work therefore
builds on the theoretical foundations and early implementations of
lazy programming languages [24, 10, 6, 11]. The key contribution
of our work is the application of these lazy execution techniques to
transaction execution in database systems.

Buneman et al. were the first to apply programming language
style lazy evaluation techniques to database systems [4]. This re-
search introduced a functional query language called FQL through
which users could express queries against a database that facili-
tates lazy execution of read-only queries so that subexpressions,
such as nested queries, are not evaluated repeatedly, and if their
results are not ever needed due to the semantics of a query, these
subexpressions never have to be evaluated. Morton et al. [15] also
propose lazy evaluation of read-only queries in a slightly different
sense; if the complete result set is not immediately required by a
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downstream client, only the subset of results that will be used im-
mediately need to be calculated. Note that read-only queries do not
change database state, and therefore it is a very different problem
to apply lazy evaluation techniques in these contexts. In contrast,
our techniques evaluate entire transactions lazily.

As part of our lazy execution design, we break transactions up
into a now-phase and later-phase, which allows a commit decision
to be returned before a transaction is fully executed (which is crit-
ical for lazy execution), and also has the potential to reduce con-
tention by reducing the size of critical sections protecting highly
contended data items. There have been several related proposals to
decompose transactions into pieces, either to improve contention
[19, 7, 1], or to facilitate consistent replication [25, 13]. However,
these previous proposals either reduce serializability guarantees as
a result of the decomposition [7, 1], or require knowledge of the
complete set of transactions that will be run against the system in
order to do a static analysis of these transactions that will determine
how transactions can be decomposed without violating serializabil-
ity [19, 13, 25]. The key advantage of our lazy decomposition ap-
proach, that distinguishes it from all of these prior approaches, is
that it maintains serializability guarantees while not requiring any

of the decomposed pieces to be globally commutative. In particu-
lar, actions in both the now-phase and later-phase may be depen-
dent on or conflict with any other transaction. The lazy execution
framework tracks and deals with these dependencies to maintain a
guarantee of serializability. This greatly facilitates the decomposi-
tion process and extends the applicability of the mechanism.

To maximize the contention benefits of decomposition of trans-
actions into now and later-phases, the now-phase should be short
and contain the most highly contended operations. Several recent
papers have introduced predictive and/or static mechanisms to an-
ticipate accesses and dependencies of transactions [17, 5]. This
work can be used help automate the process of transaction decom-
position.

Prior systems have proposed buffering and batching techniques
to improve cache locality and facilitate the sharing of intermediate
results of transactions. Zhou et al. [26] propose buffering the output
of operators in a pull-based pipelined query execution model. They
propose a coarse-grained interleaving of the execution of consec-
utive operators so as to improve instruction cache locality of each
operator. However, their technique addresses the problem of in-
struction cache thrashing in the specific case of a single threaded
pipeline of operators. Giannikis et al. [8] propose compiling a
global query plan for large batches of concurrent queries and up-
dates. Using a global query plan allows for intermediate results to
be shared across transactions in a batch. In contrast to this prior
work, lazy systems have more flexibility in creating batches, since
they are able to create batches containing transactions that have
been submitted to the system over a temporally diverse set of time.

6. CONCLUSION
While lazy evaluation has been applied in the past in program-

ming languages, it is interesting and perhaps surprising to note that
laziness in the context of database systems has a largely different
set of advantages and applications than in programming languages.
In particular our experimental implementation shows that lazy eval-
uation of transactions in database systems can improve cache lo-
cality, temporally load balance a workload during spikes of trans-
actional activity, simplify concurrency control, and reduce latency
for transactions that return only a commit or abort decision. Not
all workloads are well-suited for lazy evaluation, as some queries
are delayed as long chains of dependencies are evaluated, but our
experimental results show that there is an interesting class of work-

loads for which lazy evaluation is able to improve throughput and
latency.
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