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Column-Stores

• Really good for read-mostly data 
warehouses
� Lot’s of column scans and aggregations
� Writes tend to be in batch
� [CK85], [SAB+05], [ZBN+05], [HLA+06], 

[SBC+07] all verify this
� Top 3 in TPC-H rankings (Exasol, ParAccel, 

and Kickfire) are column-stores
� Factor of 5 faster on performance
� Factor of 2 superior on price/performance
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Data Warehouse DBMS Software

• $4.5 billion industry (out of total $16 billion 
DBMS software industry)

• Growing 10% annually
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Momentum

• Right solution for growing market � $$$$
• Vertica, ParAccel, Kickfire, Calpont, 

Infobright, and Exasol new entrants
• Sybase IQ’s profits rapidly increasing
• Yahoo’s world largest (multi-petabyte) 

data warehouse is a column-store (from 
Mahat Technologies acquisition)
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Paper Looks At Key Question

• How much of the buzz around column-
stores just marketing hype?
� Do you really need to buy Sybase IQ or 

Vertica?
� How far will your current row-store take you?

� Can you get column-store performance from a row-
store?

� Can you simulate a column-store in a row-store?
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Paper Methodology

• Comparing row-store vs. column-store is 
dangerous/borderline meaningless

• Instead, compare row-store vs. row-store 
and column-store vs. column-store
� Simulate a column-store inside of a row-store
� Remove column-oriented features from 

column-store until it behaves like a row-store
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Simulate Column-Store 
Inside Row-Store
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Experiments

• Star Schema Benchmark (SSBM)
� Fact table contains 17 columns and 60,000,000 rows
� 4 dimension tables, biggest one has 80,000 rows
� Queries perform 2-4 joins between fact table and 

dimension tables, aggregate 1-2 columns from fact 
table

� [OOC06]

• Implemented by professional DBA
� Original row-store plus 2 column-store simulations on 

same row-store product
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SSBM Averages
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What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Reconstruction
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Tuple Size
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•Queries touch 3-4 foreign keys in fact table, 1-2 numeric 
columns  

•Complete fact table takes up ~4 GB (compressed)

•Vertically partitioned tables take up 0.7-1.1 GB 
(compressed)
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Horizontal Partitioning

• Fact table horizontally partitioned on year
� Year is an element of the ‘Date’ dimension 

table
� Most queries in SSBM have a predicate on 

year
� Since vertically partitioned tables do not 

contain the ‘Date’ foreign key, row-store could 
not similarly partition them
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What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Construction
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Tuple Construction

• Common type of query:
� SELECT store_name, SUM(revenue)

FROM Facts, Stores
WHERE fact.store_id = stores.store_id

AND stores.country = “Canada”
GROUP BY store_name
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Tuple Construction

• Result of lower part of query plan is a set 
of TIDs that passed all predicates

• Need to extract SELECT attributes at 
these TIDs
� BUT: index maps value to TID
� You really want to map TID to value (i.e., a 

vertical partition)

�� Tuple construction is SLOW
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So….

• All indexes approach is a poor way to 
simulate a column-store

• Problems with vertical partitioning are 
NOT fundamental
� Store tuple header in a separate partition
� Allow virtual TIDs
� Allow HP using a foreign key on a different VP

• So can row-stores simulate column-
stores?
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Row-Store vs. Column-Store
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Row-Store vs. Column-Store
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Column-Store Experiments 

• Start with column-store (C-Store)
• Remove column-store-specific 

performance optimizations
• End with column-store with a row-oriented 

query executer
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Compression

• Higher data value locality 
in column-stores
� Better ratio � reduced I/O

• Can use schemes like 
run-length encoding
� Easy to operate on directly 

for improved performance 
([AMF06])
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• Early Materialization: create 
rows first. But:
� Poor memory bandwidth 

utilization
� Lose opportunity for 

vectorized operation
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Other Column-Store Optimizations

• Invisible join
� Column-store specific join
� Optimizations for star schemas

� Similar to a semi-join

• Block Processing
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Simplified Version of Results
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Conclusion

• Might be possible to simulate a row-store 
in a column-store, BUT:
� Need better support for vertical partitioning at 

the storage layer
� Need support for column-specific 

optimizations at the executer level

• Working with HP Labs to find out
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Come Join the Yale DB Group!


