
Daniel Abadi -- Yale University

Column-Stores vs. Row-Stores:
How Different Are They Really?

Daniel Abadi (Yale),
Samuel Madden (MIT),

Nabil Hachem (AvantGarde Consulting)
June 12th, 2008

Daniel Abadi -- Yale University

Row vs. Column-Stores

Street
AddressPhone #E-mail

First
Name

Last
Name

Last
Name

First
Name E-mail Phone #

Street
Address

Row-Store Column-Store

− Might read in
unnecessary
data

+ Only need to read
in relevant data

+ Easy to add a new
record

− Tuple writes might require
multiple seeks

Daniel Abadi -- Yale University

Column-Stores

• Really good for read-mostly data
warehouses
� Lot’s of column scans and aggregations
� Writes tend to be in batch
� [CK85], [SAB+05], [ZBN+05], [HLA+06],

[SBC+07] all verify this
� Top 3 in TPC-H rankings (Exasol, ParAccel,

and Kickfire) are column-stores
� Factor of 5 faster on performance
� Factor of 2 superior on price/performance

Daniel Abadi -- Yale University

Data Warehouse DBMS Software

• $4.5 billion industry (out of total $16 billion
DBMS software industry)

• Growing 10% annually

Daniel Abadi -- Yale University

Momentum

• Right solution for growing market � $$$$
• Vertica, ParAccel, Kickfire, Calpont,

Infobright, and Exasol new entrants
• Sybase IQ’s profits rapidly increasing
• Yahoo’s world largest (multi-petabyte)

data warehouse is a column-store (from
Mahat Technologies acquisition)

Daniel Abadi -- Yale University

Paper Looks At Key Question

• How much of the buzz around column-
stores just marketing hype?
� Do you really need to buy Sybase IQ or

Vertica?
� How far will your current row-store take you?

� Can you get column-store performance from a row-
store?

� Can you simulate a column-store in a row-store?

Daniel Abadi -- Yale University

Paper Methodology

• Comparing row-store vs. column-store is
dangerous/borderline meaningless

• Instead, compare row-store vs. row-store
and column-store vs. column-store
� Simulate a column-store inside of a row-store
� Remove column-oriented features from

column-store until it behaves like a row-store

Daniel Abadi -- Yale University

Simulate Column-Store
Inside Row-Store

Street
AddressPhone #E-mail

First
Name

Last
Name

Last
Name

First
Name E-mail

1

2

3

1

2

3

1

2

3

Option A:
Vertical Partitioning

…

Option B:
Index Every Column

Last Name Index First Name Index

Daniel Abadi -- Yale University

Experiments

• Star Schema Benchmark (SSBM)
� Fact table contains 17 columns and 60,000,000 rows
� 4 dimension tables, biggest one has 80,000 rows
� Queries perform 2-4 joins between fact table and

dimension tables, aggregate 1-2 columns from fact
table

� [OOC06]

• Implemented by professional DBA
� Original row-store plus 2 column-store simulations on

same row-store product

Daniel Abadi -- Yale University

SSBM Averages

0.0

50.0

100.0

150.0

200.0

250.0

T
im
e
 (
se
c
o
n
d
s)

Average 25.7 79.9 221.2

Normal Row-Store
Vertically Partitioned

Row-Store

Row-Store With All

Indexes

Daniel Abadi -- Yale University

What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Reconstruction

Daniel Abadi -- Yale University

Tuple Size

1

2

3

Column
Data

TID

1

2

3

TID Column
Data

1

2

3

TID Column
Data

Tuple
Header

•Queries touch 3-4 foreign keys in fact table, 1-2 numeric
columns

•Complete fact table takes up ~4 GB (compressed)

•Vertically partitioned tables take up 0.7-1.1 GB
(compressed)

Daniel Abadi -- Yale University

Horizontal Partitioning

• Fact table horizontally partitioned on year
� Year is an element of the ‘Date’ dimension

table
� Most queries in SSBM have a predicate on

year
� Since vertically partitioned tables do not

contain the ‘Date’ foreign key, row-store could
not similarly partition them

Daniel Abadi -- Yale University

What’s Going On?

• Vertically Partitioned Case
� Tuple Sizes
� Horizontal Partitioning

• All Indexes Case
� Tuple Construction

Daniel Abadi -- Yale University

Tuple Construction

• Common type of query:
� SELECT store_name, SUM(revenue)

FROM Facts, Stores
WHERE fact.store_id = stores.store_id

AND stores.country = “Canada”
GROUP BY store_name

Daniel Abadi -- Yale University

Tuple Construction

• Result of lower part of query plan is a set
of TIDs that passed all predicates

• Need to extract SELECT attributes at
these TIDs
� BUT: index maps value to TID
� You really want to map TID to value (i.e., a

vertical partition)

�� Tuple construction is SLOW

Daniel Abadi -- Yale University

So….

• All indexes approach is a poor way to
simulate a column-store

• Problems with vertical partitioning are
NOT fundamental
� Store tuple header in a separate partition
� Allow virtual TIDs
� Allow HP using a foreign key on a different VP

• So can row-stores simulate column-
stores?

Daniel Abadi -- Yale University

Row-Store vs. Column-Store

0.0

5.0

10.0

15.0

20.0

25.0

30.0

T
im
e
 (
se
co
n
d
s)

Average 25.7 11.7 4.4

Row-Store Row-Store (M V) C-Store

Daniel Abadi -- Yale University

Row-Store vs. Column-Store

0.0

5.0

10.0

15.0

20.0

25.0

30.0

T
im
e
 (
se
co
n
d
s)

Average 25.7 11.7 4.4

Row-Store Row-Store (M V) C-Store

Daniel Abadi -- Yale University

Column-Store Experiments

• Start with column-store (C-Store)
• Remove column-store-specific

performance optimizations
• End with column-store with a row-oriented

query executer

Daniel Abadi -- Yale University

Compression

• Higher data value locality
in column-stores
� Better ratio � reduced I/O

• Can use schemes like
run-length encoding
� Easy to operate on directly

for improved performance
([AMF06])

Q1
Q1
Q1
Q1
Q1
Q1
Q1

Q2
Q2
Q2
Q2

…

…

Quarter

(Q1, 1, 300)

Quarter

(Q2, 301, 350)

(Q3, 651, 500)

(Q4, 1151, 600)

Daniel Abadi -- Yale University

• Early Materialization: create
rows first. But:
� Poor memory bandwidth

utilization
� Lose opportunity for

vectorized operation

2
1
3
1

2
3
3
3

7
13
42
80

Construct

2

3

3

3

7

13

42

80

Select + Aggregate

2

1

3

1

4

4

4

4

prodID storeIDcustID price

QUERY:

SELECT custID,SUM(price)
FROM table
WHERE (prodID = 4) AND

(storeID = 1) AND
GROUP BY custID

Early vs. Late Materialization

4
4
4
4

Daniel Abadi -- Yale University

Other Column-Store Optimizations

• Invisible join
� Column-store specific join
� Optimizations for star schemas

� Similar to a semi-join

• Block Processing

Daniel Abadi -- Yale University

Simplified Version of Results

0.0

10.0

20.0

30.0

40.0

50.0

T
im
e
 (
se
co
n
d
s)

Average 4.4 14.9 40.7

Original C-St ore
C-St ore, No

Compression

C-St ore, Early

Mat erializat ion

Daniel Abadi -- Yale University

Conclusion

• Might be possible to simulate a row-store
in a column-store, BUT:
� Need better support for vertical partitioning at

the storage layer
� Need support for column-specific

optimizations at the executer level

• Working with HP Labs to find out

Daniel Abadi -- Yale University

Come Join the Yale DB Group!

