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Abstract. The field of object detection has seen dramatic performance
improvements in the last few years. Most of these gains are attributed
to bottom-up, feedforward ConvNet frameworks. However, in case of hu-
mans, top-down information, context and feedback play an important
role in doing object detection. This paper investigates how we can incor-
porate top-down information and feedback in the state-of-the-art Faster
R-CNN framework. Specifically, we propose to: (a) augment Faster R-
CNN with a semantic segmentation network; (b) use segmentation for
top-down contextual priming; (c) use segmentation to provide top-down
iterative feedback using two stage training. Our results indicate that all
three contributions improve the performance on object detection, seman-
tic segmentation and region proposal generation.

1 Introduction

The field of object detection has changed drastically over the past few years.

We have moved from manually designed features [1, 2] to learned ConvNet fea-
tures [3—0]; from the original sliding window approaches [2, 7] to region propos-
als [4, 8—11]; and from pipeline based frameworks such as Region-based CNN (R~
CNN) [4] to more end-to-end learning frameworks such as Fast [10] and Faster
R-CNN [11]. The performance has continued to soar higher, and things have

never looked better. There seems to be a growing consensus — powerful repre-
sentations learned by ConvNets are well suited for this task, and designing and
learning deeper networks lead to better performance.

Most recent gains in the field have come from bottom-up, feedforward frame-
work of ConvNets. On the other hand, in the case of human visual system, the
number of feedback connections significantly outnumber the feedforward con-
nections. In fact, many behavioral studies have shown the importance of context
and top-down information for the task of object detection. This raises a few
important questions — Are we on the right path as we try to develop deeper and
deeper, but only feedforward networks? Is there a way we can bridge the gap
between empirical results and theory, when it comes to incorporating top-down
information, feedback and/or contextual reasoning in object detection?

This paper investigates how we can break the feedforward mold in current
detection pipelines and incorporate context, feedback and top-down information.
Current detection frameworks have two components: the first component gen-
erates region proposals and the second classifies them as an object category or
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background. These region proposals seem to be beneficial because (a) they reduce
the search space; and (b) they reduce false positives by focusing the ‘attention’
in right areas. In fact, this is in line with the psychological experiments that sup-
port the idea of priming (although note that while region proposals mostly use
bottom-up segmentation [3, 12], top-down context provides the priming in hu-
mans [ — ]) So, as a first attempt, we propose to use top-down information in
generating region proposals. Specifically, we add segmentation as a complemen-
tary task and use it to provide top-down information to guide region proposal
generation and object detection. The intuition is that semantic segmentation
captures contextual relationships between objects (e.g., support, likelihood, size
etc. [16]), and will essentially guide the region proposal module to focus attention
in the right areas and learn detectors from them.

But contextual priming using top-down attention mechanism is only part
of the story. In case of humans, the top-down information provides feedback
to the whole visual pathway (as early as V1 [17, 18]). Therefore, we further
explore providing top-down feedback to the entire network in order to modulate
feature extraction in all layers. This is accomplished by providing the semantic
segmentation output as input to different parts of the network and training
another stage of our model. The hypothesis is that equipping the network with
this top-down semantic feedback would guide the visual attention of feature
extractors to the regions relevant for the task at hand.

To summarize, we propose to revisit the architecture of a current state-of-the-
art detector (Faster R-CNN [11]) to incorporate top-down information, feedback
and contextual information. Our new architecture includes:

— Semantic Segmentation Network: We augment Faster R-CNN with a
semantic segmentation network. We believe this segmentation can be used
to provide top-down feedback to Faster R-CNN (as discussed below).

— Contextual Priming via Semantic Segmentation: In Faster R-CNN,
both region proposal and object detection modules are feedforward. We pro-
pose to use semantic segmentation to provide top-down feedback to these
modules. This is analogous to contextual priming; in this case top-down
semantic feedback helps propose better regions and learn better detectors.

— Iterative Top-Down Feedback: We also propose to use semantic segmen-
tation to provide top-down feedback to low-level filters, so that they become
better suited for the detection problem. In particular, we use segmentation
as an additional input to lower layers of a second round of Faster R-CNN.

2 Related Work

Object detection was once dominated by the sliding window search paradigm [2,
]. Soon after the resurgence of ConvNets for image classification [3, 19, 20], there

were attempts at using this sliding window machinery with ConvNets [21-23];

but a key limitation was the computational complexity of brute-force search.



Contextual Priming & Feedback for Faster R-CNN 3

As a consequence, there was major paradigm shift in detection which com-
pletely bypassed the exhaustive search in favor of region-based methods and ob-
ject proposals [8, 12, 24-29]. By reducing the search space, it allowed us to use
sophisticated (both manually designed [9, 30, 31] and learned ConvNet [4, 11,

]) features. Moreover, this also helped focus the attention of detectors to re-
gions well supported by perceptual structures in the image. However, recently,
Faster R-CNN [11] showed that even these region proposals can be generated
by using ConvNet features. It removed segmentation from proposal pipeline by
training a small network on top of ConvNet features that proposes a few object
candidates. This raises an important question: Do ConvNet features already cap-
ture the structure that was earlier given by segmentation or does segmentation
provide complementary information?

To answer this, we study the impact of using semantic segmentation in the
region proposal and object detection modules of Faster R-CNN [11]. In fact,
there has been a lot of interest in using segmentation in tandem with detec-
tion [30, 31, 37, 38]; e.g., Fidler et al. [30] proposed to use segmentation propos-
als as additional features for DPM detection hypothesis. In contrast, we propose
to use semantic segmentation to guide/prime the region proposal generation it-
self. There is ample evidence of the importance of similar top-down contextual
priming in the human visual system [15, 39], and its utility in reducing areas to
focus our attention on for recognizing objects [13, 14].

This prevalence and success of region proposals is only part of the story.
Another key ingredient is the powerful ConvNet features [3, 5, (]. ConvNets
are multi-layered hierarchical feature extractors, inspired by visual pathways in
humans [18, 40]. But so far, our focus has been on designing deeper [5, 6] feed-
forward architectures, even when there is a broad agreement on the importance
of feedback connections [17, 41, 12] and limitations of purely feedforward recog-
nition [43, 44] in human visual systems. Inspired by this, we investigate how can
we start incorporating top-down feedback in our current object detection archi-
tectures. There have been attempts earlier at exploiting feedback mechanisms;
some well known examples are auto-context [45] and inference machines [46].
These iteratively use predictions from a previous iteration to provide contextual
features to the next round of processing; however they do not trivially extend
to ConvNet architectures. Closest to our goal are the contemporary works on
using feedback to learn selective attention [47, 48] and using top-down iterative
feedback to improve at a task at hand [19-51]. In this work, we additionally
explore using top-down feedback from one task to another.

The discussion on using global top-down feedback to contextually prime ob-
ject recognition is incomplete without relating it to ‘context’ in general, which
has a long history in cognitive neuroscience [13-16, 52-55] and computer vi-
sion [56-63]. It is widely accepted that human visual inference of objects is
heavily influenced by ‘context’, be it contextual relationships [16, 52], priming
for focusing attention [13—15] or importance of scene context [39, 53-55]. These
ideas have inspired lot of computer vision research (see [56, 57] for survey). How-
ever, these approaches seldom lead to strong empirical gains. Moreover, they are
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mostly confined to weaker visual features (e.g., [1]) and have not been explored
much in ConvNet-based object detectors.

For region-based ConvNet object detectors, simple contextual features are
slowly becoming popular; e.g., computing local context features by expanding
the region [64-67], using other objects (e.g., people) as context [(8] and using
other regions [69]. In comparison, the use of context has been much more popular
for semantic segmentation. E.g., CRFs are commonly used to incorporate con-
text and post-process segmentation outputs [70-72] or to jointly reason about
regions, segmentation and detection [66, 73]. More recently, RNNs have also
been employed to either integrate intuitions from CRFs [72, 74, 75] in end-to-end
learning systems or to capture context outside the region [36]. But empirically,
at least for detection, such uses of context have mostly given feeble gains.

3 Preliminaries: Faster R-CNN

We first describe the two core modules of the Faster R-CNN [11] framework
(Figure 1). The first module takes an image as input and proposes rectangular
regions of interest (Rols). The second module is the Fast R-CNN [10] (FRCN)
detector that classifies these proposed regions. In this paper, both modules use
the VGG16 [5] network, which has 13 convolutional (conv) and 2 fully connected
(fc) layers. Both modules share all conv layers and branch out at convs_3. Given
an arbitrary sized image, the last conv feature map (conv5_3) is used as input
to both the modules as described below.

Region Proposal Network (RPN). The region proposal module (Figure 1(left)
in green) is a small fully convolutional network that operates on the last feature
map and outputs a set of rectangular object proposals, each with a score. RPN is
composed of a conv layer and 2 sibling fc layers. The conv layer operates on the
input feature map to produce a D-dim. output at every spatial location; which
is then fed to two fc layers — classification (cls) and box-regression (breg). At
each spatial location, RPN considers k candidate boxes (anchors) and learns to
classify them as either foreground or background based on their IOU overlap
with the ground-truth boxes. For foreground boxes, breg layer learns to regress
to the closest ground-truth box. A typical setting is D = 512 and k£ = 9 (3 scales,
3 aspect-ratios) (see [11] for details).

Using RPN regions in FRCN. For training the Fast R-CNN (FRCN) module,
a mini-batch is constructed using the regions from RPN. Each region in the mini-
batch is projected onto the last conv feature map and a fixed-length feature
vector is extracted using Rol-pooling [10, 32]. Each feature is then fed to two fc
layers, which finally give two outputs: (1) a probability distribution over object
classes and background; and (2) regressed coordinates for box re-localization.
An illustration is shown in Figure 1(left) in blue.

Training Faster R-CNN. Both RPN and FRCN modules of Faster R-CNN are
trained by minimizing the multi-task loss (for classification and box-regression)
from [10, 11] using mini-batch SGD. To construct a mini-batch for RPN, 256
anchors are randomly sampled with 1 : 1 foreground to background ratio; and for
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Fig. 1: Faster R-CNN. (left) Overview of Region Proposal Network (RPN) and Rol
classification and box regression. (right) Shorthand diagram of Faster R-CNN.

FRCN, 128 proposals are sampled with 1 : 3 ratio. We train both modules jointly
using the ‘approximate joint training’. For more details, refer to [4, 10, 11, 76].
Given an image during training, a forward pass through all the conv layers
produces conv5_3 feature map. RPN operates on this feature to propose two sets
of regions, one each for training RPN and FRCN. Independent forward-backward
passes are computed for RPN and FRCN using their region sets, gradients are
accumulated at conv5_3 and back-propagated through the conv layers.
Why Faster R-CNN7? Apart from being the current state-of-the-art object
detector, Faster R-CNN is also the first framework that learns where to guide
the ‘attention’ of an object detector along with the detector itself. This end-to-
end learning of proposal generation and object detection provides a principled
testbed for studying the proposed top-down contextual feedback mechanisms.
In the following sections, we first describe how we add a segmentation module
to Faster R-CNN (Section 4.1) and then present how we use segmentation for
top-down contextual priming (Section 4.2) and iterative feedback (Section 4.3).

4 Our Approach

We propose to use semantic segmentation as a top-down feedback signal to
the RPN and FRCN modules in Faster R-CNN, and iteratively to the entire
network. We argue that a raw semantic segmentation output is a compact signal
that captures the desired contextual information such as relationships between
objects (Section 2) along with global structures in the image, and hence is a
good representation for top-down feedback.

4.1 Augmenting Faster R-CNN with Segmentation

The first step is to augment Faster R-CNN framework with an additional seg-
mentation module. This module should ideally: 1) be fast, so that we do not
give up the speed advantages of [10, 11]; 2) closely follow the network used by
Faster R-CNN (VGG16 in this paper), for easy integration; and 3) use minimal
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Fig.2: (a) Overview of ParseNet. (b) Shorthand diagram of our multi-task setup
(Faster R-CNN + Segmentation). Refer to Section 4.1 and 5.2 for details.

(preferably no) post-processing, so that we can train it jointly with Faster R-

CNN. Out of several possible architectures [33, 70, 72, 77, 78], we choose the
ParseNet architecture [77] because of the simplicity.
ParseNet [77] is a fully convolutional network [33] for segmentation. It is

fast because it uses filter rarefication technique (a-trous algorithm) from [70].
Its architecture is similar to VGG16. Moreover, it uses no post-processing; and
instead adds an average pooling layer to incorporate global context; which is
shown to have similar benefits to using CRFs [70, 74].

Architecture details. An overview is shown in Figure 2(a). The key difference
from standard VGGI16 is that the pooling after conv4_3 (poolédge) does no
down-sampling, as opposed to the standard pool4 which down-samples by a
factor of 2. After the conv5 block, it has two 1x1 conv layers with 1024 channels
applied with a filter stride [70, 77]. Finally, it has a global average pooling step
which given the feature map of after any layer (HxWxD) computes its spatial
average (1x1xD) and ‘unpools’ the features. Both source and its average feature
maps are normalized and used to predict per-pixel labels. These outputs are then
fused and a 8x deconv layer is used to produce the final output.

Faster R-CNN with Segmentation — A Multi-task setup

In the joint network (Figure 2(b)), both the Faster R-CNN modules and the seg-
mentation module share the first 10 conv layers (convi_1 - conv4_3) and differ
pool4 onwards. For the segmentation module, we branch out pool4., layer with
stride of 1 and add the remaining ParseNet layers (conv5_1 to deconv)(Figure 2).
The final architecture is a multi-task setup [79], which produces both semantic
segmentation and object detection outputs simultaneously.

Training details. Now that we have a joint architecture, we can train segmen-
tation, RPN and detection modules by minimizing a multi-task loss. However,
there are some key issues: 1) Faster R-CNN can operate on an arbitrary sized
input image, whereas ParseNet requires a fixed 500x500 image. In this joint
framework, our segmentation module is adapted to handle arbitrary sized im-
ages; 2) Faster R-CNN and ParseNet are trained using very different set of
hyperparameters (e.g., learning rate schedule, batch-size etc.); and neither set of
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(c) Joint Model: Contextual Priming and Iterative Feedback

Fig. 3: Overview of the proposed models for top-down feedback. (a) Contextual
Priming via Segmentation (Section 4.2) uses segmentation as top-down feedback
signal to guide the RPN and FRCN modules of Faster R-CNN. (b) Iterative Feed-
back (Section 4.3) is a 2-unit model, where the Stage-1 provides top-down feedback
for Stage-2 filters. (c) Joint Model (Section 4.4) uses (a) as the base unit in (b).

parameters is optimal for the other. So for joint training, we modify the hyper-
parameters of segmentation module and shared layers. Details on these design
decisions and analysis of their impact will be presented in Section 5.2.

This Faster R-CNN + Segmentation framework serves as the base model
on top of which we add top-down contextual feedback. We will also use this
multi-task model as our primary baseline (Base-MT) as it is trained using both
segmentation and detection labels but does not have contextual feedback.

4.2 Contextual Priming via Segmentation

We propose to use semantic segmentation as top-down feedback to the region
proposal and object detection modules of our base model. We argue that segmen-
tation captures contextual information which will ‘prime’ the region proposal and
object detection modules to propose better regions and learn better detectors.
In our base multi-task model, the Faster R-CNN modules operate on the
conv feature map from the shared network. To contextually prime these mod-
ules, their input is modified to be a combination of aforementioned conv fea-
tures and the segmentation output. Both modules can now learn to guide their
operations based on the semantic segmentation of an image — it can learn to
ignore background regions, find smaller objects or find large occluded objects
(e.g., tables) etc. Specifically, we take the raw segmentation output and append
it to the conv4_3 feature. The conv5 block of filters operate on this new input
(‘seg+conv4_3’) and their output is input to the individual Faster R-CNN mod-
ules. Hence, a top-down feedback signal from segmentation ‘primes’ both Faster
R-CNN modules. However, because of the Rol-pooling operation, the detection



8 Shrivastava and Gupta

module only sees the segmentation signal local to a particular region. To provide
a global context to each region, we also append segmentation to the fixed-length
feature vector (‘seg+pool5’) before feeding it to £c6. Overview in Figure 3(a).
This entire system (three modules with connections between them) is trained
jointly. After a forward pass through the shared conv layers and the segmenta-
tion module, their outputs are used as input to both Faster R-CNN modules. A
forward-backward pass is performed for both RPN and FRCN. Next, the seg-
mentation module does a backward pass using the gradients from its loss and
from the other modules. Finally, gradients are accumulated at conv4_3 from all
three modules and backward pass is performed for the shared conv layers.
Architecture details. Given an (H; x Wy x 3) input, the conv4_3 produces a
(He X W x 512) feature map, where (Hc,W.) =~ (H;/8,W;/8). Using this feature
map, the segmentation module produces a (H; x Wy x (K + 1)) output, which is
a pixel-wise probability distribution over K+1 classes. We ignore the background
class and only use (Hp x Wp x K) output, which we refer to as S. Now, S needs
to be combined with conv4_3 feature for the Faster R-CNN modules and each
region’s (7 x 7 x K)-dim. pool5 feature map for FRCN, but there are 2 issues:
1) spatial dimensions of S does not match either, and 2) feature values from
different layers are at drastically different scales [77]. To deal with the spatial
dimension mis-match, we utilize the Rol/spatial-pooling layer from [10, 32]: We
maxpool S using an adaptive grid to produce two outputs S. and S;, which
have the same spatial dimensions as conv4_3 and pool5 respectively. Now, we
normalize and scale S to Scy and Sp to Spy, such that their L2-norm [77] is
of the same scale as the per-channel L2-norm of their corresponding features
(conv4_3 and pool5 respectively). Now, we append Sy to conv4_3 and the
resulting (He X We x (512 +K)) feature is the input for Faster R-CNN. Finally,
we append Spy with each region’s pools and the resulting (7 x 7 x (512 4+ K))
feature is the input for fc6 of FRCN. This network architecture is trained from
a VGG16 initialized base model; and the additional K channels in conv5_3 and
fc6 are initialized randomly using [5, 80]. Refer to Figure 3(a) for an overview.

4.3 Iterative Feedback via Segmentation

The architecture proposed in the previous section provides top-down semantic
feedback and modulates only the Faster R-CNN module. We also propose to
provide top-down information to the whole network, especially the shared conv
layers, to modulate low-level filters. The hypothesis is that this feedback will
help the earlier conv layers to focus on areas likely to have objects. We again
build from the Base-MT model (Section 4.1).

This top-down feedback is iterative in nature and will pass from one instanti-
ation of our base model to another. To provide this top-down feedback, we take
the raw segmentation output of our base model (Stage-1) and append it to the
input of the conv layer to be modulated in the second model instance (Stage-2)
(see Figure 3(b)). E.g., to modulate the first conv layer of Stage-2, we append
the Stage-1 segmentation signal to the input image, and use this combination
as the new input to convi_1. This feedback mechanism is trained stage-wise:
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the Stage-1 model (Base-MT) is trained first; and then it is frozen and only the
Stage-2 model is trained. This iterative feedback is similar to [49, 50]; the key
difference being that they only focus on iteratively improving the same task,
whereas in this work, we also use feedback from one task to improve another.
Architecture details. Given the pixel-wise probability output of the Stage-1
segmentation module, the background class is ignored and the remaining out-
put (S) is used as the semantic feedback signal. Again, S needs to be resized,
rescaled and/or normalized to match the spatial dimensions and the feature val-
ues scale of the input to various conv layers. To append with the input image,
S is re-scaled and centered element-wise to lie in [—127,128]. This results in a
new (Hr x Wy X (3 +X)) input for convi_1. To modulate conv2_1, conv3_1 and
conv4_1, we maxpool and L2-normalize S to match the spatial dimensions and
the feature value scales of pooll, pool2 and pool3 features respectively (similar
to Section 4.2). The filters corresponding to additional K channels in convi_1,
conv2_1, conv3_1 and conv4_1 are initialized using [30].

4.4 Joint Model

So far, given our multi-task base model, we have proposed a top-down feedback
for contextual priming of region proposal and object detection modules and
an iterative top-down feedback mechanism to the entire architecture. Next, we
put these two pieces together in a single joint framework. Our final model is
a 2-unit model: each individual unit being the contextual priming model (from
Section 4.2), and both units being connected for iterative top-down feedback
(Section 4.3). We train this 2-unit model stage-wise (Section 4.3). Architecture
details of the joint model follow from Section 4.2 and 4.3 (see Figure 3(c)).

Through extensive evaluation, presented in the following sections, we show
that: 1) individually, both contextual priming and iterative feedback models
are effective and improve performance; and 2) the joint model is better than
both individual models, indicating their complementary nature. We would like
to highlight that our method is fairly general — both segmentation and detection
modules can easily utilize newer network architectures (e.g., [0, 78]).

5 Experiments

We conduct experiments to better understand the impact of contextual priming
and iterative feedback; and provide ablation analysis of various design decisions.
Our implementation uses the Caffe [31] library.

5.1 Experimental setup

For ablation studies, we use the multi-task setup from Section 4.1 as our baseline
(Base-MT). We also compare our method to Faster R-CNN [11] and ParseNet [77]
frameworks. For quantitative evaluation, we use the standard mean average pre-
cision (mAP) [32] metric for object detection and mean intersection-over-union
metric (mIOU) [10, 82] for segmentation.
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Table 1: Ablation analysis of modifying ParseNet training methodology (Section 5.2).

Notes Input Learning Rates (LR) Batch- Hiter Normalize lll{OU
dim. Base LR Layer LR LR Policy  size Loss? (128 val)
1) [77] (Original ParseNet) 500x500 1078 1 poly 8 20k N 69.6
2) Reproducing [77]* (ParseNet) 500% 500 1078 1 poly 8 20k N 68.2
3) Faster R-CNN LR-policy, Norm. Loss 500% 500 1073 1 step 8 20k Y 68.5
4) Faster R-CNN batch-size, new LR 500x500  2.5x107* 1 step 2 80k Y 67.8
5) Faster R-CNN Base-LR. 500x500 1073 0.25 step 2 80k Y 67.8
6) Faster R-CNN input dim. (ParseNet*) [600x1000]" 1073 0.25 step 2 80k Y 66

fmin dim. is 600, max dim. capped at 1000.¥nttps://github. con/weiliug9/catte/tree/fcn

Datasets. All models in this section are trained on the PASCAL VOC12 [33]
segmentation set (12S), augmented with the extra annotations (A) from [34] as
is standard practice. Results are analyzed on VOC12 segmentation val set. For
analysis, we chose the segmentation set, and not detection, because all images
have both segmentation and bounding-box annotations; this helps us isolate the
effects of using segmentation as top-down semantic feedback without worrying
about missing segmentation labels in the standard detection split. Results on
the standard splits will be presented in Section 6.

5.2 Base Model — Augmenting Faster R-CNN with Segmentation

Faster R-CNN and ParseNet both use mini-batch SGD for training, however,
they follow different training methodologies. We first describe the implementa-
tion details and design decisions adopted to augment the segmentation module
to Faster R-CNN and report baseline performances.

ParseNet Optimization. ParseNet is trained for 20k SGD iterations using
an effective mini-batch of 8 images, an initial learning rate (LR) of 1078 and
polynomial LR decay policy. Compare this to Faster R-CNN, which is trained
for 70k SGD iterations with a mini-batch size of 2, 1072 initial LR and step
LR decay policy (step at 50k). Since we are augmenting Faster R-CNN, we

try to adapt ParseNet’s optimization. On the 12S val set, [77] reports 69.6%
(we achieved 68.2% using the released code, Table 1(1-2)). We will refer to the
latter as ParseNet throughout. Similar to [33], ParseNet does not normalize the

Softmax loss by number of valid pixels. But to train with Faster R-CNN in a
multi-task setup, all losses need to have similar magnitude; so, we normalize the
loss of ParseNet and modify the LR accordingly. Next, we change the LR decay
policy from polynomial to step (step at 12.5k) to match that of Faster R-CNN.
These changes result in similar performance (+0.3 points, Table 1(2-3)). We
now reduce the batch size to 2 and adjust the LR appropriately (Table 1(4)).
To keep the base LR of Faster R-CNN and ParseNet same, we change it to 1073
and modify the LR associated with each ParseNet layer to 0.25, thus keeping
the same effective LR for ParseNet (Table 1(4-5)).

Training data. ParseNet re-scales the input images and their segmentation
labels to a fixed size (500x500), thus ignoring the aspect-ratio. On the other
hand, Faster R-CNN maintains the aspect-ratio and re-scales the input images
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Table 2: Detection results on VOC 2012 segmentation val set. All methods
use VOC12S+A training set (Section 5.1). Legend: S: uses segmentation labels (Sec-
tion 4.1), P: contextual priming (Section 4.2), F: iterative feedback (Section 4.3)

method S P F mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train  tv
Fast R-CNN [10] 71.6 | 882 79.7 83.6 628 423 84.0 69.4 875 415 73.7 574 847 77.7 858 758 353 731 677 850 763
Faster R-CNN [11] 75.3 | 92.3 80.9 867 654 49.3 87.1 782 89.7 427 79.8 61.4 874 828 894 822 461 782 646 868 75.6
Base-MT (sec. 4.1) v 75.6 | 93.0 825 88.1 70.2 472 865 76.5 89.3 47.7 783 56.4 880 802 889 80.7 43.6 815 67.9 894 752
Ours (priming, sec. 4.2) v v 77.0 | 911 823 853 708 475 90.3 752 90.9 46.0 82.3 656 880 833 91.2 8L0 496 810 69.8 921 76.0
Ours (feedback, sec. 4.3) v/ V| T7.3 | 907 829 904 703 512 89.7 77.0 9L7 49.9 814 669 87.8 SL1 903 822 504 792 702 859 76.9
Ours (joint, sec. 4.4) v v V| T77.8|89.8 838 840 721 542 920 755 91.2 53.6 821 69.8 857 817 9024 825 499 762 725 89.3 784

Table 3: Segmentation results on VOC 2012 segmentation val set. All methods
use VOC12S+A training set (Section 5.1). Legend: S: uses segmentation labels, P:
contextual priming, F: iterative feedback

method S P F |mlOU| bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
ParseNet (Table 1(2)) v 68.2 | 923 869 384 771 664 665 S83.0 80.9 825 31.0 729 495 714
ParseNet” (Table 1(6) v/
Base-MT (sec. 4.1) v
Ours (priming, sec. 4.2) vV 65.3 | 915 85.1 364 73.3 64.0 604 814 751 818 31.7 648 488 69.0 73.7 734 771 416 69.9 384 781 555
v
v

76.7 79.3 470 73.3 403 783 63.6

66.0 |91.7 852 368 73.2 64.0 608 824 769 81.8 304 654 513 69.6 735 754 782 439 713 389 79.3 562

65.8 |91.6 843 37.1 TL5 638 60.8 823 T48 80.3 30.8 687 488 T 738 777 428 701 39.1 79.9 56.4

Ours (feedback, sec. 4.3) 69.5 |92.8 87.3 39.4 769 66.7 68.1 86.9 80.6 864 334 681 509 T71.8 80.1 77.3 813 486 73.3 420 828 655

Ours (joint, sec. 4.4) 69.6 929 885 394 781 669 69.1 845 79.8 849 378 69.2 50.5 714 79.7 775 813 471 742 434 80.1 65.0

such that their shorter side is 600 pixels (and the max dim. is capped at 1000).
We found that ignoring the aspect-ratio drops Faster R-CNN performance and
maintaining it drops the performance of ParseNet (—1.8 points, Table 1(5-6)).
Because our main task is detection, we opted to use Faster R-CNN strategy, and
treat the new ParseNet (ParseNet*) as the baseline for our base model.

Base Model Optimization. Following the changes mentioned above, our base
model uses these standardized parameters: batch size of 2, 1072 base LR, step
decay policy (step at 50k), LR of 0.25 for segmentation and shared conv layers,
and 80k SGD iterations. This model serves as our multi-task baseline (Base-MT).
Baselines. For comparison, re-train Fast [10] and Faster R-CNN [11] on VOC
125+4A training set. Results of the Base-MT model for detection and segmen-
tation are reported in Table 2 and 3 respectively. Performance increases by 0.3
mAP on detection and drops by 0.1 mIOU on segmentation. This will serve as
our primary baseline.

5.3 Contextual Priming

We evaluate the effects of using segmentation as top-down semantic feedback to
the region proposal generation and object detection modules. We follow the same
optimization hyperparameters as the Base-MT model, and report the results in
Table 2 and 3. Table 2 shows that providing top-down feedback via priming to
the Faster R-CNN modules improves its detection performance by 1.4 points
over the Base-MT model and 1.7 points over Faster R-CNN. Results in Table 3
show that performance of segmentation drops slightly when it is used for priming.
Design Evaluation. In Table 4(a), we report the impact of providing segmen-
tation signal to different modules. We see that just priming conv5_1 gives a 1
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Table 4: Analation analysis of Contextual Priming and Iterative Feedback on VOC
12S val set. All methods use VOC 12S+A train set for training

(a) Evaluating Priming different layers (b) Evaluating Iterative Feedback design decisions
mAP mIOU Stage-2 Init. mAP mIOU
Base-MT 75.6 65.8 Base-MT - 75.6  65.8
Priming conv5_1 76.6 65.8 ImageNet 76.5 69.3

Iterative Feedback to convi_1
Priming conv5_1, each fc6 77.0 65.3 Stage-1 76.3  69.3

ImageNet  76.3  69.1
Stage-1 77.3 69.5

Iterative Feedback to conv{1,2,3,4}.1

point boost over Bast-MT and adding the segmentation signal to each individ-
ual region (‘seg+pool5’ to £c6) gives another 0.4 points boost. It is interesting
that the segmentation performance is not affected when priming conv5_1, but it
drops by 0.5 mIOU when we prime each region. Our hypothesis is that gradients
accumulated from all regions in the mini-batch start overpowering the gradients
from segmentation. To deal with this, methods like [79] can be used in the future.

5.4 Iterative Feedback

Next we study the impact of giving iterative top-down semantic feedback to
the entire network. In this 2-unit setup, the first unit (Stage-1) is a trained
Base-MT model and the second unit (Stage-2) is a Stage-1 initialized Base-MT
model. During inference, we have the option of using the outputs from both
units or just the Stage-2 unit. Given that segmentation is used as feedback, it
is supposed to self-improve across units, therefore we use the Stage-2 output as
our final output (similar to [19, 50]). For detection, we combine the outputs from
both units; because the Stage-2 unit is modulated by segmentation, and the first
unit is not, hence both might focus on different regions.

This iterative feedback improves the segmentation performance (Table 3) by
3.7 points over Base-MT (3.5 points over ParseNet*). For detection, it improves
over the Base-MT model by 1.7 points (2 points over Faster R-CNN) (Table 2).

Design Evaluation. We study the impact of: (1) varying the degree of feedback
to the Stage-2 unit, and (2) different Stage-2 initializations. In Table 4(b), we
see that when initializing the Stage-2 unit with an ImageNet trained network,
varying iterative feedback does not have much impact; however, when initializ-
ing with a Stage-1 model, providing more feedback leads to better performance.
Specifically, iterative feedback to all shared conv layers improves both detection
and segmentation by 1.7 mAP and 3.7 mIOU respectively, as opposed to feed-
back to just convi_1 (as in [49, 50]) which results in lower gains (Table 4(b)).
Our hypothesis is that iterative feedback to a Stage-1 initialized unit allows the
network to correct its mistakes and/or refine its predictions; therefore, providing
more feedback leads to better performance.
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Table 5: Detection results on VOC 2007 detection test set. All methods are
trained on union of VOCO07 trainval and VOC12 trainval

method S | mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Fast R»CNN[ ] 70.0 | 77.0 78.1 69.3 59.4 383 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 748 80.4 704
Faster R-CNN [11] 73.2 | 765 79.0 70.9 655 521 83.1 84.7 864 52.0 81.9 657 84.8 846 775 767 388 73.6 73.9 83.0 726
Base-MT V| 747 | 784 793 759 632 56.8 859 854 884 549 83.9 686 846 856 785 781 413 746 748 84.0 724
Ours (joint) v M 79.3 80.5 76.8 72.0 582 85.1 86.5 89.3 60.6 82.2 69.2 87.0 87.2 81.6 78.2 44.6 779 76.7 824 719

Table 6: Detection results on VOC 2012 detection test set. All methods are
trained on union of VOCO07 trainval, VOCO07 test and VOC12 trainval

method S | mAP |aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Fast R-CNN [10] 68.4 |82.3 784 70.8 523 38.7 77.8 716 89.3 442 73.0 550 87.5 80.5 808 720 351 683 657 804 64.2
Faster R-CNN [11] 70.4 | 849 798 743 53.9 498 775 759 885 456 77.1 553 86.9 SL7 809 79.6 40.1 726 609 812 61.5
Base MT V| TL1" [ 842 809 73.1 551 50.6 782 75.6 80.0 486 76.7 548 87.6 825 83.0 80.0 417 742 60.7 814 63.1
Ours (joint) v [72.6% 840 812 759 604 518 812 774 909 502 77.6 587 884 83.6 820 804 4L5 750 64.2 829 651

A http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC.html, o http://host.robots.ox.ac.uk:8080/anonymous/YFSUQA.html

5.5 Joint Model

Finally, we evaluate our joint 2-unit model, where each unit is a model with
contextual priming, and both units are connected via segmentation feedback.
In this setup, a trained contextual priming model is used as the Stage-1 unit
as well as the initialization for the Stage-2 unit. We remove the dropout layers
from Stage-2 unit. Inference follows the procedure described in Section 5.4.

As shown in Table 2, for detection, the joint model achieves 77.8% mAP
(+2.2 points over Base-MT and +2.5 points over Faster R-CNN), which is bet-
ter than both priming only and feedback only models. This suggests that both
forms of top-down feedback are complementary for object detection. The seg-
mentation performance (Table 3) is similar to the feedback only model, which is
expected since in both cases, the segmentation module receives similar feedback.

6 Results

We now report results on the PASCAL VOC and MS COCO [385] datasets. We
also evaluate the region proposal generation on the proxy metric of average recall.
Experimental Setup. When training on the VOC datasets with extra data
(Table 5, 6 and 7), we use 100k SGD iterations (other hyperparameters follow
Section 5); and for MS COCO, we use 490k SGD iterations with an initial LR
of 1072 and decay step size of 200k, owing to a larger epoch size.

VOCO07 and VOC12 Results. Table 5 shows that on VOCO07, our joint priming
and feedback model improves the detection mAP by 1.7 points over Base-MT
and 3.2 points over Faster R-CNN. Similarly, on VOC12 (Table 6), priming and
feedback lead to 1.5 points boost over Bast-MT (2.2 over Faster R-CNN). For
segmentation on VOC12 (Table 7), we see a huge 5 point boost in mIOU over
Base-MT. We would like highlight that both Base-MT and our joint model use
exactly the same annotations and hyperparameters; therefore the performance
boosts are because of contextual priming and iterative feedback in our model.


http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC.html
http://host.robots.ox.ac.uk:8080/anonymous/YFSUQA.html
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Table 7: Segmentation results on VOC 2012 segmentation test set. All meth-
ods are trained on union of VOCO07 trainval, VOCO07 test and VOC12 trainval

method S |mIOU | bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train  tv

Base MT V| 66.4" |91.3 820 377 77.6 588 588 84.0 756 831 251 70.9 57.8 740 T46 764 750 488 737 456 723 52.0
Ours (joint) v | 71.4% |93.0 89.3 414 841 638 652 881 80.9 88.6 284 754 G0.6 80.3 80.9 83.1 79.7 554 77.9 48.2 T5.8 58.8

http://host .robots . ox.ac.uk:8080/anonymous/RUZFQC. html, < http://host.robots.ox.ac.uk:8080/anonymous/YFSUQA . html
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Fig. 4: Recall-to-IoU on VOC12 Segmentation val set (left) and VOCOT test set (right)
(best viewed digitally).

Recall-to-IOU. Since our hypothesis is that priming and feedback lead to bet-
ter proposal generation, we also evaluate the recall of region proposals by the
RPN module from various models, at different IOU thresholds. In Figure 4, we
show the results of using 2000 proposal per RPN module. Since feedback models
have 2 units, we report their number with both 4000 and top 2000 proposals
(sorted by cls score). As can be seen priming, feedback and joint models all
lead to higher average recall (shown in legend) over the baseline RPN module.

Table 8: Detection results on MS COCO 2015 test-dev set. All methods use
COCO trainval35k for training and results were obtained from the online 2015 test-
dev server. Legend: F': using iterative feedback, P: using contextual priming, S: uses
segmentation labels.

Method S pF AP,ToU: | AP, Area: | AR, # Dets: | AR, Area:
0.5:0.95 0.50 0.75| Small Med. Large| 1 10 100 | Small Med. Large
Faster R-CNN 245 46.0 23.7| 82 264 369 |24.0 348 355| 134 392 54.3

Base-MT v
Ours (priming) v
Ours (joint) v

25.0 470 242, 81 27.1 381 |24.3 35.1 35.8| 13.2 39.8 55.0
25.8 482 253| 83 278 386 |245 35.7 36.5 13.6 40.6 54.7
v | 275 492 278| 89 295 415 |255 374 383 14.6 425 574

v
v

MS COCO Results. We also perform additional analysis of contextual priming
on the COCO [85] dataset. For MS COCO dataset, we only use the output from
Stage-2 unit. Our priming model results in +1.2 AP points (+2.1 AP50) over
Faster R-CNN and +0.8 AP points (+1.1 AP50) over Base-MT on the COCO
test-dev set [35]. On further analysis, we notice that the most performance gains
are for objects where context should intuitively help; e.g., +12.4 for ‘parking-
meter’, +8.7 for ‘suitcase’, +8.3 for ‘umbrella’ etc. on AP50 wrt. to Faster R-
CNN. Finally, our joint model achieves 27.5 AP points (+3 AP points over
Faster R-CNN and +2.5 over Base-MT), further highlighting effectiveness of
the proposed method.


http://host.robots.ox.ac.uk:8080/anonymous/RUZFQC.html
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7 Conclusion

We presented and investigated how we can incorporate top-down semantic feed-
back in the state-of-the-art Faster R-CNN framework. We proposed to augment
a segmentation network to Faster R-CNN, which is then used to provide top-
down contextual feedback to the region proposal generation and object detection
modules. We also use this segmentation network to provide top-down feedback to
the entire Faster R-CNN network iteratively. Our results demonstrate the effec-
tiveness of these top-down feedback mechanisms for the tasks of region proposal
generation, object detection and semantic segmentation.
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