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Abstract

Just when the question of what is the best method for slid-
ing window object detection was thought to be settled (lin-
ear SVM on groups of HOG features), several recent papers
have suddenly made the story a lot murkier. In this unusual
paper (more typical of the natural sciences than computer
science), we explore one recent, surprising work – Hari-
haran et al. [7] – and try to understand it better experi-
mentally. In particular we try to understand the relation-
ship between the covariance matrix and the amount of data
needed to fill the model’s effective capacity. We find that the
amount of data needed to saturate the performance of the
system is surprisingly little – less than 20 images. Based
on our findings, we propose two extensions that substan-
tially improve the object detection performance on the PAS-
CAL VOC dataset, pushing it ahead of Exemplar-SVM [10].
Since our extensions are relatively simple, and the perfor-
mance is clearly better, we expect this work to be immedi-
ately useful in practice, whenever there is a need to compute
distances in HOG space.

1. Introduction

For the last half a decade, it appeared that the story of ob-
ject detection has been pretty much settled. The story that
started with Dalal and Triggs [3], got solidified with Felzen-
szwalb et al [5] and is now taught in vision courses and ap-
pears in the textbooks is a story with three critical compo-
nents: 1) sophisticated Histogram of Gradients (HOG) fea-
ture (to encode various visual invariances), 2) linear SVM
classifier (to build a discriminative object class model that
can generalize across the positive class instances), and 3)
lots of negative data (to use in large-scale hard-negative
mining). Each of these components has been thoroughly
tested and reasonably well understood, and the various im-
plementations of the framework have consistently outper-
formed other methods on a number of difficult datasets, in-
cluding the highly regarded PASCAL VOC [4].

But recently, this nice and well-understood story has
been getting a lot murkier... The first sign that things are
not as they seem came two yeas ago from the work on

Exemplar-SVMs [10]. It proposed a very simple experi-
ment: to learn a separate classifier for each positive object
instance in the dataset separately and then combine the re-
sults. This would seem like a silly thing to do since most re-
searchers have attributed the success of SVM-based detec-
tion methods to their ability to generalize across the positive
class instances. In the Exemplar-SVM setup, no generaliza-
tion across the positives is possible by definition, yet, sur-
prisingly, no drastic drop in detection performance was ob-
served compared to the standard, category-based SVM ap-
proaches. The authors hypothesized that it was the pressure
from the hard-mined negatives, not the generalization from
the positives, that explained the good SVM performance.
In their follow-up work [15], they showed that there was
no need for any special “negative” data – any large-enough
sample of the natural world (e.g. hundreds of thousands
random, unlabeled images off the Internet) worked just as
well. This observation was used to apply Exemplar-SVM
to image retrieval, essentially using the SVM to compute
a local distance metric for every query (using the ”natural
world dataset” as negatives) and then find the nearest neigh-
bors in that new space. The explanation was that the neg-
ative support vectors chosen by the SVM represent a visu-
ally meaningful neighborhood around the query image and
should provide a good local distance.

Then last year, the work by Hariharan et al. [7] gave
an even bigger shock to the commonly accepted wisdom.
Taking the Exemplar-SVM argument further, they showed
that there was no need for the SVM at all! The idea is that
since the negative set is simply capturing the natural image
statistics and can be the same for every exemplar, it should
be possible to model it once and for all. Indeed, model-
ing the negatives as a high dimensional Gaussian turns the
SVM into an LDA (Linear Discriminant Analysis) which
incurs negligible training cost. Even though LDA is a
very coarse approximation of the linear SVM, surprisingly,
the Exemplar-LDA results on PASCAL VOC are just a bit
worse than Exemplar-SVM, at a fraction of the computa-
tional cost for training. Conceptually, Exemplar-LDA is
equivalent to simply whitening the data and then finding the
nearest neighbors in the decorrelated space! Suddenly, the
magic of linear SVMs for object detection is not looking so
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magical anymore.
Of course, we still have the “magic of data”. After all,

building the covariance matrix required to whiten the data
still requires a very large “natural world dataset” (around
10, 000 images or over a million patches is used in Hariha-
ran et al. [7]). This is not too surprising, since our visual
world is so extremely rich and varied – it makes sense that
the model would require a lot of data to capture enough nat-
ural image statistics to start being useful. Except... it turns
out not to be the case.

Contributions: In this unusual paper (more typical of
the natural sciences than computer science), we explore one
existing approach – Hariharan et al. [7] – and try to under-
stand it better experimentally. In particular we try to under-
stand the relationship between the covariance matrix and the
amount of data needed to fill the model’s effective capac-
ity. Based on our findings, we propose two extensions that
substantially improve the object detection performance on
the PASCAL VOC dataset, pushing it ahead of Exemplar-
SVM [10]. Since our extensions are relatively simple, and
the performance is clearly better, we expect this work to be
immediately useful in practice, whenever there is a need to
compute distances in HOG space. More importantly, we
hope that this paper will restart a discussion on the role of
natural image statistics for visual matching, yielding further
follow-up work in this neglected area.

2. Motivation
In this section, we first briefly review the work by Hari-

haran et al. [7] on summarizing the natural image statistics
in the HOG feature space with a Gaussian distribution, and
then provide some experimental analysis which will moti-
vate the rest of the paper.

2.1. Whitened Histograms of Orientations (WHO)

Hariharan et al. [7] present a method for estimating
statistics of natural images in the HOG feature space, so that
the entire set of natural images can be approximately repre-
sented by a high-dimensional Gaussian given by the mean
µ0 and covariance Σ. In this way, object detectors can be
trained efficiently (without the infamously expensive hard-
mining step) using Linear Discriminant Analysis [11]:

w = Σ−1(µ1 − µ0) , (1)

where w denotes the learned detector weights, and µ1 is
the input HOG descriptor. Once the mean and covariance
are given, the original HOG descriptor can be whitened by
x̂ = Σ−1/2(x − µ0), resulting in a new feature descriptor
that has an isotropic covariance matrix. This new descriptor
is referred as Whitened Histograms of Orientations (WHO)
and it is shown to perfom better for pairwise comparisons
and clustering than the original HOG descriptor. Through-

out the rest of the paper, we’ll use WHO to refer to their
approach.

Mean estimation: The mean vector µ0 for any M ×N
HOG template is obtained by simply replicating the mean
for a single HOG cell µ by N ∗M times, where µ is esti-
mated by sampling a large set of HOG cells from an unla-
beled image set and taking the mean.

Covariance estimation: The covariance Σ is modeled
as a block matrix with blocks Σ(ij),(lk) = E[xijx

>
lk], and

each block is estimated by a spatial autocorrelation func-
tion [14] exploiting the property of translation invariance
for natural images:

Σ(ij),(lk) = Γ(i−l),(j−k) = E[xuvx
>
(u+i−l),(v+j−k)] , (2)

where the expectation is over cell locations (u, v) and HOG
features x. This means that Σ(ij),(lk) only depends on the
relative spatial offsets (i−l) and (j−k). Furthermore, since
the statistics of smaller-size templates can be obtained by
marginalizing out that of larger-size templates, the covari-
ance for smaller-size templates can be generated by select-
ing blocks of Σ for larger templates. Thus, one only needs
to estimate Σ for a large-enough template (e.g. 20 × 20)
once for all. For regularization, a small constant λ is added
to the diagonals of Σ when training with LDA.

2.2. How much data does WHO need?

At first glance, one might think that the amount of data
required to estimate Σ would be very large (Hariharan et
al. [7] report using 10, 000 images and even then Σ was
not invertible and needed to be regularized). But what’s the
minimum number of images required for the same level of
performance? To investigate this, we randomly sampled N
(about 107) image patches of 160× 160 pixels (i.e. 20× 20
HOG windows) from PASCAL VOC 2010 dataset, which
still only represents a very small fraction of the available
visual data. We further divided the patches into subsets of
different sizes (from 104 to 107), and estimated a covariance
matrix using each subset independently.

One way to measure how different these covariances are
in practice is to apply LDA to train object detectors using
each of them independently, and see how the detection per-
formance changes. Therefore, for each covariance matrix,
we select 50 exemplars for each of the 5 categories (horse,
train, tvmonitor, bus and sheep) from PASCAL VOC 2007
dataset [4], train a LDA model for each exemplar using
Eq. 1, and evaluate on the full PASCAL test set (exemplar
scores are calibrated using logistic regression as in [10]).
The performance for each category using different covari-
ances is shown in Fig. 1. Surprisingly, although the co-
variance is of size greater than 10000 × 10000, its perfor-
mance saturates rapidly with respect to the amount of im-
age data used for estimation. In most cases, the saturation



point roughly happens atN = 105 patches (less than 20 im-
ages!). Therefore, it appears WHO does not actually need
much data at all, and that attempts to throw more data at it
do not improve the performance.

We can also try to directly measure how different are the
estimated covariance matrices using all vs. a part of the data
using Affine Invariant Riemannian Metric (AIRM) [13], a
widely used distance metric for covariance matrices:

D(Σ1,Σ2) = ‖ log(Σ
−1/2
1 Σ2Σ

−1/2
1 )‖F , (3)

where log(·) is the matrix logarithm, and ‖ · ‖F denotes the
Frobenius norm. In our case, Σ1 is the covariance estimated
using all the image patches, and Σ2 is the covariance esti-
mated using only a subset of them. Fig. 1(f) shows how
the distance varies as different number of image patches are
used for covariance estimation.

2.3. Statistics for different scenes

Our previous experiments demonstrated how the estima-
tion of natural image statistics using WHO saturates rapidly,
with a large portion of image data being unused. We can
think of two possible explanations for this: 1) The PAS-
CAL dataset contains a rich combination of different types
of visual scenes (indoor, outdoor, natural, man-made, etc)
so perhaps capturing them by the same covariance matrix
averages away valuable information; 2) The effective ca-
pacity of the WHO model is relatively low, and it is unable
to fully capture the richness of the visual world.

To evaluate hypothesis 1), we conducted an experiment
where we varied the subset of image data (background) on
which we estimate the image statistics based on scene type.
Specifically, we used three different annotated sets of im-
ages from the SUN database [1] to estimate three different
covariance matrices: Indoor Images, Outdoor Man-made
and Outdoor Natural. Our hypothesis is that since indoor
images have significantly different visual properties from
outdoor natural images, the estimated covariance matrices
should be quite different. Hence, training LDA with these
different covariances should result in very different object
detectors. Figure 2 shows both the learned HOG weights
and the top retrievals for five different exemplars using co-
variance matrices estimated from three different scenes. As
one can see, the retrievals for all the three covariances look
quite similar with only small changes in their ordering. For
example, for the car exemplar, it retrieves exactly the same
cars in all the three cases, and for the horse exemplar, even
the false positives are almost the same across three cases.
This experiment suggests that 1) is not the reason why
statistics captured by WHO saturates so quickly. Therefore,
we hypothesize that it is the low model capacity of WHO
that causes rapid saturation.

3. Towards capturing richer image statistics
with more data

As shown in our experiments from Section 2.1, the sat-
uration of the the “natural HOG statistics” happens surpris-
ingly fast, implying it has insufficient capacity for fully cap-
turing properties of the visual world. In this section, we
propose two ways of increasing the capacity of the WHO
framework: 1) modeling statistics across multiple scales in
the HOG space and 2) modeling HOG statistics in a new
space induced by the intersection kernel via explicit feature
mapping. Both have been shown to outperform WHO in our
experiments.

3.1. Multiscale statistics

One intrinsic disadvantage of the WHO framework is
that when estimating the covariance, it only looks at pair-
wise cell statistics within the lcoal scale, and any given cell
has no access to information in other scales. This is not
ideal as it has been shown that object detectors trained on
multiple scales tend to have better performance [12, 9] than
those trained on a single scale. Therefore, here we propose
a multiscale statistical model that captures not only the cell
statistics within the same scale (as in WHO) but also the
more global statistics across multiple scales.

Denoting the image at the original scale as I(1) with
m rows and n columns, we will demonstrate the proposed
multiscale framework with three scales: I(1), I(2) (origi-
nal image down-sampled by half with m/2 rows and n/2
columns), and I(3) (original image down-sampled by one-
fourth with m/4 rows and n/4 columns). Therefore, a cell
in I(2) (I(3)) summarizes information for the corresponding
4 (16) cells of I(1) at the original scale. Alternatively, one
can obtain the image representation at multiple scales by
simply using different bin sizes for HOG feature extraction.

3.1.1 Mean estimation

Due to the property of scale invariance for natural images,
we assume that the mean is the same across different scales,
and use the same method as WHO to estimate the mean (see
Section 2.1 for more details).

3.1.2 Covariance estimation

We propose multiscale covariance estimation that captures
statistics not only for cells within the local scale but also
across multiple scales. This is achieved by utilizing the au-
tocorrelation function not only for spatial offsets but also
for offsets in the scale space. Specifically, given two HOG
cells at location (i, j) of I(s) and location (l, k) of I(t), re-
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Figure 1. (a)–(e) Variation of the detection performance for different categories when different number of images are used to estimate the
background statistics. Overall, WHO tends to saturate much faster than Multiscale-WHO and Kernelized-WHO, implying that its effective
model capacity is lower. (f) Difference of covariances (measured by the AIRM metric) estimated using varying amount of image patches
compared to the one estimated using all patches.

Background scene: Indoor Outdoor man-made Outdoor natural Query 

Figure 2. Top retrievals by the WHO model trained using background statistics estimated from different scene images. Surprisingly, despite
high variation in the visual properties of these three different scenes, the statistics estimated using WHO appear to be almost the same –
the top retrievals seem to make no difference across the three cases, and for some exemplars even the retrieved false positives are the same.

spectively, the covariance Σ is estimated by

Σ
(s,t)
(ij),(lk) = Γs−t(i−l),(j−k) = E[(xwuv)(x

w+s−t
(u+i−l),(v+j−k))

>]
(4)

where s, t and w are scale indices, and x is the HOG de-
scriptor for the corresponding cell. This means that the co-
variance Σ

(s,t)
(ij),(lk) depends on the relative offset both in cell

location and the scale space. If we are only concerned with
the covariance across three scales, I(1), I(2) and I(3), then
only cells with scale offset s − t = 0, 1 or 2 are of inter-

est. (When s − t = 0, the estimated covariance reduces to
WHO [7], i.e. within the local scale.)

3.1.3 LDA for multiscale input

Recall that the LDA weights are learned by w = Σ−1(µ1−
µ0). In the multiscale case, as shown in Fig. 3, µ1 can
be obtained by concatenating the HOG features extracted
in multiple scales, µ0 is the concatenation of background
mean vectors, and Σ is the covariance matrix with diago-



nal blocks capturing the image statistics within the same
scale, and off-diagonal blocks capturing the cross-scale im-
age statistics (see Fig. 4).� �

�1
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Figure 3. Training LDA for multiscale input. The input HOG fea-
tures from multiple scales are first concatenated together as one
long vector, then LDA with mean and covariance estimated for
multiscale HOG statistics is applied to obtain the detector weights,
which consist of weights for multiple scales.
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Figure 4. Structure of the multiscale covariance matrix. The di-
agonal blocks are covariances within the same scale, and the off-
diagonal blocks are covariances between different scales.

3.1.4 Detection

At test time, detection is done using sliding window with
the learned weights across multiple scales at the same time.
Specifically, for each scale, we apply the standard sliding
window approach with the weights for the corresponding
scale to obtain a score map for all sub-windows. Then the
score maps in higher scales are resized to align with that
in the lowest scale using bilinear interpolation. The final
detection score for each sub-window is obtained by simply
adding up its scores from all the scales.

3.2. Statistics in the kernel induced feature space

For many computer vision feature representations, such
as bag of visual words [2], spatial pyramids [8] and HOG,
the intersection kernel [6] has been shown to outperform the

linear kernel for detection and recognition tasks [9]. How-
ever, such performance improvement usually comes at great
computational cost, since nonlinear kernels could induce
much higher training and testing time for the SVM clas-
sifier.

In this section, we show that by utilizing an explicit fea-
ture mapping technique [16] one can directly estimate the
statistics in the induced kernel space, and train object de-
tectors efficiently using LDA in the feature space. This ap-
proach is equivalent to kernel LDA [11], except that we use
an approximate finite dimensional feature mapping to work
directly in feature space.

3.2.1 Explicit HOG feature mapping for the intersec-
tion kernel

The intersection kernel is part of a larger family called addi-
tive kernels [16]. For histogram-based feature vectors x, y
(HOG descriptors in our case), an additive kernel is given
by K(x, y) =

∑
b k(xb, yb), where b is the bin index. The

scalar kernel k is typically chosen to be a positive defi-
nite kernel, which implies that there exists a feature map-
ping Ψ(xb) such that k(xb, yb) = 〈Ψ(xb),Ψ(yb)〉, where
Ψ(xb) is however possibly infinite dimensional. For homo-
geneous1 positive definite kernel, it is also possible to con-
struct an approximate feature map Ψ̂(xb) of dimension only
2n+ 1.

This kernel map has the generic form:

[Ψ̂(xb)]j√
xbL

=





√
κ(0), j = 0,√
2κ( j+1

2 L) cos( j+1
2 L log xb) j > 0 odd,√

2κ( j2L) sin( j2L log xb) j > 0 even,
(5)

where n and L are parameters controlling the approxima-
tion accuracy, and κ(λ) = 2

π
1

1+4λ2 for the intersection ker-
nel.

Combining this technique with the WHO pipeline, we
can directly obtain natural image statistics in the new fea-
ture space induced by the intersection kernel, which are
O(n2) times as many as the original HOG statistics (in
terms of the size of the covariance matrix). Specifically, this
is achieved by adding an extra mapping step into the feature
extraction process, where each 31-dimensional HOG cell x
is mapped to the (62n+31)-dimensional space using Eq. 5.
Given that a typical HOG template has more than 100 cells,
the dimensionality will explode easily with a large n. For-
tunately, as shown in [16], n needs not be a large value for
the approximation to be reasonable.

During training, each cell of the input HOG descriptor is
mapped using Eq. 5 to obtain its representation in the ker-
nel induced space. Then LDA with mean and covariance

1k(x, y) is homogeneous if ∀c ≥ 0, k(cx, cy) = ck(x, y), which
holds true for the intersection kernel.



capturing the statistics within the new space is used to learn
the detector weights wK . At test time, all potential sub-
windows generated by the sliding window technique are
first mapped using Eq. 5, and the score for each sub-window
is simply the inner product between the feature map Ψ̂(x)
and the weights wK .

3.3. Has the model capacity been increased?

For the two statistical models proposed in previous sec-
tions, which we call Multiscale-WHO and Kernelized-
WHO , we conduct similar experimental evaluation as in
Section 2.2 by varying the amount of image data used for
covariance estimation. The results shown in Fig. 1 show
that for both Multiscale-WHO and Kernelized-WHO, the
performance saturation point is pushed much farther along
the x-axis compared to WHO, implying that both are ca-
pable of utilizing much more data than WHO for estimat-
ing natural image statistics, and consequently lead to better
detection performance. The improvement in detection per-
formance is further verified in Section 4 by comprehensive
evaluation on a standard benchmark dataset.

4. Experimental Results
We evaluate the two proposed approaches, Multiscale-

WHO and Kernelized-WHO, respectively, on the standard
object detection benchmark dataset, PASCAL VOC 2007.
For baseline comparison, we also report the performance of
WHO (Exemplar LDA + Calibration) and Exemplar-SVM
on the same dataset.

4.1. Object detection with Multiscale-WHO

To estimate the mean and covariance for Multiscale-
WHO, we use a large set of unlabeled natural images, the
PASCAL VOC 2010 dataset. From our preliminary ex-
periments, we found that the detection performance using
two scales is indistinguishable with that using three scales,
which might be because image gradients at the third scale
(original image down sampled by a factor of 4) are much
less correlated with gradients that are two scales lower (see
Fig. 5). For simplicity, we thus decide to evaluate the per-
formance of Multiscale-WHO with two scales for full PAS-
CAL detection experiments.

After the multiscale background statistics are learned,
we train an ensemble of multiscale exemplar detectors for
each of the 20 object categories using LDA. At test time,
each exemplar detector is used to create detection windows
with the method described in Section 3.1.4 separately (this
step can be dramatically expedited via parallelized imple-
mentation on a cluster of hundreds of nodes), and the results
are pooled via a calibration step [10] to form final detection
scores for each window. Finally, standard non-maximum
suppression is applied to generate a sparse set of detections
per image. Performance on the PASCAL test set for each
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Figure 5. Visualization of covariances between the first 9 orienta-
tion features of HOG at different spatial and scale offsets. Lighter
pixels have higher values. One can see that at scale offset two,
the covariances start to appear not well-structured any more, and
the intensity is significantly lower than smaller scale offsets. This
indicates that image gradients at the original scale and ones at two
scales higher are not well-correlated, and using the third scale for
LDA training would not help much.

category is shown in Table 1. Overall, object detectors
trained by Multiscale-WHO obtains a mean Average Pre-
cision (mAP) of .199, which not only performs better than
WHO (.191), but does as well as ESVM (.198) that requires
an expensive hard-mining step for training each exemplar.

4.2. Object detection with Kernelized-WHO

Same as for Multiscale-WHO, we estimate the mean and
covariance of Kernelized-WHO on the PASCAL VOC2010
dataset. In our experiments, we set the kernel approxima-
tion parameter n = 1 such that a HOG cell of 31 dimensions
is mapped to a 93-dimensional vector2.

For evaluation, we also adopt the ensemble of exemplars
pipeline for Kernelized-WHO. In particular, the weights for
each exemplar detector are learned as described in Sec-
tion 3.2.1, and at test time, the only difference is that an
additional feature mapping step using Eq. 5 is applied to
all sub-windows generated by the sliding window technique
before multiplying the detector weights.

We also report the detection performance of Kernelized-
WHO on the PASCAL test in Table 1. As shown, the av-
erage performance of Kernelized-WHO improves signifi-
cantly compared to WHO (a relative 11% improvement),
and it is even better than ESVM (a relative 8% improve-
ment) without the need for a costly hard-mining step.

4.3. Qualitative results

In this section, we show qualitative results for further
comparing Multiscale-WHO and Kernelized-WHO with the
baseline WHO model, and hopefully shed some light on

2As shown in [16], a larger n typically does not lead to significant
performance improvement, while the computational cost might be doubled
or even quadrupled, and is thus unjustified.



what natural image properties are being captured from more
extensive use of image data.

First, we would like to visually compare the weights
learned by the three different models. Apparently, this is not
straightforward for Kernelized-WHO as the learned weights
are no longer in the HOG space. To resolve this, we ap-
ply least squares fitting to obtain an approximation of the
kernelized weights in the HOG space. Specifically, we ran-
domly sample 10,000 image patches as the training set for
least squares fitting, and find the HOG weights that give
best approximation to the kernelized weights in terms of
their scores on the training set. The optimization objective
is given by

ŵ = arg min
w

1

2

∑

x

‖〈w, x〉 − 〈wK , Ψ̂(x)〉‖2 (6)

wherewK denotes the learned weights in the kernel induced
space, x is the HOG descriptor for a random image patch,

ˆΨ(x) is the feature mapping for x, and 〈·, ·〉 denotes the
inner product between two vectors. Obviously, this is not
an ideal way to obtain the approximation, but it’s sufficient
to help us understand what Kernelized-WHO is capturing to
some extent.

We visualize the learned weights using different mod-
els (WHO, Multiscale-WHO and Kernelized-WHO) for a
variety of exemplars in Fig. 6. As highlighted in the figure,
Multiscale-WHO tend to produce less noisy weights overall
compared to WHO, which verifies our hypothesis that cap-
turing image statistics more globally using multiple scales
is indeed helpful. It’s worth emphasizing that although for
some cases the weights shown for Kernelized-WHO might
appear more noisy than the other two, this does not neces-
sarily mean Kernelized-WHO is inferior, since the weights
shown are only an approximation of what is actually being
learned in the kernel induced feature space.

We also show in Fig. 7 the top retrievals by differ-
ent models using various query exemplars on the PAS-
CAL test set. Not surprisingly, both Multiscale-WHO and
Kernelized-WHO are able to retrieve detection windows
that are more visually coherent with the query than WHO.

5. Discussion
At the start of this paper, we argued that the understand-

ing of what works in object detection and why has gotten
murkier. Has this manuscript been able to clear anything
up? Hardly! In fact, we now have more questions than when
we started (which is, alas, often the case in science). For ex-
ample, how could it be that the original WHO system was
almost beating the SVM (with its tens of thousands of neg-
ative images) after only 20 images worth of natural image
statistics? How is it that even our two extensions saturate af-
ter about 200 images? Is it possible that there is little more

in terms of image statistics that could still be fished out of
the data? These are all intriguing questions that should be
asked. We hope that this paper will be part of the conversa-
tion that tries to find answers to them.
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Figure 6. Visualization of HOG weights learned by different models. M-WHO(1) and M-WHO(2) are weights learned by Multiscale-WHO
at two different scales. Note that HOG weights shown for Kernelized-WHO are only approximation of the actual learned weights in the
induced kernel space. We highlight regions that appear differently across three models with dashed ellipses. Comparing M-WHO with
WHO, we can see that weights learned by M-WHO tend to appear less noisy overall. Consequently, more weights are assigned to the
discriminative parts of the exemplar, which supports our hypothesis that by looking at information from multiple scales one can capture
the image statistics more globally.
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ESVM [10] .204 .407 .093 .100 .103 .310 .401 .096 .104 .147 .023 .097 .384 .320 .192 .096 .167 .110 .291 .315 .198
WHO [7] .184 .399 .096 .100 .113 .396 .421 .107 .061 .121 .030 .106 .381 .307 .182 .014 .122 .111 .276 .302 .191
M-WHO .214 .403 .094 .096 .098 .329 .424 .107 .104 .155 .092 .103 .403 .306 .180 .009 .129 .123 .289 .326 .199
K-WHO .232 .429 .092 .097 .109 .354 .433 .121 .092 .202 .098 .112 .422 .309 .190 .063 .155 .102 .342 .328 .214

Table 1. Detection results on the 20-category PASCAL VOC 2007 dataset. We compare the proposed approaches, Multiscale-WHO and
Kernelized-WHO, with the Exemplar-SVM and WHO models. To make the comparison fair, we use the same ensemble of exemplars
training/testing pipeline for all approaches (see Section 4.1 for more details on the setup). The performance numbers are in terms of
Average Precision (AP). Overall, Multiscale-WHO is able to achieve a mean AP of .199, which is higher than WHO (.191) and comparable
with Exemplar-SVM (.198). For Kernelized-WHO, the performance improvement is even more significant with a mean AP of .214, which
is 11% and 8% better than WHO and Exemplar-SVM, respectively.

Query Retrievals by WHO Retrievals by Multiscale-WHO Retrievals by Kernelized-WHO 

Figure 7. Top retrievals by different models for a variety of query exemplars. Overall, retrievals by Multiscale-WHO and Kernelized-WHO
tend to look more visually coherent with the query than ones by WHO.


