Angular Heuristics for Coverage Maximization in Multi-Camera Surveillance Ahmed Abdelkader, Moamen Mokhtar and Hazem El-Alfy

Faculty of Engineering, Alexandria University Alexandria, Egypt

Results - Static Targets

- Targets moving among obstacles
- Maximize coverage using multiple panning cameras
- Sample map

Problem Definition

► AS outperforms CFA no matter how many fixed orientations are used

Contribution and Related Work

- Superior performance: coverage and runtime
- Continuous panning instead of a predefined fixed number of orientations
- Comparison against:
- OPT: brute force search, try all combinations of orientations
 CGA [Abouzeid, 2006]: iteratively select highest (camera, orientation)
 CFA [Abu-Ghazaleh, 2010]: normalize (camera, orientation) by camera total

55 50 50 10 15 20 25 30 35 40 45 50 Number of targets

Results - Average Runtime

► CFA much slower as no. of orientations increase, no higher coverage achieved

Angular Relaxation (AR)

Angular Sweep (AS)

http://www.alexeng.edu.eg

Define a heat function around the angle at which each target is located
 Choose the panning angle that maximizes the sum over all visible targets

Results - Mobile Targets

Constant speed for all targets, reassign cameras every 10 steps (30 targets)

Check all maximal groupings that include each target by making it rightmost in the camera FOV

Future Work

Experimental realization

- Motion modeling and target path prediction
- ► Quality of coverage trade-offs e.g. zooming

Created with ATEXbeamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

abdelkader@alexu.edu.eg