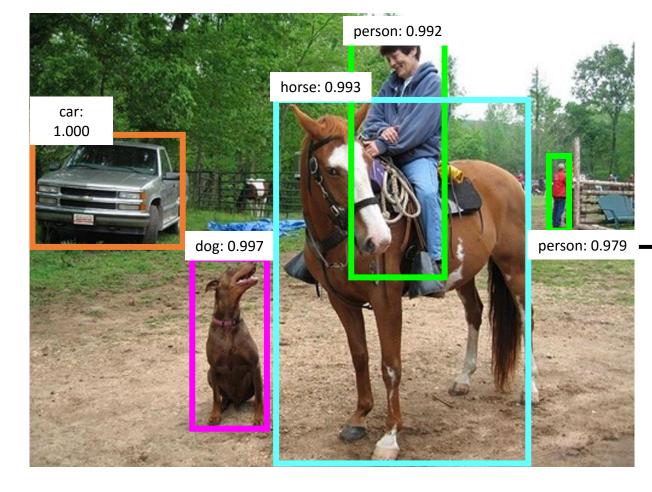
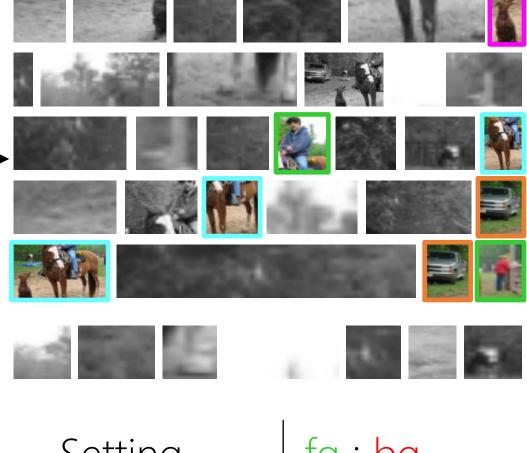


Training Region-based Object Detectors using Online Hard Example Mining (OHEM) Abhinav Gupta **Ross Girshick** Abhinav Shrivastava

Generally *reduced* to Image Classification:



- This *reduction* introduces new problems unique to detection
- Huge imbalance b/w annotated Foreground (fg) objects & Background (bg) examples



Setting Sliding-window (e.g., DPM) Region-based (e.g., R-CNN)

Existed for at least 20 years!

- Standard way to deal with fg:bg

- Widespread use since mid-1990s for

[Sung and Poggio, 1994]

imbalance

fg:bg 1:100,000

AND REAL PROPERTY

1:70

Bootstrapping to the rescue!

Referred to as Hard Negative Mining

Simple, yet powerful, algorithm:

- 1. Fix Training Set Update Model
- 2. Freeze Model
- Find Hard Negatives
- 3. Iterate

Mainstay in Object Detection for >20 years

Shallow Neural Networks SVMs, LSVMs [Sung & Poggio, 1994] [Rowley et al., 1998]

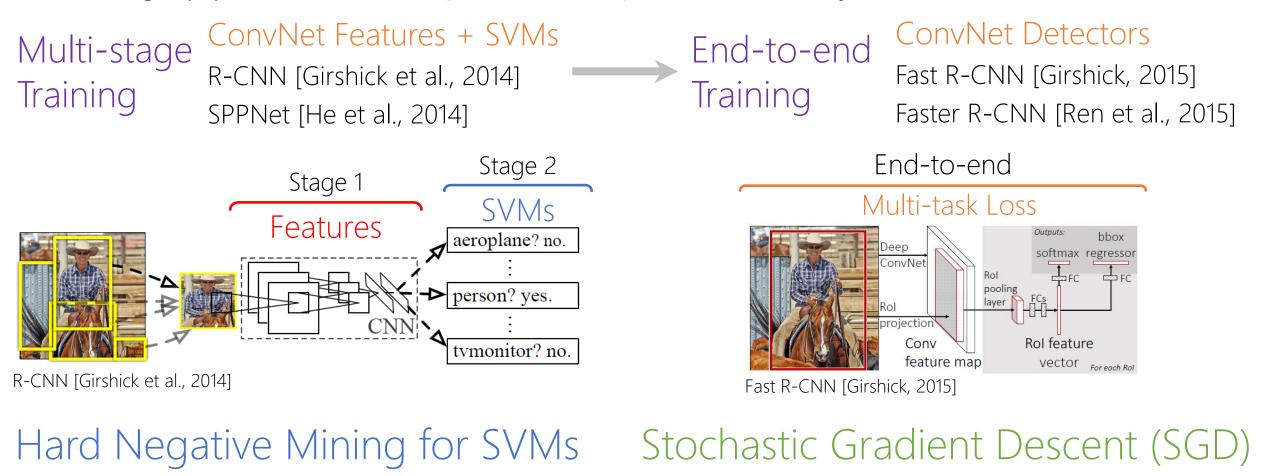
Boosted Decision Trees [Dollár et al., 2009]

object detection [Dalal & Triggs, 2005] DPM [Felzenszwalb et al., 2010]

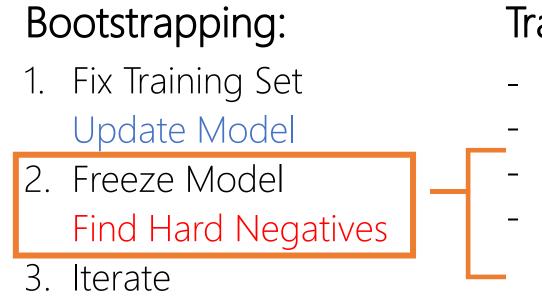
> ConvNet Features + SVMs R-CNN [Girshick et al., 2014] SPPNet [He et al., 2014]

Why don't state-of-the-art detectors use bootstrapping anymore?

Multi-stage pipelines are being replaced by end-to-end systems



Why is standard bootstrapping not trivial in SGD?



Training Object Detector:

- Trained online using SGD
- Requires 100,000s of iterations

Freezing the model slows training

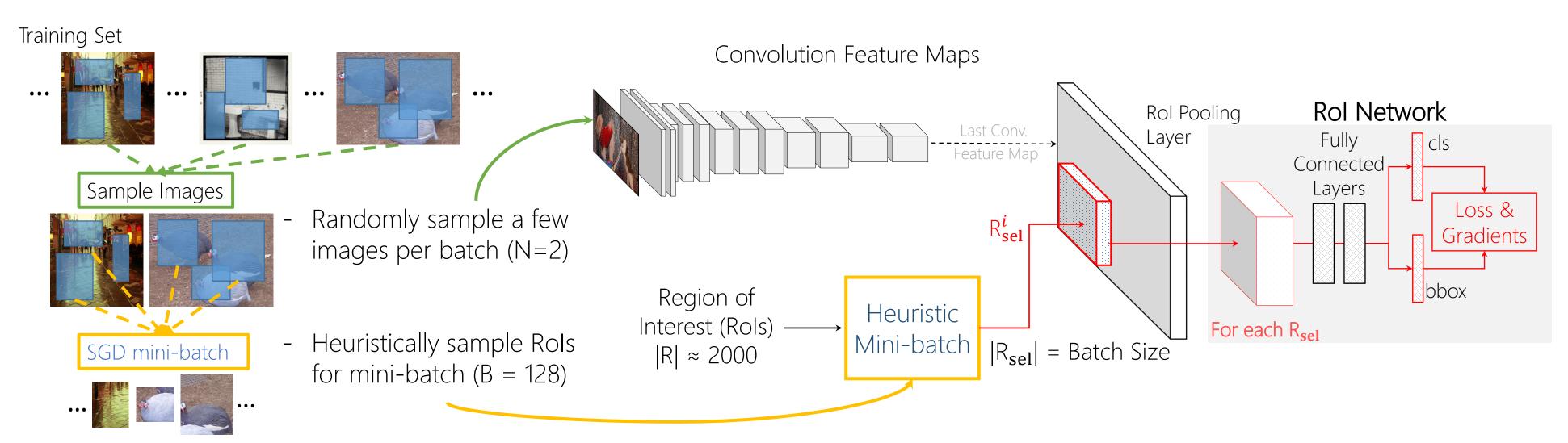
- As model becomes better, the problem become worse

Need a purely online method to select hard examples, that plays nicely with SGD.

Training a ConvNet Detector (Fast R-CNN)

Stochastic Gradient Descent (SGD) version:

Generic paradigm used in most Region-based Object Detectors; e.g., R-CNN [Girshick et al., 2014], SPPNet [He et al., 2014], Fast R-CNN [Girshick, 2015], Faster R-CNN [Ren et al., 2015], MR-CNN [Gidaris & Konodakis, 2015] etc.

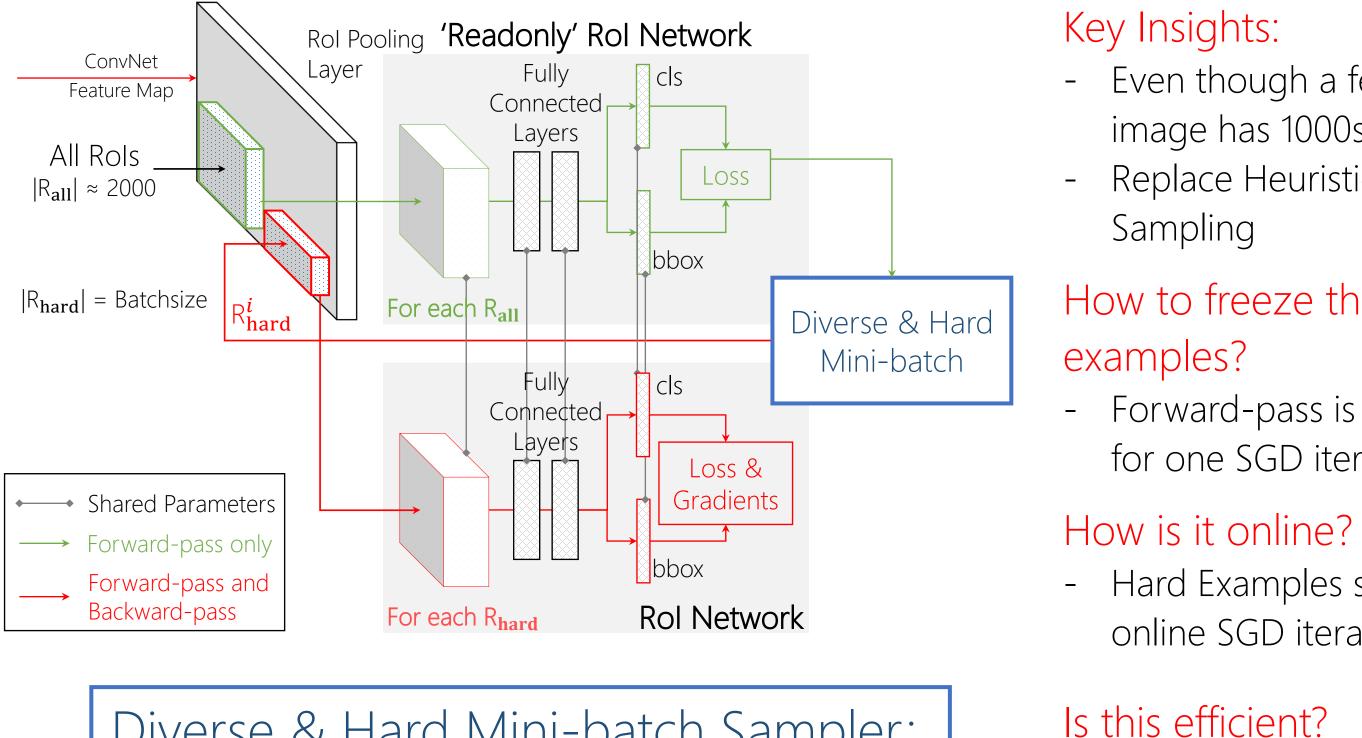


Rol Sampling Heuristics for SGD Mini-batch

Ground-truth	Regions of Interest (Rols)	 Foreground Rols: Rols with IoU ≥ 0.5 with any GT Inspired by VOC eval. protocol 	Ba - -
Foreground (fg)	Background (bg)	<mark>fg-bg</mark> Rols Ratio in mini- batch:	Star
		- To balance fg:bg Rols	- fg - b

Online Hard Example Mining (OHEM) + SGD version:

Simple, effective, easy to implement, simplified (and improved) training, consistent and significant improvements!



Diverse & Hard Mini-batch Sampler:

- Sort Rols based on loss 2. Do non-max suppression for de-duplication
- 3. Select top B (=128) Rols

Why use OHEM?

- Simple and easy to implement
- Simplifies training: reduces costly to tune hyperarameters.
- Results in better training and higher performance.

Starter code available! https://git.io/vc

time (sea max. men

ackground Rols:

- Rols with max loU in [**bg_lo**, 0.5) **bg_lo** used to approx. hard
- mining
- Sub-optimal: Ignores Rols with no GT overlap

andard Settings:

fg:bg = 1:3 (25% fg Rols/batch) $bg_{0} = 0.1$

- Even though a few images are sampled (N=2), each image has 1000s of Rols.
- Replace Heuristic Sampling with Hard Example

How to freeze the model efficiently to find hard

- Forward-pass is already freezes the model, exactly for one SGD iteration

- Hard Examples sampling is performed inline with online SGD iteration

- ConvNet forward-backward pass and Rol Network backward-pass remain intact - Only addition is Rol Network forward-pass

	VGC	GM	VGC	VGG16			
	Heuristic	OHEM	Heuristic	OHEM			
time (sec/iter)	0.13	0.22	0.57	0.87			
nax. memory (G)	2.6	3.6	6.4	7.7			
Using Nvidia Titan X, gradient accumulation for VGG16							

Why non-max suppression (NMS)?

- Co-located Rols = Co-related loss - Res. disparity = Loss double counting

OHEM: Main Results (VOC07, VOC12, COCO)

Method	M B train set	07 mAP	Method	M	B t	rain set	12 mAP	All methods use VGG16.
FRCN	07	66.9	FRCN		1	2	65.7	Method key:
Ours	07	69.9	Ours		1	2	69.8	FRCN: Fast R-CNN [Girshick, 15],
FRCN	✓ ✓ 07	72.4	MR-CNN	√ v	1	2	70.7	MR-CNN: [Gidaris & Konodakis, 15], Ours: FRCN+OHEM
MR-CNN	✓ ✓ 07	74.9	Ours	\checkmark v	1	2	72.9	
Ours	✓ ✓ 07	75.1	FRCN		С)7++12	68.4	<u>Legend</u> : M: Multi-scale training & testing
FRCN	07+12	70.0	Ours		С)7++12	71.9	(from SPPNet),
Ours	07+12	74.6	MR-CNN	√ v)7++12	73.9	B: Iterative bbox regression (from
MR-CNN	✓ ✓ 07+12	78.2	Ours	√ v)7++12	76.3	MR-CNN). 07 mAP : VOC 2007 test
Ours	✓ ✓ 07+12	78.9	Ours	√ v	-	+COCO	80.1	12 mAP: VOC 2012 test server

Training set key: 07: VOC 2007 trainval, 12: VOC 2012 trainval, 07+12: union of 07 and 12, 07++12: union of 07, VOC 2007 test and 12, +COCO: a model trained on COCO trainval and fine-tuned on 07++12.

COCO test-dev AP@IoU	area	FRCN	Ours	Ours [+M]	Ours* [+M]
[0.50:0.95]	all	19.7	22.6	24.4	25.6
0.50	all	35.9	42.5	44.4	46.0
0.75	all	19.9	22.2	24.8	26.3
[0.50:0.95]	small	3.5	5.0	7.1	7.8
[0.50:0.95]	med.	18.8	23.7	26.4	27.9
[0.50:0.95]	large	34.6	37.9	38.5	40.5

*: trained on trainval.

OHEM consistently & significantly improves performance

Best amongst methods w/VGG16 on the VOC leaderboard

Orthogonal to other bells and whistles

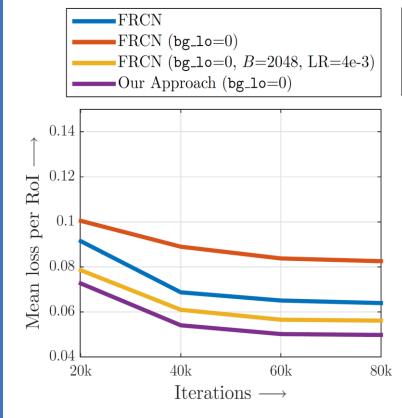
Understanding OHEM

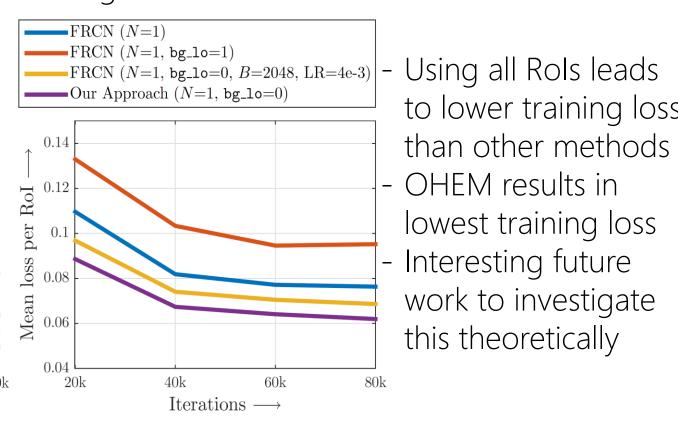
Ablation analysis and more

Experiment	Model	Ν	LR	В	bg_lo	07 mAP
Fast R-CNN	VGGM	2	10-3	128	0.1	59.6
Fast R-CININ	VGG16	2	10 5		0.1	67.2
Online Hard	VGG16	1	10-3	128	0	69.7
Example	VGGM	- 2	10 ⁻³	128	0 -	62.0
Mining	VGG16	ζ	10 5	120	0	69.9
Removing hard mining heuristic	VGGM		10 ⁻³	128	0	57.2
	VGG16	2				67.5
Robust Gradient Estimates	VGG16	1	10-3	128	0.1	66.3
		I			0	66.3
Bigger batch, High LR		1	4x10 ⁻³	2048	0	57.7
	VGGM	2	4X IU ⁹			60.4
	$\mathcal{V} \subset \mathcal{C}^{1} \subset \mathcal{C}$	1	2, 10-3	2048	0	67.5
	VGG16	2	3x10 ⁻³			68.7

Better Optimization

Study the empirical training loss (mean loss per Rol) during mini-batch SGD





Microsoft Research

to lower training loss than other methods - OHEM results in lowest training loss Interesting future work to investigate

this theoretically

Bells and Whistles: Ablative Analysis

Impact of Multi-scale & Iterative Bbox Regression						
Multi-s	scale (M)	- Iterative -	07 mAP			
Train	Test	Bbox Reg. (B)	FRCN	Ours		
			67.2	69.9		
	\checkmark		68.4	71.1		
		\checkmark	70.8	72.7		
	\checkmark	\checkmark	71.9	74.1		
\checkmark			67.7	70.7		
\checkmark	\checkmark		68.6	71.9		
\checkmark		\checkmark	71.2	72.9		
\checkmark	\checkmark	\checkmark	72.4	75.1		

Online Hard Mining vs. Heuristics

Removing hard mining heuristic

- **bg_lo = 0.1** used to approximate hard negative mining - +1 mAP for VGGM, no impact VGG16

- Sub-optimal: ignores hard Rols (e.g., paintings)
- OHEM naturally doesn't require this heuristic &

automatically selects hard examples

Why just <u>hard</u> when you can see <u>all</u>?

Bigger batch, High LR

- When using all Rols:
 - Too many easy RoIs (\sim 0 loss) dilute the impact of useful (hard) Rols
 - Need to carefully adjust the LR to account for a larger batch-size
- +1 mAP
- OHEM outperforms this heuristic & is much faster to train w/o the need to tweak hyperparameters

Robust Gradient Estimates

- Fewer images in a mini-batch leads to correlated Rols, unstable gradients and/or slower convergence
- For FRCN, -1 mAP for N=1 (vs. N=2)
- No impact for OHEM; demonstrates robustness

Foreground-background Ratio

- Standard fg:bg = 0.25 (fiddling leads to -3%)
- OHEM chooses the
- distribution based on image contents

