
Automatic Generation of Normalized Relational Schemas
from Nested Key-Value Data

Michael DiScala
Yale University

michael.discala@aya.yale.edu

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT
Self-describing key-value data formats such as JSON are be-
coming increasingly popular as application developers choose
to avoid the rigidity imposed by the relational model. Database
systems designed for these self-describing formats, such as
MongoDB, encourage users to use denormalized, heavily
nested data models so that relationships across records and
other schema information need not be predefined or stan-
dardized. Such data models contribute to long-term devel-
opment complexity, as their lack of explicit entity and re-
lationship tracking burdens new developers unfamiliar with
the dataset. Furthermore, the large amount of data rep-
etition present in such data layouts can introduce update
anomalies and poor scan performance, which reduce both
the quality and performance of analytics over the data.

In this paper we present an algorithm that automati-
cally transforms the denormalized, nested data commonly
found in NoSQL systems into traditional relational data that
can be stored in a standard RDBMS. This process includes
a schema generation algorithm that discovers relationships
across the attributes of the denormalized datasets in order to
organize those attributes into relational tables. It further in-
cludes a matching algorithm that discovers sets of attributes
that represent overlapping entities and merges those sets to-
gether. These algorithms reduce data repetition, allow the
use of data analysis tools targeted at relational data, accel-
erate scan-intensive algorithms over the data, and help users
gain a semantic understanding of complex, nested datasets.

1. INTRODUCTION
Over the past two decades, self-describing semistructured

data formats have become increasingly common solutions
for storing and sharing information. As a recent example,
NoSQL databases which implement key-value or document-
based data models have gained traction among developers
seeking to avoid rigid schemas. Human-readable key-value
formats have emerged as the de facto message passing format
used in modern APIs, allowing applications to interoperate
with many services over standardized languages.

Although many semistructured formats exist, all typically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882924

support a set of common features. Notably, semistructured
formats tend to inline attribute names within records instead
of requiring clients to predefine their schemas. This allows
records to contain arbitrary attributes with arbitrary types
and allows records from within the same dataset to maintain
different, potentially conflicting, attribute definitions.

Semistructured formats also tend to support deeply nested
and hierarchical data structures. The popular JSON data
format, for example, is recursively defined such that a key
within a record may map to a nested record or even an array
of nested records. Since most semistructured formats and
their associated storage engines lack first-class support for
modeling relationships across records (e.g. primary keys,
foreign keys, joins, etc.), designers of semistructured data
instead represent relationships with these nesting features
and typically tend toward denormalized layouts.

The growing popularity of these formats has fueled inter-
est in loading and processing semistructured data within re-
lational database management systems (RDBMSes) so that
more traditional business intelligence tools, query optimiza-
tion techniques, and other tools from the relational world
can be applied to these datasets [3, 4, 5, 6, 9, 21, 22, 23, 24,
27]. Efforts in this space typically propose mappings from
semistructured formats to relational or mostly-relational struc-
tures that are compatible with standard SQL interfaces.

Once a mapping has been chosen, nearly any semistruc-
tured data can be represented within a relational frame-
work. However, the schemas resulting from these mappings
typically do not resemble anything a human designer would
suggest. In some cases, this dissonance occurs because the
mapping scheme is intended only to provide an efficient in-
ternal representation of semistructured data and does not
attempt to provide a human-readable representation [3, 4,
9, 24, 21]. Even the mappings which attempt to generate
human-readable schemas frequently fail to emulate human
designers because they consider only the structure of in-
put documents, rather than their values (e.g. for a key-
value format, they consider the keys and their arrangement,
but not their value distributions) [5, 23]. As a result, these
mappings do not account for the denormalized data layouts
that semistructured formats encourage. Even if an object
is nested identically within two different records, these ear-
lier strategies will doubly store the nested objects instead of
creating a normalized, reference-based layout.

In this paper, we present a three-phase unsupervised ma-
chine learning algorithm that automatically designs a more
traditional relational schema for an input dataset consist-
ing of a set of related, denormalized, semistructured records.
The first phase of the algorithm mines soft functional depen-
dencies that exist within the semistructured dataset. It uses
these dependencies to identify groups of attributes that are

likely to correspond to an independent semantic entity, and
creates tables for these entities and associated foreign keys
in parent tables. The second phase identifies entities found
in the first phase with overlapping domains and merges them
into a single entity structure. The final phase combines the
intermediate results from the preceding two phases to pro-
duce a proposed schema that resembles a traditional nor-
malized database schema (though not necessarily compliant
with normalization schemes like BCNF, 3NF, or 4NF).

The advantages of this approach are two-fold. First, our
algorithm simplifies the cognitively difficult task of explor-
ing novel datasets by highlighting recurring structural and
semantic patterns. Automated data exploration tools of this
type are especially important while working with semistruc-
tured datasets, as these datasets are often semistructured
precisely because their data sources are highly dynamic, and
the set of attributes associated with any record is highly vari-
able. Nonetheless, data exploration tools remain valuable
even when the semistructured data originates from more or-
dered sources such as APIs, as these sources often lack ex-
tensive documentation and can be semantically inconsistent.

Second, our algorithm can significantly reduce the size of
a dataset by eliminating redundancies. Whereas the denor-
malized data formats that we target store duplicate infor-
mation whenever an instance of an entity is repeatedly ref-
erenced, normalized layouts avoid this repetition by storing
instances of each entity a single time and replacing references
to those instances with foreign keys. For semistructured for-
mats that rely on inline attribute names, data size is further
reduced by not repeatedly storing attributes names in the re-
lational tables. The smaller size of our transformed datasets
accelerates the scan-based queries that are especially com-
mon during an analyst’s early interactions with a dataset.

Even as column-store technology reduces the need to nor-
malize data in order to improve scan performance, scans of
“dimension” tables corresponding to particular entities with
a small number of rows can be performed much faster than
scans of “fact” tables with a large number of rows. Hence,
most column-stores continue to utilize separate tables for
separate entities despite the overall reduced benefits of nor-
malization. Furthermore, even when column-stores main-
tain physically denormalized data layouts, users still create
logical views of the data in order to avoid losing the semantic
connection to the actual entities within the dataset.

Therefore, the first two phases of our algorithm, which
identify and match entities, are useful within both the column-
and row- store contexts. The third phase of our algorithm,
which analyzes the output of the preceding phases and de-
cides which relations to normalize, is parameterized to target
either a column- or row- store. If the final schema is destined
for a row-store, phase 3 will normalize relations more aggres-
sively. Conversely, if the schema is destined for a column-
store, phase 3 will pre-join relations more frequently.

In Section 2, we summarize earlier works related to our
algorithm. In Section 3, we explain each of our algorithm’s
three phases. In Section 4, we present our algorithm’s per-
formance on three semistructured datasets. In Section 5,
we discuss our algorithm’s limitations and areas for further
investigation. In Section 6, we summarize our findings.

2. RELATED WORK
Functional dependencies: Largely due the close re-

lationship between normalization and functional dependen-

cies, functional dependency detection has been studied ex-
tensively [1, 2, 13, 14, 15, 18]. Mannila et al. prove that
identifying the complete set of functional dependencies present
within a relation is, in the worst case, exponential in the
number of attributes [18]. Our work avoids this exponen-
tial search space by mining functional dependencies between
pairs of attributes rather than arbitrary subsets of attributes.
We note that this search space can be further reduced by ap-
plying the transitivity axioms that Bell presents [1].

Several of these dependency detection efforts attempt to
identify“soft functional dependencies”or“approximate func-
tional dependencies,” which are similar to traditional func-
tional dependencies, except that they are required to hold
for most — but not all — data instances [13, 14, 15]. In
particular, Ilyas et al. propose an approximate functional
dependency detector which they use to improve query op-
timizer performance. We draw from their construction, ap-
plying it within the context of automated normalization and
modifying it to function more robustly for skewed attributes.

Semistructured-to-relational mappings: Our work
relates closely to previous mappings of semistructured data
into relational data structures [4, 5, 6, 9, 21, 22, 23, 24, 27].

The most straightforward of these earlier efforts provide
generic mapping rules that do not necessitate upfront anal-
ysis of the input dataset. One example, Chasseur et al.’s
Argo, encodes JSON documents as ternary relations consist-
ing of “object id,” “attribute name,” and “attribute value”
columns [4]. Each attribute at the end of a nesting path
through a record (i.e. a leaf attribute) is represented with a
row in the ternary relation. Generic mappings of this sort
achieve our goal of encoding semistructured documents in
a relational system, but do not leverage the specific charac-
teristics of the input dataset to achieve a more performant
encoding or facilitate data exploration.

Other works are more similar to ours and generate schemas
tailored to the input dataset. For example, Deutsch et al.
present a language called STORED that maps semistruc-
tured data onto a combination of standard relational ta-
bles and an auxiliary data structure referred to as an “over-
flow graph”1[5]. They further present a data mining algo-
rithm based on Wang and Liu’s earlier work [25, 26], which
identifies structures that appear frequently within the input
dataset. They automatically translate these frequent struc-
tures into STORED mappings for the input data.

Shanmugasundaram et al. similarly present a mapping
strategy based on structural analysis of the input dataset
[23]. They design schemas for XML datasets by analyzing a
graph of the DTD elements present in the input data; they
apply a set of heuristics which dictate whether an element
should be materialized as its own table or inlined within a
parent element’s table. Although their algorithm cannot op-
erate directly on data that lacks a DTD specification, it can
be applied within the schemaless context if the input dataset
is first preprocessed by a schema discovery algorithm. One
such discovery algorithm is Garofalakis et al.’s XTRACT
system which produces a DTD from the arrangement of el-
ements within a set of input XML documents [10].

Despite their overall differences, STORED’s and Shan-
mugasundaram’s approaches are similar in that they both
extract their schemas from the original structures of the
dataset and do not consider the distribution of data within

1This auxiliary structure limits STORED’s ability to inte-
grate with vanilla RDBMSes

those structures. In contrast, our approach ignores the orig-
inal structure of the input and instead depends on patterns
in the data (functional dependencies) to guide its schema
generation. Our data-driven approach has three advantages
over the prior structural approaches: 1) our analysis remains
possible even when hierarchical structures are not present in
the input dataset (e.g. flat CSV data files), 2) our algorithms
can produce structures that were not present in the original
encoding, and 3) our use of functional dependencies allows
us to compress the input dataset through deduplication.

One previous approach to schema mapping that is sen-
sitive to data distributions is Bohannon et al.’s LegoDB,
which maps XML data to relational structures according to
a search process that minimizes the cost of a user-specified
workload [3]. LegoDB collects statistics about individual
data attributes that it then feeds to a traditional query op-
timizer in order to estimate the cost of its workload for
many candidate schemas. Since the system does not col-
lect joint statistics about input attribute pairs, however, it
cannot leverage functional dependencies as we do in our al-
gorithm. Moreover, given that LegoDB requires users to
define a query workload in advance of schema generation, it
is less useful within the context of data exploration where
queries are unlikely to be known in advance.

Another approach to schema mapping that is sensitive to
data distributions is some very recent work by Pham et al.
in the context of graph (RDF) data [19]. This work scans
through a vertex-edge-vertex (SPO) dataset to find charac-
teristic sets (CSs) consisting of edge-labels that co-occur as
outgoing edges from multiple vertices. The CSs correspond
to entities from which relations can be derived. Pham et
al. use structural information in the graph (direct edges to
non-literal vertices) to discover relationships between enti-
ties. In contrast, our algorithm does not rely on structural
clues in the dataset to discover relationships.

A final approach related to our work is the xCurator sys-
tem, which addresses our problems of schema generation,
entity identification, and entity matching in the RDF con-
text [12]. xCurator extracts entities by constructing and
analyzing a structure graph from the dataset. Again, our
algorithm differs in that it ignores structural information.

Schema matching: The second phase of our algorithm
is closely related to earlier work on schema matchers, which
identify mappings between independently designed schemas
that model the same underlying domain. Rahm and Bern-
stein present an extensive survey of past approaches to this
problem [20]. Despite the breadth of past work, earlier ap-
proaches are largely incompatible with our needs in phase 2:
some require user-input (we intend our algorithm to be un-
supervised), some rely on similarities in attribute names (we
intend our algorithm to be entirely data driven), and some
require rich schema information such as types or foreign-keys
(we assume that this context will sometimes be unavailable).
In this paper, we thus propose a matching scheme tailored
to phase 2’s restricted schema matching problem.

Our phase 2 algorithm borrows Li and Clifton’s strategy
of clustering attributes within a single schema into cate-
gories in order to reduce the number of potential matches
the algorithm must consider [16].

3. ALGORITHM OVERVIEW
In this section, we provide a high-level overview of our

algorithm, reserving more detailed discussion for later sec-

tions. We use a toy dataset of submissions to a journal
in order to ground our description in concrete examples.
Listing 1 shows a sample record from this dataset, which is
encoded in the JSON format. The record includes the sub-
mission’s title, author, and assigned reviewer, along with the
author’s and reviewer’s associated institutions. A complete
dataset would include many examples of this kind of sub-
mission record. While we expect that the structure of each
record will vary, we assume that all of the records logically
represent the same kind of object or entity.

{ ‘ submiss ionId ’ : 1576 ,
‘ t i t l e ’ : ‘ P e r i l s o f DB’ ,
‘ author ’ : {

‘ email ’ : ‘ js@e . p f l ’ ,
‘name ’ : ‘ J . Snow ’ ,
‘ i n s t i t u t i o n ’ : {

‘name ’ : ‘EPFL’ ,
‘ number ’ : 1 } } ,

‘ rev iewer ’ : {
‘ email ’ : ‘ dd@ca . uk ’ ,
‘name ’ : ‘D. Duck ’ ,
‘ i n s t i t u t i o n ’ : {

‘name ’ : ‘ Cambridge ’ ,
‘ number ’ : 14 }}}

Listing 1: Sample JSON

We begin constructing a
relational schema for the
data by temporarily trans-
forming the raw data records
from their semistructured
format into a flat table akin
to the “universal relation”
model [7, 17]. In order to
transform the JSON records
from our journal submissions
example, we create a table
with a column for every at-
tribute that originally con-
tains an atomic value (e.g. a
string or integer), where the
column’s name is the con-
catenated path through any
nesting required to reach the atomic value. We then pop-
ulate the table with a row for every record in the dataset
by entering each record’s values into their corresponding
table column. Figure 1 illustrates this flattening process,
as its first row contains the flattened form of the record
shown in Listing 1 and its remaining rows represent addi-
tional submission records. Since our toy example does not
rely on semistructured features more complex than nested
attributes, this simple transformation procedure is sufficient
for our needs here. We describe techniques for accommodat-
ing other semistructured features (e.g. creating relationship
tables to model nested arrays of objects) in Appendix A.

This flat representation does not meet either of our pri-
mary goals: (1) offering users semantic insight into their
datasets and (2) creating an approximately normalized schema
for a dataset. This encoding nevertheless serves as a conve-
nient starting point because it decouples our algorithm from
a specific semistructured format and ensures that our results
reflect the patterns implicit in the original data rather than
the original data structure. We consciously ignore struc-
tural cues such as JSON’s implicit object boundaries be-
cause these cues frequently derive from assumptions and
needs that may not be borne out by the data itself (e.g.
for development convenience, separate entities may be com-
bined into a single JSON object). As our algorithm pro-
gresses, we refine this flat representation to expose more of
the implicit structure of the data and thereby construct a
more traditional relational schema.

In phase 1, we identify functional relationships between
attributes in the dataset and leverage those relationships to
decompose our initial table into a collection of smaller ta-
bles joined by primary-to-foreign key relationships. While
the strict definition of a functional dependency from an at-
tribute A to another attribute B requires that n-to-one re-
lationships exist between all values of A and B, we adopt
Ilyas et al.’s notion of a “soft” functional dependency which

subId title authEmail authName authIName authINum revEmail revName revIName revINum
1576 Perils... js@e.pfl J. Snow EPFL 1 dd@ca.uk D. Duck Cambridge 14
1680 Broken... js@e.pfl J. Snow EPFL 1 nd@h.edu N. Dame Harvard 55
1559 Wins... dd@ca.uk D. Duck Cambridge 14 js@e.pfl J. Snow EPFL 1

Figure 1: Collection of flattened records from the journal dataset (nested paths in column names shortened to save space)

Figure 2: The ideal phase 1 attribute tree for the journal
submission dataset, with parent attributes in bold and phase
2 entity matches highlighted in red and purple.

instead requires that the relationships exist for most values
of A and B [14]. At the highest level, we identify these soft
functional dependencies by considering pairs of attributes
and observing how frequently the necessary n-to-one rela-
tionships exist between their values (described in Section
3.1.2). Even within the compact journal submission exam-
ple, we would likely identify many functional relationships
between pairs of attributes. Among others, we would iden-
tify that all attributes depend upon “subId” and that all
attributes prefixed with “auth” depend upon “authEmail.”

Based on an analysis of the identified dependencies, we
group attributes that exhibit similar functional relationships
and materialize these groups as new tables. In order to sepa-
rate a group of attributes into their own table, every member
of the group must depend upon some other attribute in the
dataset. We refer to the attribute upon which all members
depend as the parent of the group. For example, we might
group the attributes prefixed with “auth” together because
they share a common dependency on“authEmail.” These at-
tributes can be separated into their own table that is linked
to the original through a primary-to-foreign key relationship
on their parent attribute, “authEmail.”

While this“auth”decomposition is valid, it is not the most
expressive arrangement of the input: the dataset contains a
chain of dependencies from “subId” to “authEmail” to “au-
thINum” to “authIName,” but the current decomposition re-
veals only functional relationships from“authEmail”to fields
prefixed with“auth.” We must further decompose our tables
in order to expose the remaining functional relationships. To
this end, we generate the attribute groups according to an
algorithm that attempts to create the longest possible chains
of groups from the identified functional dependencies.

The table structure resulting from this decomposition pro-
cess can be modeled as a rooted tree in which every node
represents a relation and every edge represents a primary-
to-foreign key relationship. Figure 2 shows a potential at-
tribute tree for the data contained in the journal submission
example (ignore the purple and red boxes for now).

Phase 2 of the algorithm now begins. Unlike phase 1,
which exclusively identifies relationships between attributes
within a single record, phase 2 identifies relationships be-
tween groups of attributes across records. In particular,
this phase searches for instances where the dataset contains

multiple attribute groups that seem to represent similar en-
tities in the dataset’s domain model. As an example of
this pattern, consider the group of journal submission at-
tributes that contains “authIName” and “authINum” along-
side the group that contains “revIName” and “revINum.”
Despite their distinct naming schemes, each group contains
attributes describing a logical institution entity. When the
fields are prefixed with “rev,” the institution is associated
with the reviewer, and when the fields are prefixed with
“auth,” the institution is associated with the author; regard-
less, the two groups always describe an institution. More-
over, the institutions that appear in the“revI”prefixed fields
on some records will likely appear in the “authI” prefixed
fields on others, as a single institution’s professors may some-
times serve as reviewers and other times as authors.

We can therefore improve the relational design of our
schema by merging these attribute groups together so that
the resulting schema contains a single relation composed of
all institutions, regardless of their author/reviewer classifica-
tion. This merging operation eliminates redundant storage
of records representing the same institutions in different ta-
bles, thereby reducing the overall size of the dataset. More
importantly, it alerts users to the fact that some branches
of the tree refer to an overlapping domain.

From a high level, phase 2 quantifies the overlap between
the domains of subtrees within the attribute tree and de-
clares that subtrees represent the same type of entities when
their domains significantly overlap (described in Section 3.2).
Phase 2 annotates the attribute tree with entity overlap in-
formation so that phase 3 can later merge the branches to-
gether. The purple and red boxes shown in Figure 2 repre-
sent the annotations we expect phase 2 to add to the jour-
nal submission attribute tree. The purple portion shows
the earlier-described relationship between the“revI”prefixed
fields and the “authI” prefixed fields. The red portion shows
the overlapping relationship between the“rev”prefixed fields
and the “auth” prefixed fields, which match because both
groups contain attributes related to a person entity.

Phase 3 creates the final relational schema for the dataset
by merging the subtrees identified by phase 2 and condensing
long dependency chains (described in Section 3.3). Although
these long chains reveal dependencies in the dataset, phase
3 condenses them because excessively normalized schemas
are (1) less readable, (2) bloated by foreign keys, and (3)
slow to query due to extensive JOIN operations.

Figure 3 shows one schema that the algorithm might cre-
ate for the journal submission dataset. It contains three
relations: one representing the root submission table, one
representing people entities, and one representing institution
entities. These relations are stitched together by primary-
to-foreign key relationships that the algorithm introduces.

3.1 Phase 1 in-depth
In this section, we expand our earlier description of phase

1’s mining of soft functional dependencies and its decompo-
sition of the initial flat table into a tree of smaller tables.

subId title revID authID ID
1576 Perils... 3 1 1
1680 Broken... 5 1 3
1559 Wins... 1 3 4

email name instID ID
js@e.pfl J. Snow 1 1
dd@ca.uk D. Duck 4 3
nd@h.edu N. Dame 5 5

INum IName ID
1 EPFL 1
14 Cambridge 4
55 Harvard 5

Figure 3: The final relational schema generated for the data from the journal submission example.

3.1.1 Soft vs hard functional dependencies
We choose to mine soft functional dependencies instead of

traditional functional relationships for two reasons. First, by
mining soft relationships we allow our algorithm to operate
on imperfectly curated datasets that contain a few erroneous
records in violation of otherwise valid functional dependen-
cies. Data inconsistencies of this type can arise in most any
format, but are especially common within semistructured
datasets because these formats often do not support schema
level constraints (e.g. type or foreign key constraints).

Second, we favor soft functional dependencies because they
philosophically align with our goal of helping users learn
about their datasets. Even if they do not hold globally,
soft functional relationships reflect the broad contours of
the training dataset and can help users to understand the
data structures prevailing within the majority of their data.

3.1.2 Identifying soft functional dependencies
We detect a soft functional relationship from a1 to a2 if

the values of a1 usually exhibit n-to-one relationships with
values of a2. Ilyas et al. [14] provide a light-weight formula
to approximate the frequency of these n-to-one relationships:

formula 3.1.1. Let strength(a1, a2) be:

strength(a1, a2) =
of unique values of a1

of unique (a1, a2) value pairs

The strength measure ranges from 0 to 1, and is positively
correlated with the degree to which a1 predicts a2. When
individual values of a1 pair with many values of a2, the
denominator grows and the strength measure approaches
zero. Conversely, when a hard functional dependency exists
and every value of a1 pairs with a unique value of a2, this
measure equals one.

We found that Formula 3.1.1 works well most of the time.
However, when a2’s distribution is significantly skewed to-
ward a single value, it becomes possible that the strength
value will be high as a result of coincidence rather than as
a result of the dataset’s semantics. The core problem is
that a skewed value distribution of a2 can produce patterns
in the training data that resemble an n-to-one relationship
where many values of a1 map to the (skewed) modal value
of a2. We address this issue by modifying Formula 3.1.1 to
discount the modal value of a2:

formula 3.1.2. Let v2freq be the modal value of a2 in the
dataset and let m(a1, a2) be the number of unique (a1, a2)
value pairs where a2 equals v2freq.

strength(a1, a2) =
of unique values of a1 − m(a1, a2)

of unique (a1, a2) pairs−m(a1, a2)

Given a threshold, α, which corresponds to the allowable
“softness” in the functional relationships, we use Formula
3.1.2 to discover soft functional dependencies in the dataset:

condition 3.1.1. Let strength(a1, a2) be defined as in
Formula 3.1.2, and density(a) be the fraction of records
where a is non-NULL. A soft functional dependency from
a1 to a2 exists when:

(1) strength(a1, a2) has a non-zero denominator
(2) strength(a1, a2) > α
(3) density(a1) ≥ density(a2)

The threshold α should be set to a number close to 1 (0.99 in
our experiments) in order to guarantee that a1 reliably indi-
cates a2’s value within the training set. This guarantee al-
lows us to treat these relationships as approximate primary-
to-foreign key links later in phase 1 and, consequently, is
essential to our ability to decompose the initial flat table
into many smaller relations.

3.1.3 Enumerating dependencies
For each pair of attributes, Condition 3.1.1 can be checked

with algorithms that are either linear or linearithmic (n log
n) in the size of the dataset. For simplicity, we identify
dependencies by applying the conditions to every pair of at-
tributes, in both directions (O(N2) comparisons where N
is the number of attributes). This process enumerates all
combinations of individual attributes that meet our condi-
tions. However, this process cannot discover attributes that
are functionally dependent on groups of attributes.

Our implementation can be optimized by leveraging the
transitivity of functional relationships to avoid performing
redundant dependency tests. Bell fully evaluates this strat-
egy of optimizing dependency enumeration [1].

3.1.4 The longest path heuristic
After discovering dependencies, phase 1 forms groups of

attributes. As described in Section 3, phase 1 forms these
groups by identifying the longest chains of functional depen-
dencies present in the dataset. Phase 1 employs this heuris-
tic because it ensures that the attribute tree includes as
many functional dependencies as possible and thus includes
as much semantic information as possible. This strategy of-
fers flexibility to the algorithm’s later phases, allowing phase
2 to match entities within the tree’s branches and phase 3
to selectively materialize the dependencies as relations.

Phase 1 begins its grouping process by constructing a de-
pendency graph where nodes represent attributes and di-
rected edges represent functional relationships (edges run
from parent attributes to dependent attributes). The graph
contains a node for every attribute in the training set and
directed edges modeling each of the previously discovered
dependencies. The graph also contains a special “ROOT”
node that has outgoing edges to every other node. Figure
4(c) shows part of the journal submission example’s graph.

For every attribute, a, phase 1 then computes lp(a) which
denotes the longest path through the dependency graph
from “ROOT” to a. Ties are resolved according to the
strength of the last functional dependency on the path, or
are resolved randomly if the strengths are also tied.

Figure 4: (a) An unlikely dependency graph cycle (b) A
likely dependency graph cycle. (c) A subset of the depen-
dency graph for the journal submission dataset.

Consider the value of lp(revEmail) in Figure 4(c). There
are two paths to“revEmail”in the dependency graph: “ROOT”
→“revEmail”and“ROOT”→“subId”→“revEmail.” Phase
1 chooses the latter path as lp(revEmail) because it is longer.

In the general case, computing lp(a) is an NP-hard prob-
lem and requires a brute-force examination of every possi-
ble path from “ROOT” to a. When the input is a directed
acyclic graph (DAG), however, a linear time solution exists.
Although we cannot assume that the phase 1 dependency
graphs will be DAGs, the transitive nature of functional de-
pendencies allows us to assume that the cycles in the graph
will result from bidirectional dependencies between pairs of
attributes as shown in Figure 4(b). Multi-node cycles simi-
lar to Figure 4(a) are only possible if a mistake was made in
identifying functional dependencies, since multi-node cycles
without bidirectional edges require that some functional de-
pendencies do not exhibit the transitive property. We thus
can usually transform our initial dependency graph into a
DAG by removing bidirectional relationships. We remove a
bidirectional relationship between attributes a1 and a2 ac-
cording to the following rules:

1. If descendants(a1) − {a2} = descendants(a2) − {a1},
we merge the attributes together into a single node in the
dependency graph. In this case, the attributes participate
in the same functional dependencies so we treat them as
a single unit. We would use this strategy to eliminate the
cycle between “revIName” and “revINum” in Figure 4(c).

2. If the nodes cannot be merged, we break the cycle by
removing the edge beginning at the node with fewer de-
scendants in the graph.

3. If neither of the above conditions hold, we delete the edge
with the lower strength, breaking ties randomly.

Once the longest paths have been identified, phase 1 forms
attribute groups. For every attribute, it computes parent(a)
which denotes the attribute immediately preceding a on
lp(a). The algorithm then groups all attributes that share
the same value of parent(a). Throughout our remaining
discussion, we refer to these groups by their shared parent
attributes; we define Ap1 to be the attribute group contain-
ing all attributes for which parent(a) equals p1.

Finally, the algorithm splits the flat table into these at-
tribute groups to form the tree structure that comprises the
phase 1 output (as described above and shown in Figure 2).

3.2 Phase 2 in-depth
Phase 2 searches within the attribute tree to discover se-

mantically equivalent entities that are embedded in multi-
ple places within the dataset, as occurs in the algorithm
overview’s journal submission example with person entities
(which exist as both authors and reviewers) and institution
entities (which are nested underneath both authors and re-
viewers). In order to identify this behavior, phase 2 ana-
lyzes collections of attributes that — despite having differ-
ent names (e.g “revIName” vs. “authIName”) — have value
distributions that suggest they represent the same entity.

We begin with Section 3.2.1 which explains why subtrees
of the phase 1 attribute tree are a natural choice for search-
ing for matching entities. We continue with Section 3.2.2
which presents our conditions for determining that two sub-
trees likely contain the same type of entities. For clarity,
we first describe our algorithm in its most uncomplicated,
but lowest performing variation. However, we describe four
optimizations to this algorithm in Appendices B, C, D, E.

3.2.1 Entities and subtrees
We define entities as elements of the dataset’s domain

model that contain descriptive attributes and a unique iden-
tifier. For instance, the journal submission example includes
person entities, which are uniquely identified by their emails
and described by their names and institutional affiliations.

We classify attributes as “descriptive attributes” for a par-
ticular type of entity by examining the frequency with which
the attributes change for a specific entity instance. On
one hand, some attributes frequently hold different values
throughout the dataset even when they are associated with
the same entity. These frequently changing attributes typi-
cally model time-dependent information, where each record
in the dataset contains a snapshot of the attribute’s value.
We are unconcerned with these kinds of attributes in phase
2, as they are not amenable to normalization and are not
redundantly stored across repeated occurrences of an entity.

Instead, phase 2 searches for attributes that remain rel-
atively fixed across all references to a specific entity; these
attributes model concepts that are not time-dependent, such
as a person’s name. By virtue of their stability across ref-
erences to single entity, a strong n-to-one relationship exists
from an entity’s unique identifier to its stable attributes.
These stable attributes consequently tend to descend from
their entity’s unique identifier in the phase 1 attribute tree.
Entities in a dataset thus correspond to subtrees of the phase
1 attribute tree:

Defintion 1. If Ap is an attribute group in the tree with
parent attribute p, then there exists a subtree beginning at Ap
that contains all attribute groups Aattr such that the parent
of Aattr equals p or one of p’s descendants.

For example, within the journal submission data, there is
a perfect correspondence between the attribute tree’s five
subtrees and the domain model’s 5 entities (1 submission
entity, 2 person entities, and 2 institution entities)2.

Since each semantic entity in the dataset usually corre-
sponds to a subtree in the phase 1 attribute tree, entity
matching reduces to a pairwise comparison of all subtrees
(O(N2) in the number of subtrees). In many cases, this pro-
cess identifies redundant matches because matching subtrees

2In general, not every subtree corresponds to an entity.

authEmail authName authIName authINum revEmail revName revIName revINum
js@e.pfl J. Snow EPFL 1 js@e.pfl J. Snow EPFL 1
js@e.pfl J. Snow EPFL 1 js@e.pfl J. Snow EPFL 1
dd@ca.uk D. Duck Cambridge 14 dd@ca.uk D. Duck Cambridge 14

Figure 5: The result of joining the flat table on authEmail = revEmail.

often contain sub-subtrees that also match. Our algorithm
exploits this redundancy to gain additional insight into the
input data’s semantics (discussed in Appendix C).

3.2.2 Detecting matching subtrees
Phase 2 uses a three step process to determine whether

the subtrees S1 and S2 model the same underlying entity:
Step 1: This step identifies all pairs of training records

where the subtrees seemingly describe the same entity. For
example, when considering the person subtrees, AauthEmail
and ArevEmail, the algorithm must find all pairs of records
where the author for the first record is the reviewer for the
second. This process is essentially a join operation that
returns records with matching values within their S1 and
S2 subtrees. Given that the algorithm does not yet under-
stand the relationships between S1’s and S2’s attributes, it
cannot perform a direct subtree match. Instead, phase 2
approximates this join on the entire subtree by performing
a join on the parent attributes of the two subtrees3. Due
to the functional relationships from the parent attribute to
the subtree’s other attributes, this simpler join identifies all
pairs of records that might contain the same entity. Figure
5 illustrates this process for the AauthEmail and ArevEmail
subtrees. Appendix B outlines an optimization of this join.

When the result of this join is empty, we conclude that
there is no possibility of S1 and S2 containing the same
type of entity and skip the remaining two steps for this
pair. This occurs whenever the subtrees’ parent attributes
have no common values, as in the example of AauthEmail
and AauthINum. When the result is non-empty, the joining
records may reflect that 1) the two subtrees are related and
the matches contain the same entities, or 2) the subtrees are
unrelated and their parent attributes coincidentally overlap.
The remaining two steps distinguish between these cases.

Step 2: This step analyzes the results from step 1 in or-
der to identify correspondences between S1’s attributes and
S2’s attributes. If the two subtrees truly represent the same
underlying type of entity, we expect them to contain pairs
of corresponding attributes. Consider, for example, the sub-
trees AauthEmail and ArevEmail, which both model person
entities. Their corresponding attributes can be mapped to-
gether as follows: “authEmail” maps to “revEmail,” “auth-
Name”maps to“revName,”“authINum”maps to“revINum,”
and “authIName” maps to “revIName.” In this case, it is
fairly trivial for a human observer to infer the appropriate
mapping. In many other datasets, however, the mapping
between subtrees will not be so obvious. For generality, we
do not rely on information from attribute names.

Step 2 constructs attribute mappings by considering the
frequency with which attributes from the two subtrees con-
tain the same values on the same records in the step 1 join

3When the parent attribute of a subtree is a merged at-
tribute created during phase 1, we perform multiple joins
and try all possible parent combinations. For example, if
parent(S1) is the merged attribute “A, B” and parent(S2)
is “C,” we perform the join on both A = C and on B = C.

result. It tracks these frequencies in an attribute matrix
that contains a cell for every pairing of S1’s and S2’s at-
tributes.4 We denote these pairs as (a1, a2). Every cell,
attrMatrix[a1][a2], is initialized to zero. The algorithm
then iterates through every row, R, from the join result and
increments attrMatrix[a1][a2] by 1 if R[a1] equals R[a2].

For example, the matrix generated from the join in Figure
5 will have the value 3 in the cells for the pairs (revEmail, au-
thEmail), (revName, authName), (revIName, authIName),
and (revINum, authINum). All other cells contain zero.

From the attribute matrix we construct the mapping be-
tween S1’s and S2’s attributes. We attempt to map the S1

attributes to the S2 attributes that most frequently share
their values across the join set. Formally, we define:

Defintion 2. For every attribute a1 in S1, match(a1)
equals the attribute a2 in S2 such that

1. R[a1] = R[a2] for a threshold percentage of joined records:

attrMatrix[a1][a2]

records in join set
≥ α2

2. attrMatrix[a1][a2] ≥ attrMatrix[a1][a′2], for all other at-
tributes a′2 in S2

Definition 2’s first requirement excludes matches between
attributes that coincidentally share the same value for some
records in the join set. The threshold parameter α is the
same α from Condition 3.1.1, which corresponds to the ac-
ceptable “softness” of the dataset. However, α2 is used as
the threshold here, since the errors multiply through a join.
The match function is not guaranteed to be defined for all
attributes; we refer to unmatched attributes as orphans.
The definition’s second requirement selects the best amongst
multiple matches for an attribute that are above threshold.
It allows match to map a single attribute from one tree to
multiple attributes in the other when ties occur.

In Appendix E we describe an optimization to this process
which clusters attributes based on their domain values. The
algorithm leverages this clustering to improve accuracy and
performance by excluding attribute matches across clusters.

Step 3: Finally, phase 2 analyzes the results from the
previous two steps to determine whether the two subtrees
likely model the same underlying entity. Phase 2 identifies
an entity match only if the following three conditions hold:

1. The subtrees’ join result is at least (1-α)% the size of the
original dataset. This condition eliminates matches that
result from extremely small, coincidental overlaps in the
domains of the subtrees’ parent attributes.

2. The match function is defined for the majority of the at-
tributes contained within the smaller subtree. This con-
dition allows us to identify subtree pairs that partially
match, while also eliminating weak matches that may re-
sult from noise in the attribute matrix computations.

4In practice we do not compare every pair of attributes. See
Appendix E for more details.

3. The match function is defined for attributes other than
the subtrees’ parent attributes. Parent attributes are guar-
anteed to match with each other since the subtrees are
joined on these attributes. Thus, the match function pro-
vides no new information for parent attributes.

After identifying entity matches, phase 2 performs addi-
tional analysis to find partners for some orphaned attributes.
The algorithm analyzes nested matches (e.g. the person and
institution matches from the journal submission example) to
find attribute matches that were overlooked during earlier
phases. We outline this process further in Appendix D.

3.3 Phase 3 in-depth
Phase 3 produces a physical schema for the input data and

a mapping of input attributes onto that physical schema.
This phase begins by merging together the phase 2 entity
matches. An entity’s subtrees are merged in three steps:

1. Form groups of subtrees such that the members of each
group are all phase 2 matches with one another. For
example, if the phase 2 output contains the matches A-
B, A-C, and B-C, then we form a group of all three trees.5

2. For each group of subtrees, designate the one with the
most attributes as the canonical subtree for that group
(resolve ties arbitrarily). Remove all non-canonical sub-
trees from the attribute tree.

3. Map each non-canonical subtree to its corresponding canon-
ical subtree according to the pair’s phase 2 match func-
tion. If the match function is undefined for any non-
canonical attribute, add an attribute to the root of the
canonical subtree and map the orphan to this new at-
tribute. This ensures that every input attribute can be
mapped to something in the physical schema.

Phase 3 then transforms the tree of canoncial subtrees into
its final schema. The schema begins with a relation that cor-
responds to the root attribute group and contains all of the
root attributes. The algorithm then performs a breadth-first
traversal of the tree in order to build the complete schema.
During each iteration of this traversal, the algorithm decides
whether to create a new relation for the attribute group it’s
considering or to merge that group into an existing rela-
tion. As relations are created, the map of input attributes
to physical attributes is updated accordingly.

The algorithm creates new relations if at least one of two
conditions is satisfied. First, if the current attribute group
corresponds to the root of a merged subtree, phase 3 always
creates a new relation. This ensures that phase 3 can re-
place the original subtrees that were merged together with
foreign key references into the newly created relation. Sec-
ond, phase 3 creates a new relation if the cardinality of the
current attribute group is at least ε% less than the cardinal-
ity of the relation it would otherwise be condensed into (the
group’s nearest ancestor in the tree for which a relation has
already been created). By default we set ε% to 50%, but
when a column-store is targeted, a larger ε is recommended.
We choose to create relations for groups that correspond to
significant cardinality shifts because the shifts usually sig-
nal the presence of a separate semantic entity. Even when

5We simplify our implementation by assuming that subtree
matches always behave transitively. While we expect this
behavior to hold in most cases and observed no exceptions
in our experiments, non-transitive matches are possible.

they do not represent a new kind of entity, they represent
a significant opportunity for normalization since they will
reduce the size of the dataset if materialized as their own
relation. This normalization and resulting data size reduc-
tion will generally improve row-store performance. However,
column-stores usually perform better on denormalized data
— this is why they benefit from a larger ε. Even though
high ε values will reduce the number of entities that are re-
vealed via the creation of separate tables, those entities that
are hidden by a large value of ε can still be presented to the
user separately from the final table schema.

If the attribute group under consideration does not meet
either of these conditions, materializing the group as its own
relation yields neither the benefits of entity identification
nor significant redundancy elimination. The algorithm thus
adds the attributes from the group to the relation corre-
sponding to the group’s nearest ancestor in the tree. This
process concentrates the user’s attention on the most impor-
tant aspects of the dataset and may improve query perfor-
mance by eliminating extra table joins.

Associations: The algorithm stitches together the cre-
ated relations with primary-to-foreign key links. While the
parent attributes would ideally be primary keys for their cor-
responding relations, this is often infeasible because parents
are only required to be approximately unique within their re-
lations. Instead, the algorithm adds an integer“id”attribute
to each relation and designates “id” as the relation’s primary
key. Associations between relations are materialized as for-
eign keys from relations higher in phase 3’s output tree to
their children. By placing foreign keys in this way, phase
3 ensures that each relation can be deduplicated (if foreign
keys were created in the opposite direction, every relation
would have the same cardinality as the root relation).

Data loading: Each input record is loaded into the phase
3 schema by creating rows in phase 3’s output relations ac-
cording to the mapping of input attributes to physical at-
tributes. Once all input records have been transformed, the
phase 3 relations are deduplicated to reduce redundancy.

4. EXPERIMENTAL EVALUATION
We evaluate our algorithm with three real world datasets:
Dataset #1 — Flights: Our first dataset was collected

by the US Bureau of Transportation Statistics and reports
the timeliness of every non-stop flight within the United
States. Each record corresponds to a single top-level flight
entity and contains 64 attributes that collectively describe
the flight’s scheduled itinerary, any delays it experienced,
and its affiliated airline. Within these flight objects, the
dataset nests origin and destination airport entities.

Our training set includes 1.3 million flight records from
the first months of 2014. The data is originally encoded in
the CSV data format and, consequently, requires none of the
preprocessing steps outlined in Appendix A.

Dataset #2 — Twitter: Our second dataset consists of
10 million records scraped from the JSON API of the social
network Twitter, which allows its users to exchange mes-
sages called “tweets.” Each record models a single top-level
tweet entity and contains a short message along with more
than 300 attributes of metadata. This metadata includes a
user entity that identifies the author of the tweet and a place
entity that specifies where the message was posted from.

10% of the experimental dataset models a special kind of
tweet that users create by reposting a message that someone

else previously authored. These special tweets, referred to
as “retweets,” are distinguishable because they embed the
original tweet that they are derived from (this models the
n-to-one relationship from retweets to original tweets).

This dataset contains arrays of nested objects. As de-
scribed in Appendix A, our algorithm treats nested-object
arrays as independent sub-instances of the original schema
generation problem. In order to simplify our analysis of the
Twitter results, we only focus on the first iteration of our
algorithm, since this iteration contains the most important
semantic entities (tweets, retweets, users, and places) and
over 100 attributes on most records, while the subsequent
sub-instances cover more fringe attributes and entities.

Dataset #3 — GitHub: Our third dataset was scraped
from GitHub, which is a website allowing developers to col-
laborate on software projects managed by the Git version
control system. At the top-level, records from this dataset
contain a pull request entity which models a user’s request to
merge code across branches or different repositories. These
pull request entities reference 7 embedded user entities, head
and base commit entities (i.e. the new commit and the com-
mit it’s to be merged on top of), and head and base reposi-
tory entities. Our training set contains 1M records scraped
from GitHub’s JSON API by the GHTorrent project [11].

Methodology: We have manually analyzed the raw data
and documentation associated with each of the three datasets
in order to gain insight into the semantics of their attributes
and the relationships among their attributes. In Sections
4.1-4.3, we evaluate our algorithm’s performance by com-
paring the output of each phase with the expectations de-
veloped during this analysis. In Section 4.4, we compare
our algorithm with Argo [4] and an XML transformation
algorithm from Shanmugasundaram et al. [23].

Due to the large number of attributes in all of these datasets,
it is impossible to fit the full schema produced by our algo-
rithm in the main part of this paper. However, Appendix F
shows the final schema for the GitHub dataset.

Performance: Given that our algorithm is intended to
be run once per dataset in an offline setting, we did not
performance-optimize our implementation and do not present
performance metrics in the body of the paper. In Appendix
H, we provide details about our implementation, analyze its
runtime, and describe the trade-offs of sampling.

4.1 Phase 1 results
Phase 1 produces attribute trees with many attribute groups

for each of the datasets, with the Flights tree having the
fewest at 22 and the GitHub tree having the most at 28.

Entities and stable attributes: As described in Sec-
tion 3.2.1, each entity has a unique identifier and a set of
descriptive attributes that are either stable or variable across
repeated references to a specific instance of the entity. We
expect entities to manifest in the phase 1 attribute tree as
subtrees that begin with the entity’s unique identifier and
contain the entity’s stable attributes. The phase 1 output
for each of the experimental datasets generally shows this
pattern. To illustrate, we consider the Flight dataset’s ori-
gin airport entity which has the unique identifier “origin
airport seq id” and has descriptive attributes that specify
the airport’s short-code (e.g. “JFK”) along with its loca-
tion. These descriptive attributes are relatively stable across
repeated references to the same airport and, consequently,

form a subtree with the parent “origin airport seq id.” The
subtree contains only attributes related to the origin airport.

In most cases, the entities contained within the experi-
mental datasets behave similarly to this example and cor-
respond to a single subtree in the phase 1 graph; the user
entity from the Twitter dataset, however, is split across two
subtrees. The first has “user id” as its parent attribute and
contains the user’s basic information (e.g. screen name).
The second has “user profile image url” as its parent and
contains attributes related to the visual design of the user’s
profile (e.g. text color and image URLs). This division oc-
curs as a result of phase 1’s strategy for assigning parent
attributes: when choosing the parents for most of the user
attributes, phase 1 finds that both the ID and URL are pos-
sible parents at a depth of one in the attribute tree; faced
with a tie in the depth heuristic, phase 1 assigns each of
the user attributes to the parent with which the attribute
demonstrates the strongest functional relationship. The at-
tributes for the user’s basic information are most strongly
dependent upon “user id” and are correspondingly placed in
that subtree; the visual attributes are most strongly depen-
dent upon “user profile image url” and are placed accord-
ingly. This split suggests that the visual attributes associ-
ated with users behave as their own entity. Each version of a
user’s profile corresponds to an instance of this entity whose
unique identifier is “user profile image url” and whose de-
scriptive attributes include the remaining visual attributes.
Since these versions are neither unique to nor constant for
a specific user, the algorithm produces two distinct subtrees
that both attach to the attribute tree at the same depth.

The creation of this separate visual entity is another ex-
ample of our phase 1 algorithm identifying semantic infor-
mation missed during our manual analysis of the dataset. It
is important to note that this semantic information is also
absent in the original nesting of the JSON documents that
comprise our training set, as those documents combine the
user’s basic information and visual attributes together in a
single object. This example demonstrates the pitfalls of cre-
ating tables that exactly mimic the structures of the input
data: even the designers of the input documents may be in-
different to or unaware of some important semantic details.

Entities and unstable attributes: Many entities from
the experimental datasets contain unstable attributes that
do not tend to retain their values across multiple references
to the same instance of an entity. Due to the absence of func-
tional relationships from an entity’s unique identifier to its
variable attributes, we expect unstable attributes to appear
outside of their entity’s subtree in the phase 1 output.

We observe this behavior in both the GitHub and Twitter
datasets, which include several snapshot-in-time measure-
ments. For example, GitHub’s base repository entity in-
cludes “base repo forks count” to track the number of times
the base repository was forked, and Twitter’s user entity in-
cludes “user favourites count” to track the number of tweets
the user has saved to their favorites. These counting at-
tributes vary over the lifetime of their associated entities
and their values are only accurate as of the moment they
were scraped from the GitHub and Twitter APIs. They
consequently do not participate in functional dependencies
and are placed in the root of their respective attribute trees.

There are, however, some exceptions, and in some cases
these unstable attributes are placed in deeper attribute groups.
For example, phase 1 places GitHub’s unstable “head user

Flights Twitter GitHub
FDs from Formula 3.1.1 267 2497 3728
FDs from Formula 3.1.2 112 1180 2603

Avg. skew of FD allowed by
3.1.1 but not by 3.1.2

97% 95% 91%

Table 1: Comparison of Formulas 3.1.1 and 3.1.2.

site admin”attribute within the“head repo pushed at”sub-
tree. At first glance, there is no semantic justification for
this placement. However, both attributes exhibit a hidden
dependency on the record creation time, which creates a sub-
tle, but strong, relationship between them. Since unstable
attributes tend to be time dependent, phase 1 often places
them within the subtrees of other time dependent attributes.

Skew performance: All three experimental datasets in-
clude attributes skewed toward a single value. As we de-
scribed in Section 3.1.2, we expect these skewed attributes
to frequently exhibit high values of Ilyas et al.’s strength
formula (Formula 3.1.1) even when paired with semantically
unrelated attributes in the dataset. We further expect that
the modified strength formula we presented (Formula 3.1.2)
will exclude these false pairings from the phase 1 output.

We observe this expected behavior across all three datasets.
As shown in Table 1, Formula 3.1.2 excludes 30% to 60% of
the column pairs that Formula 3.1.1 identifies as potential
functional dependencies. These excluded column pairs tend
to have dependent attributes that are highly skewed toward
their modal value. On average, the dependent attributes
from the excluded column pairs have the same value on 91%
to 97% of all records in the dataset.

As a concrete example of the difference between the two
strength formulas, consider the Flights dataset’s “cancelled”
and “cancellation code” attributes. Both are NULL for the
95% of records that represent flights that were not canceled;
for the remaining 5% of records, “canceled” contains the
value 1.0 and “cancellation code” contains one of the let-
ters A though C. Both exhibit high values of Formula 3.1.1
with at least 10 other attributes in the dataset, the major-
ity of which do not correspond to semantic relationships in
the Flights domain model. However, these semantically un-
founded relationships have near-zero values of our Formula
3.1.2 and the algorithm includes only the dependency from
“cancellation code” to “cancelled” in its output.

Attribute merging: As outlined in Section 3.1.4, we ex-
pect the algorithm to merge together attributes that contain
the same information content in order to simplify its longest
path computations. We observe correct attribute merges
across all three datasets and observe no invalid merges.

A particularly interesting example of attribute merging
occurs in the GitHub dataset where a pair of user entities
are entirely merged together. The “base user” and the “base
repo owner” entities refer to the same user instance across

every record in the dataset. As a result, their constituent
fields always contain exactly the same value and are merged
together. The two users are thus represented in the attribute
tree by a single subtree of merged attributes.

4.2 Phase 2 results
Subtree matching: Our manual analysis of the experi-

mental datasets identified several pairs of entities that had
similar descriptive attributes and had good semantic basis to
be matched and combined: Within the Flights dataset, the

origin and destination airports should be matched. Within
the Twitter dataset, the embedded retweet entity is really
just a tweet, and should be matched with the top-level tweet
entity. Similarly, the top-level user should match with the
retweet’s user, and the top-level place should match with the
retweet’s place. Within the GitHub dataset, there should be
matches among all pairings of the 7 kinds of user entities,
the 2 repository entities, and the 2 commit entities.

These expectations are summarized in Table 2’s second
column, which lists the number of matching entity pairs we
manually identified in each dataset. The table’s “Our al-
gorithm” section compares phase 2’s performance against
those counts. It shows that phase 2 identifies all but one of
the expected entity matches and also identifies semantically
meaningful entity matches that we did not manually predict.

Phase 2 ignores the predicted entity match between the
GitHub commit entities. We predicted this match because
we noticed that the commits’ unique identifiers — “head
sha” and “base sha” — overlap and we assumed that they
were each associated with a set of stable descriptive at-
tributes describing associated user and repository entities.
Our assumptions hold true for the head commit, which cor-
responds to a subtree that has “head sha” as its parent and
that embeds the head repository and head user entities. The
base commits, however, are not stably associated with spe-
cific users or repositories. As a result, the base user and
base repository attributes demonstrate weak functional re-
lationships with “base sha” and are not placed within the
base commit’s subtree. This leads the two commit entities
to have dissimilar subtrees that do not match in phase 2.
Given that the commits do not behave as we initially as-
sumed, the phase 2 algorithm’s output is a slightly more
accurate reflection of the underlying data than our manual
analysis. This is another example of our manual analysis
being too sensitive to the attributes’ original JSON nesting.

In addition to the 26 matches we anticipated during our
analysis, seven matches were identified that we did not ex-
pect. For example, the algorithm reveals that Twitter’s
retweet entity contains an additional partial user to model
whether the tweet is in reply to another member of the net-
work. This partial user has only the fields “retweeted status
in reply to user id,” “retweeted status in reply to user id

str,” and “retweeted status in reply to user name.” Despite
this sparsity of descriptive attributes, phase 1 allocates the
partial entity its own subtree which matches with both the
retweeted user and the top-level user during phase 2. These
unexpected matches accurately reflect overlapping entities.
Given that the in-reply-to user does not exist as its own
object in the JSON input, this example represents another
instance of our algorithm discovering semantic entities ab-
sent from the initial structure of the dataset.

There are no erroneous phase 2 matches found for any of
the experimental data sets. All identified matches represent
subtrees containing overlapping entities.

Attribute matching: Within each pair of matched en-
tities, phase 2 highlights the pairs of semantically equivalent
attributes that the two entities contain. In order to gauge
phase 2’s attribute matching performance, we consider three
measures for each entity pair: 1) the number of attribute
matches identified across the two entities, 2) the number
of these attribute matches that accurately capture semantic
equivalence, and 3) the number of these attribute matches
do not accurately capture semantic equivalence and should

Our algorithm Shanmugasundaram et al.’s Algorithm
entity
matches
expected

ex-
pected
found

ex-
pected
missing

unex-
pected
found

% unex-
pected
meaningful

ex-
pected
found

ex-
pected
missing

unex-
pected
found

% unex-
pected
meaningful

Flights 1 1 0 2 100% 0 1 0 N/A
GitHub 23 22 1 1 100% 5 18 0 N/A
Twitter 3 3 0 4 100% 2 1 0 N/A

Table 2: Summary of the entity matches found by both our algorithm and Shanmugasundaram et al.’s algorithm. Unexpected
matches are considered “meaningful” if they have semantic underpinnings and correctly reflect overlapping domains.

Flights Twitter GitHub
attribute pairs 15 47 79
correct attribute pairs 15 46 79
incorrect attribute pairs 0 1 0

missing attribute pairs 0 15 11
Table 3: Summary of attribute pairs found in each dataset.

not have been identified. The first three rows of Table 3
show the sum of these performance measures across all of
the entity pairs found in each dataset. The numbers reflect
that phase 2 correctly identifies equivalent attribute pairs in
every dataset. Of the 141 attribute matches made across all
three datasets, phase 2 only makes one incorrect match (it
incorrectly matches two of Twitter’s boolean fields).

While phase 2 rarely matches attributes incorrectly, it
sometimes omits matches between semantically related at-
tributes. We consider phase 2 to have missed a relevant
attribute pair when an entity match contains an orphan
attribute that has a semantically equivalent attribute else-
where in the tree. The final row of Table 3 shows the number
of these missing attribute pairs from each of the experimen-
tal datasets. In total there were 26 attributes across the
datasets that could have been matched but were not. Of
these 26, 24 were due to the fact that phase 2 only searches
for matching attributes within matching subtrees of the at-
tribute tree we construct in phase 1. In these 24 cases, the
matching attribute was located outside of the relevant sub-
tree being searched. This was usually due to the attribute
being unstable, and phase 1 placing the attribute in the root
instead of a particular subtree. The two remaining missed
matches were a side-effect of the one incorrect match in the
Twitter dataset — the two attributes that were incorrectly
matched were not available for their correct partners.

4.3 Phase 3 results
Schema generation: For all three datasets, phase 3 cre-

ates a relational schema that contains a root relation that in-
cludes columns for (1) descriptive attributes of the top-level
entity, (2) unstable attributes associated with embedded en-
tities, and (3) foreign keys linking to the other relations in
the final schema. As expected, the number of relations in
the phase 3 schemas is significantly lower (50%-65%) than
the number of phase 1 attribute groups. The Flights schema
contains 10 relations, the Twitter schema contains 8, and the
GitHub schema contains 8. For each of the three datasets,
4 of these relations result from phase 2 entity matches. The
other relations result from large cardinality changes.

Phase 3’s assumption that large drops in cardinality may
signal the presence of an embedded entity frequently holds
across all three datasets. For example, phase 3 detects
GitHub’s milestone entities due a large cardinality drop. In

other cases, however, the relations due to cardinality are
less semantically significant and instead represent opportu-
nities for normalization. For example, the GitHub schema
includes a relation off of the root that contains four seman-
tically unrelated attributes that phase 3 creates because it
has only 328K unique rows, while the root has 1M rows.

4.4 Comparison to Alternative Approaches
We compared our approach to two alternative approaches

for mapping nested key-value data to relational schemas:
(1) Argo is significantly simpler than our algorithm be-

cause it does not perform entity identification and instead
proposes a generic relational encoding of arbitrary JSON
documents [4]. As described in Section 2, Argo stores docu-
ments in ternary relations that contain rows for every key in
every document (each row stores the document ID, the key’s
name, and the key’s value). Argo preserves type informa-
tion by creating three ternary relations differentiated by the
type of their “value” columns (boolean, text, and doubles).

(2) Shanmugasundaram et al. describe the shared
inlining algorithm which generates a relational schema by
analyzing a graph of the XML DTD associated with its in-
put6. The DTD graph contains nodes for all elements in the
input DTD and represents the nesting relationships between
those elements with edges. The algorithm creates a relation
for all nodes in the DTD graph with an in-degree of 0 (these
are accessible only if made into relations) or with an in-
degree greater than 1 (these are elements that are “shared”
among multiple parent elements). Within our datasets, the
algorithm inlines all other nodes into their nearest ancestors.

Note that the shared inlining approach requires XML DTDs,
but none of our experimental datasets originally include this
schema information. For the JSON-encoded GitHub and
Twitter datasets, we generated DTDs with elements corre-
sponding to the original nesting structure of the documents.
For the CSV-encoded Flights dataset, we generated a DTD
with a single element that contains all attributes.

Entity matching: Table 2 compares the number of en-
tity matches identified by our algorithm and the number
of matches identified by the shared inlining algorithm. We
omit Argo from this part of the comparison, since it does
not perform entity identification or matching.

While our algorithm identifies all three expected entity
matches within the Twitter dataset, the shared inlining al-
gorithm only matches the top-level user to the retweeted user
and the top-level place to the retweeted place. The match
between the top-level user and retweeted-user is identified
because the two entities both appear beneath a “user” key
in the original dataset (“user” and “retweeted status.user”
respectively). The generated DTD represents these keys

6We do not discuss their additional hybrid inlining algorithm
because it produces a single relation for our datasets.

Figure 6: Deduplication ratios by algorithm by dataset.

with a single <user> element that may be nested within
either a <root> element or a <retweeted status> element.
Since <user> may be nested within multiple elements, its
in-degree in the DTD graph is greater than 1 and the shared
inlining algorithm creates a separate relation to model the
matched user entities. Similarly, the top-level place and
retweeted place occur beneath a common key, enabling the
shared inlining algorithm to merge them into one relation.

Since the top-level tweet and the retweeted-status do not
appear beneath a common key in the input dataset, the
shared inlining algorithm is not sensitive to their semantic
relationship and cannot identify this expected entity match.
Moreover, the shared inlining algorithm cannot detect any of
the unexpected entity matches discovered by our algorithm
because those matches involve groupings of input attributes
that are not captured by the original JSON nesting.

The shared inlining algorithm similarly omits entities from
GitHub dataset. The algorithm only successfully identifies
5 of the 23 expected entity matches — one match from the
head repository to the base repository and four among pair-
ings of the user entities. Only the user entities that are
nested beneath the same key within the original JSON doc-
ument are matched by the shared inlining algorithm. Since
the seven user entities present in the dataset appear beneath
four distinct keys (“milestone creator,”“user,”“owner,” and
“assignee”), the shared inlining algorithm cannot identify the
remaining 17 matches that occur among the dataset’s users.

The shared inlining algorithm is unable to detect any en-
tity matches from the flat Flights DTD.

Data deduplication: As described above, an advantage
of converting nested data into relational data is the dedu-
plication of records that are in multiple nested locations.
Thus, we loaded each of the experimental datasets into the
three proposed schemas and measured each schema’s data
size reduction ratio (the size of the input file divided by the
size of the schema’s relations). Figure 6 shows these results.

The Argo encoding carries significant storage overhead be-
cause it creates a large number of tuples (1 per key per doc-
ument) that each require a 22-byte tuple header, an 8-byte
document identifier (“objid”), and a variable length string
to store key names. As a result of this storage overhead, the
Argo encoding expands all of the input datasets.

The shared inlining algorithm exhibits better storage per-
formance than Argo because it creates many fewer tuples (1
to 4 per document, depending on the dataset) and because it
stores key names as column names. This latter optimization
allows the algorithm to reduce the data size by roughly 2x
for the Twitter and GitHub datasets. However, the Flights
dataset does not reduce in size because its original CSV en-
coding already avoided redundant storage of key names. The

shared inlining algorithm instead causes the Flights dataset
to expand as a result of tuple headers and document ids.

Our algorithm achieves significantly more data size re-
duction for all three experimental datasets. Similar to the
shared inlining algorithm, our algorithm stores key-names
as column names which dramatically reduces the size of
the Twitter and GitHub datasets. However, our algorithm
achieves more data reduction for these datasets and for the
Flights dataset because it uses foreign-key references to elim-
inate the duplication inherent in the entity matches it finds.

Query performance: In Appendix G, we analyze the
runtimes of 5 queries to further compare and contrast these
three approaches to schema generation.

5. FUTURE WORK
Our algorithm has two limitations which represent op-

portunities for future work. First, our algorithm does not
support functional dependencies with multiple attributes on
the left-hand side (e.g. functional dependencies in which one
attribute depends on 2+ attributes). To support this class
of dependency, our algorithm requires three extensions:

Dependency enumeration: Since it is computationally in-
tractable to evaluate Condition 3.1.1 for all possible func-
tional dependencies when multiple LHS attributes are al-
lowed, a more intelligent exploration of the search space will
be required. Flach et al. present a promising solution to
this exploration problem which we could leverage [8].

Attribute tree construction: Our attribute tree construc-
tion algorithm creates a directed graph from the mined func-
tional dependencies. If functional dependencies with mul-
tiple LHS attributes are allowed, we must either devise a
strategy for modeling these attributes as merged nodes that
are compatible with our existing algorithm or must extend
the algorithm to handle the resulting hyper-graphs directly.

Entity matching: The entity matching algorithm identi-
fies matches by joining subtrees on their parent attributes.
Since subtrees will potentially have many parents when mul-
tiple LHS attributes are allowed, a new process for joining
subtrees will be required. The naive approach simply joins
subtrees on all combinations of their parent attributes; since
this could greatly bloat the space of subtree matches, inves-
tigation of more efficient strategies will likely be needed.

The second limitation of our work is that we entirely ig-
nore all structural information associated with our input
datasets. While we contend that structural information is of-
ten misleading or otherwise unreliable, our approach of com-
pletely disregarding structural cues is heavy-handed. We
expect that future research into a hybrid solution that in-
tegrates our data-driven approach with structural cues will
yield higher quality schemas. We further expect that struc-
tural cues can also be leveraged to more intelligently explore
the functional dependency search space.

6. CONCLUSION
We have presented an algorithm that identifies the struc-

tures implicit in semistructured datasets and materializes
those structures as relational schemas. Our experiments
show that our algorithm generates reasonable schemas for
datasets from disparate domains, irrespective of their input
format. While our algorithm’s schemas often contradicted
our expectations, the algorithm’s schemas captured the pat-
terns of the input data better than our manual analysis.

Acknowledgments This work was sponsored by the NSF
under grant IIS-1527118. We thank Wenbo Tao, Lambros
Flokas, and the anonymous SIGMOD 2016 reviewers for
their insightful feedback on earlier versions of this manuscript.
Downloads Our experimental datasets are available at
http://s3.amazonaws.com/discala-abadi-2016/index.html.

7. REFERENCES
[1] S. Bell. Dependency mining in relational databases. In

Qualitative and Quantitative Practical Reasoning. 1997.
[2] D. Bitton, J. Millman, and S. Torgersen. A feasibility and

performance study of dependency inference [database
design]. In Proc. of ICDE, 1989.

[3] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From xml
schema to relations: a cost-based approach to xml storage.
In Proc. of ICDE, 2002.

[4] C. Chasseur, Y. Li, and J. M. Patel. Enabling json
document stores in relational systems. In WebDB, 2013.

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with stored. In SIGMOD, 1999.

[6] F. Du, S. Amer-Yahia, and J. Freire. Shrex: managing xml
documents in relational databases. In VLDB, 2004.

[7] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplied
universal relation assumption and its properties. ACM
Trans. Database Syst., Sept. 1982.

[8] P. A. Flach and I. Savnik. Database dependency discovery:
A machine learning approach. AI Commun., 12(3), 1999.

[9] D. Florescu and D. Kossmann. A performance evaluation of
alternative mapping schemes for storing xml data in a
relational database. In Inria Research Report, 1999.

[10] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. Xtract: A system for extracting document type
descriptors from xml documents. In SIGMOD, 2000.

[11] G. Gousios. The ghtorrent dataset and tool suite. In
Conference on Mining Software Repositories, 2013.

[12] O. Hassanzadeh, S. H. Yeganeh, and R. J. Miller. Linking
semistructured data on the web. In WebDB, 2011.

[13] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
Tane: An efficient algorithm for discovering functional and
approximate dependencies. The computer journal, 1999.

[14] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of correlations
and soft functional dependencies. In SIGMOD, 2004.

[15] J. Kivinen and H. Mannila. Approximate inference of
functional dependencies from relations. Theoretical
Computer Science, pages 129 – 149, 1995.

[16] W.-S. Li and C. Clifton. Semint: A tool for identifying
attribute correspondences in heterogeneous databases using
neural networks. Data & Knowledge Engineering, 2000.

[17] D. Maier, J. D. Ullman, and M. Y. Vardi. On the
Foundations of the Universal Relation Model. ACM Trans.
Database Syst., 9(2):283–308, June 1984.

[18] H. Mannila and K.-J. Räihä. Algorithms for inferring
functional dependencies from relations. DKE, 1994.

[19] P. Minh-Duc, P. Linnea, E. Orri, and P. Boncz. Deriving an
emergent relational schema from rdf data. In WWW, 2015.

[20] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDBJ, 10(4):334–350, 2001.

[21] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas.
Efficient relational storage and retrieval of xml documents.
In WebDB, pages 47–52, 2000.

[22] J. Shanmugasundaram, E. Shekita, J. Kiernan,
R. Krishnamurthy, E. Viglas, J. Naughton, and
I. Tatarinov. A general technique for querying xml
documents using a relational database system. SIGMOD
Rec., pages 20–26, 2001.

[23] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying xml documents: Limitations and opportunities.
pages 302–314, 1999.

[24] D. Tahara, T. Diamond, and D. J. Abadi. Sinew: A sql
system for multi-structured data. In SIGMOD, 2014.

[25] K. Wang and H. Liu. Schema discovery for semistructured
data. In KDD, 1997.

[26] K. Wang and H. Liu. Discovering typical structures of
documents: A road map approach. In SIGIR, 1998.

[27] H. Zhang and F. W. Tompa. Querying xml documents by
dynamic shredding. In DocEng, 2004.

APPENDIX
A. FLATTENING INPUT DATA

As described above, input datasets must be flattened be-
fore phase 1. We accomplish this with three transformations:

Objects nested within objects: Objects nested inside
of one another are flattened by creating a column for each
of the leaf values contained in the objects. Each column is
labeled with the concatenation of the attribute names that
appear along the leaf’s corresponding nesting path. Label
collisions are resolved by appending the depth of the leaf
within the original document to the concatenated name.

Arrays of scalar values: Scalar arrays (e.g. arrays of
integers) are casted to strings for the algorithm’s computa-
tions. When loaded into the final schema, the arrays are
stored instead using the target database’s preferred storage
scheme (e.g. 1st-class array types or separate tables).

Arrays of nested objects: Objects containing arrays of
other objects require the most involved transformations be-
cause they model either one-to-many or many-to-many asso-
ciations, but our algorithm searches for one-to-one or many-
to-one relationships. In order to overcome this incompati-
bility, each nested array can be treated as an independent
sub-instance of the original schema generation problem. If
the array models a one-to-many relationship, a foreign key
is added from the sub-instance’s root back to the schema
for its parent instance. If the array models a many-to-many
relationship, a linking object that joins the sub-instance to
the schema for its parent instance must be introduced.

B. IMPROVING PHASE 2 PERFORMANCE
Although the join operation described in Section 3.2.2 ef-

fectively identifies record pairs with matching parent values,
in many cases its computation will be expensive. In the
worst case, when both subtrees’ parent attributes contain a
single shared value, the size of the join set is the square of
the number of records in the training set. To reduce the size
of the join and the cost of the subsequent operations, we pre-
process each subtree before performing any join operations.
For each subtree, we compute a deduplicated table that con-
tains the unique permutations of the subtree’s values, along
with the frequency of each permutation in the training set.
The result of this process for the AauthEmail subtree is:

authEmail authName authINum authIName freq
js@e.pfl J. Snow 1 EPFL 2
dd@ca.uk D. Duck 14 Cambridge 1

Instead of performing subtree joins as self joins on the orig-
inal flat table, we perform joins between the subtrees’ dedu-
plicated tables. Since all other attributes within the sub-
tree exhibit soft functional dependencies on the parent at-
tributes, the parents will be nearly unique within these dedu-
plicated tables. Consequently, the upper bound on the size

of the condensed join result is approximately the size of the
training set and, in many cases, significantly smaller.

Every row in the condensed join set will contain a fre-
quency column from each of the deduplicated tables. The
product of these frequencies reflects the number of times
that a row would repeat in the uncondensed join set. As
a result, to compute the attribute matrices from the con-
densed join sets, we must modify phase 2 to increment cells
by the product of the frequency columns, instead of by 1.

C. REDUNDANT PHASE 2 MATCHES
As described in Section 3.2.2, our matching algorithm at-

tempts to match entire subtrees from the phase 1 attribute
tree. In other words, it combines all attributes that descend
from a particular node in the attribute tree into a single
bucket, before attempting to match with a different bucket
of attributes from a different subtree. As described in step
3 above, at least 50% of the attributes in the smaller bucket
have to match with attributes in the larger bucket for the
two subtrees to be considered a match. Therefore, once we
discover that two subtrees are a match, additional matches
will likely be found in subtrees of those subtrees.

On one hand, it is totally unnecessary to compare sub-
trees of matching subtrees. For example, as shown in Figure
2, once we have discovered that the subtree corresponding
to “author” matches with the subtree corresponding to “re-
viewer” (shown in red), it is unsurprising that the nested
institution information within the author and reviewer trees
also matches (shown in purple). Checking the two institu-
tion subtrees therefore seems like a waste of effort.

We still check these sub-subtrees for a match because the
inner match can reveal interesting insights into the relation-
ship between the sub-subtrees and their parent subtrees. In
particular, if the size of the join set between the two sub-
subtrees is at least 50% larger than the join set between
the two parent subtrees, we conclude that the entities rep-
resented by the sub-subtrees are semantically separate from
the entities represented by their parent subtrees. We assume
this because the join set’s size can only increase significantly
if either (1) some records from the training set do not join
for the parent match but do join for the inner match or (2)
the entity set represented by the inner match has signifi-
cantly lower cardinality than the entity set represented by
the parent match. Since both behaviors indicate the inner
match behaves differently than the outer match, we show
sub-subtree matches if the join set size increases sufficiently.

D. ATTRIBUTE TREE IMPROVEMENT
Due to the functional relationships entities typically ex-

hibit, we expect phase 1 to isolate all of the stable attributes
associated with an entity inside of a single subtree whose
parent is the entity’s unique identifier. Nevertheless, phase
1 sometimes produces suboptimal trees that place attributes
outside of their entity’s subtree. Although these erroneous
placements do not reflect a correct semantic understanding
of the data, they typically cannot be detected algorithmi-
cally because they do reflect the functional structures iden-
tified by phase 1. In the special case that these suboptimal
placements occur within nested subtree matches, however,
the phase 2 output provides a chance to correct these errors.

Matches between subtrees that begin at higher levels in
the attribute tree cover more of the full tree and, conse-

quently, are more likely to identify matching attribute pairs.
Thus, if there is an orphaned attribute aorphan in a subtree
match, and the subtree match is nested within a match at a
higher point in the tree, and the higher subtree match pairs
aorphan with another attribute, then there is likely an er-
ror within the original attribute tree. These errors are fixed
by moving the attribute paired with aorphan into the lower
subtree.

E. ATTRIBUTE CLUSTERING
The algorithm above compares every pair of subtrees to

see if there is a match, and during this comparison oper-
ation, compares every pair of attributes across these two
subtrees. To reduce the space of both sets of comparisons,
we analyze the domain of each attribute before we perform
subtree matching, and cluster attributes into groups that
contain similar values. The algorithm then only attempts to
match subtrees whose parent attributes belong to the same
cluster, as these are the only subtrees whose domains are
likely to overlap. Similarly, when comparing two subtrees,
phase 2 only considers pairs of attributes in same cluster.

We form these attribute groups according to a process in-
spired by Li and Clifton’s clustering techniques [16]. For
each text based attribute in the dataset we compute: 1) the
maximum, minimum, variance, and average of the length
of its values, 2) its proportion of numeric characters, 3) its
proportion of punctuation characters, and 4) its proportion
of whitespace characters. We use these statistics as the fea-
tures for a bisecting k-means clustering instance. We choose
K programmatically by computing clusterings with progres-
sively increasing values of K and choosing the final clustering
by analyzing the within-cluster-sum-of-squares:∑

cεclusters

∑
vectorεc

distance(vector, centroid(c))2

We continue adding clusters until this function plateaus or
increases from a previous value. Although lower K values
limit the impact of this optimization, we favor lower values
because they minimize the risk that matching attributes are
erroneously separated into distinct clusters.

F. THE GITHUB SCHEMA
Interpreting the phase 3 diagrams: Figure 7 shows

the phase 3 schema that our algorithm produces for the
GitHub dataset. Each box in the diagram represents a rela-
tion in the final schema. For all relations:

• Attribute names that are written in upper-case letters are
either primary or foreign keys inserted by phase 3.

• Foreign keys point to the relation whose header matches
their name (e.g. the key “HR ID” points to the relation
with the header “HR”).

• Relations joined by foreign key references are connected
with lines (arrows point into the referenced relation).

For relations that do not participate in entity matches, a
one-to-one relationship exists from input attributes to phys-
ical attributes in the phase 3 schema (these are the single-
column boxes in the diagram). Each lower-cased cell in these
relations represents an input attribute that phase 3 included
directly in its physical schema. Consider the “MS1” relation
in the diagram: “ms title” is an input attribute mapped to
a physical attribute of the same name.

Figure 7: The phase 3 schema for the GitHub dataset. For the ROOT relation, we omit many attributes due to lack of space.
We use the following abbreviations: “BR” is “base repo,”“BRO” is “base repo owner,”“HR” is “head repo,”“HRO” is “head
repo owner,”“MS” is “milestone,”“MC” is “milestone creator,”“BU” is “base user” and “HU” is “head user.”

For relations that do participate in phase 2 entity matches,
an n-to-one relationship exists from input attributes to phys-
ical attributes in the phase 3 schema (these are the multi-
column boxes in the diagram). These relations include a
dark gray column labeled “physical” that lists the names of
the physical attributes in the phase 3 schema. Each addi-
tional column represents a distinct attribute group that was
merged onto the relation. These columns show the mapping
from that groups’ input attributes to the physical schema:
each attribute contained within the group appears on the
same row as the physical attribute that it was mapped onto.
Consider the relation containing “BR” (base repo) and “HR”
(head repo) at the right of the figure: the first row indi-
cates that input attributes “br created at” and “hr created
at” both map onto the physical attribute “br created at.”

Phase 1 attribute trees: Although we lack sufficient
space to include the complete phase 1 attribute tree, the
diagram shows nearly all of the original attribute groups be-
cause the phase 1 tree forms the basis of the phase 3 schema.

Phase 2 matches: The schema diagram shows all of
GitHub’s entity and attribute matches. Note that a single
entity match may be represented by multiple relations if the
matched entities contained several attribute groups.

G. QUERY PERFORMANCE COMPARISON
In Table 4, we present the runtimes of 5 queries over our

algorithm’s schema, the shared inlining schema, and Argo’s
schema. While the queries do not comprise a complete

Query # Our Algorithm Shared-inlining Argo
1 0.7 28.7 559.1
2 32.7 95.1 1,635
3 1.9 5.6 6.7
4 25.2 37.1 36.9
5 23.9 16.3 35.5

Table 4: Runtimes in seconds for Appendix G’s queries.

benchmark, they offer a view into the kinds of queries that
may benefit from our algorithm’s schema. All measurements
represent cold-cache runtimes averaged over three runs. The
queries were run on PostgreSQL on an Amazon EC2 instance
with 8 vCPUs and 61 GiB of memory (this machine also was
used for the performance evaluation in Appendix H).

Query #1: This query projects a list of unique (user id,
user login) pairs from the GitHub dataset, including pairs
from all 7 kinds of user entities. This query requires only a
sequential scan when expressed over our algorithm’s schema
because it merges all 7 users into a single relation. In con-
trast it must be expressed as the UNION of 4 queries in the
shared inlining schema and as the UNION of 7 queries in
Argo’s schema. As a result, when run over our schema the
query is 41x faster than it is over the shared inlining schema
and 810x faster than it is over the Argo schema.

Query #2: This query identifies the average age of each
Twitter user (current time - creation time). Argo’s schema
requires UNIONs and JOINs to express this query, which

causes the query’s runtime over Argo’s schema to exceed
the other schemas’ runtimes by more than an order of mag-
nitude. In contrast, both our algorithm’s schema and the
shared inlining schema store Twitter users as a single rela-
tion and implement this query as an aggregate over that sin-
gle relation. Despite this similarity, on our schema this query
runs 2.9x faster than on the shared inlining schema. This
disparity exists because our schema contains only 5.9M user
records while the shared inlining schema contains 20M user
records. Since the shared inlining schema does not dedupli-
cate its merged entities, its query performance usually ben-
efits less from the entities it identifies than our algorithm.

Query #3: This query calculates the average flight time
for all flights departing from “Anchorage, AK”. Since the
Flights dataset is significantly smaller when encoded in our
schema than when encoded in either the Argo or shared
inlining schemas, this query runs fastest over our schema
(2.9x faster than shared inlining and 3.5x faster than Argo).

Query #4: This query calculates the number of pull re-
quests and the number of unique pull requests authors per
repository in the GitHub dataset. Since the query accesses
many different entities in the dataset, all three schemas must
perform JOINS and must read a large subset of the dataset
from disk in order to answer this query. As a result, the run-
time is relatively even across all of the schemas (our schema
is only 1.4x faster than the other two schemas for this query).

Query #5: This query calculates the number of unique
pull-request authors per repository in the GitHub dataset.
This query demonstrates an advantage of the shared inlining
schema over our algorithm’s schema: since shared inlining
includes the document ID on all records, repositories can
be joined to authors without accessing the root pull-request
data. In contrast, our algorithm must join the repository
and user entities through the root relation. As a result,
our schema is 1.4x slower than the shared inlining schema
(although our schema still is 1.5x faster than Argo’s).

H. IMPLEMENTATION & PERFORMANCE
Implementation: Given that performance is not a focus

of this paper, we did not build a production-grade, highly
optimized implementation of our algorithm. We instead im-
plement the algorithm as a Ruby application which delegates
as much computation as possible to a Postgres server. The
Ruby application loads the input dataset into a single Post-
gres relation and then queries this relation for the values it
requires (the attribute cardinalities required by phase 1 are
performed via COUNT DISTINCT queries, and the subtree
matching required by phase 2 is done via JOINS). These
queries are performed in parallel to improve performance.

The decision to push this logic into Postgres simplifies our
software, but couples our implementation to the peculiarities
of the Postgres query optimizer. While the optimizer often
chooses performant execution plans, on some inputs it se-
lects plans that are significantly slower than equivalent alter-
natives. In particular, the optimizer struggles with queries
involving strings with long common prefixes (e.g. URLs on
the same domain or Twitter messages with identical con-
tent). When the optimizer chooses to sort the dataset to
implement a COUNT DISTINCT or JOIN on these string
attributes with common prefixes, the time required to com-
pare the common prefixes becomes significant. In some cases
we observe an order of magnitude slowdown compared to the
same operation implemented with a hashing strategy.

Performance: For the Twitter dataset, which was the
largest of the three we considered, phase 1 required 31 hours
to complete, phase 2 required 3.7 hours, and phase 3 required
3.61 minutes. Although these times collectively seem high,
we reiterate that they reflect only an upper bound on run-
time since we did not thoroughly optimize our implementa-
tion. Many opportunities for optimization exist, including 1)
eliminating comparisons of attribute pairs in phase 1 when
functional relationships can be inferred from their transitive
properties and 2) applying a hashing strategy to reduce time
spent comparing frequently-occurring string prefixes.

Even without these implementation improvements, our al-
gorithm’s runtime can be reduced by sampling the input
dataset. In order to explore sampling’s feasibility, we ran
phases 1 and 2 over a random subset of 1 million Twitter
records (10% of the full dataset). Since phase 3’s runtime
was already short relative to the other phases, we continued
with the full dataset in this stage. Over this random sample,
phase 1 required 2.7 hours and phase 2 required 5.1 minutes.

The phase 1 output from the sampled data is generally
similar to the phase 1 output from the entire dataset. Within
specific subtrees, there is some shifting of parent attributes
and some movement of attributes deeper into the same tree
(downward movement is common because the sampled dataset
includes less entity repetition and it is thus easier for func-
tional dependencies to achieve a high strength value). Since
these modifications occur within the same subtree, they do
not affect phase 2 attribute matches and generally do not
cause semantically important shifts in the final schema.

There are, however, 6 attributes that switch subtrees in
the sampled attribute tree and no longer descend from their
original parents. These movements negatively impact the
semantic meaning of the attribute tree and interfere with
subsequent matching in phase 2. Specifically, these changed
attributes cause the sampled phase 2 output to exclude 3 of
the 4 unexpected entity matches that were originally identi-
fied. These matches are between subtrees containing 2-3 at-
tributes each. They are excluded because their constituent
attributes do not form subtrees in the sampled attribute
tree and are instead merged together. Despite the omission
of these entity matches, we still believe that sampling is a
viable strategy since phase 2 still identifies all 3 expected
entity matches and 1 of the 4 unexpected matches.

The sampled phase 2 output additionally includes two
matches that were not identified from the full dataset. The
first match occurs between two small subtrees containing
skewed boolean attributes. While some of the booleans are
semantically related, the overall entity-match is not seman-
tically meaningful and should not have been identified. The
second match occurs between a subtree rooted at “retweeted
status in reply to status id” and the root relation. Since

both parent attributes contain Tweet IDs, their domains
overlap frequently. However, this match also lacks semantic
meaning because the attributes beneath the in-reply-to ID
do not form a coherent entity and are instead introduced
due to noise in the phase 1 tree. These erroneous matches
introduce some noise into the phase 2 output, but only affect
a few fringe attributes in the final schema.

While we recommend that users run our algorithm over
their full datasets for the best results, we find that especially
time-sensitive users can trade some output quality for time-
savings by running our algorithm over a random sample of
their data.

