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The MAXCUT Problem

Problem (MAXCUT)

For an n-vertex graph G, find a bipartition (S, S) that maximizes
[{{u,v} € E(G) |ue S,veS}.
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Problem (MAXCUT)
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NP-Complete by a straightforward reduction from MAX-2-SAT:
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The MAXCUT Problem

Problem (MAXCUT)

For an n-vertex graph G, find a bipartition (S, S) that maximizes
[{{u,v} € E(G) |ue S,veS}.

NP-Complete by a straightforward reduction from MAX-2-SAT:

{u,v} € E(G) |ueS,veS— (xy Ax,) V (—xu A xy).

Theorem (Hastad 2001, Trevisan et al. 2000)

It is NP-hard to approximate MAXCUT better than % ~ 0.941.
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Unique Games and Label Covers

In pictures:

S S

111 = I =
o o
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Unique Games and Label Covers

In pictures:

Problem ((c, s)-Gap Label Cover with Unique Constraints)

The promise problem (Lyes, Lno):
- Lyes = {G | some assignment satisfies > c-fraction of the constraints}.
- Lho = {G | every assignment satisfies < s-fraction of the constraints}.
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Unique Games and Label Covers

In pictures:

S S

111 = I =
o o

Problem ((c, s)-Gap Label Cover with Unique Constraints)

The promise problem (Lyes, Lno):
- Lyes = {G | some assignment satisfies > c-fraction of the constraints}.
- Lho = {G | every assignment satisfies < s-fraction of the constraints}.

.

Conjecture (Unique Games Conjecture (UCG))

For every sufficiently small pair of constants e¢,0 > 0, 3k s.t. the
(1 — 9, €)-gap label-cover problem with k colors is NP-hard.

v
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LP Shortcomings and SDP
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LP Rounding for MAXCUT?

A standard approach to design an approximation algorithm is to formulate
an Integer Linear Program (ILP), then solve a relaxed LP yielding a
(super)optimal solution in real variables, then round the solution back to
integers trying to preserve optimality.
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LP Rounding for MAXCUT?

A standard approach to design an approximation algorithm is to formulate
an Integer Linear Program (ILP), then solve a relaxed LP yielding a
(super)optimal solution in real variables, then round the solution back to
integers trying to preserve optimality.

(LP1) max Z Zuy
{uv}EE(G)
s.t. zyw < xy+ Xy
zyy < (1—x4)+(1—x)
Zuy, Xy € {0,1}
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LP Rounding for MAXCUT?

A standard approach to design an approximation algorithm is to formulate
an Integer Linear Program (ILP), then solve a relaxed LP yielding a
(super)optimal solution in real variables, then round the solution back to
integers trying to preserve optimality.

(LP1) max Z Zuy
{uv}EE(G)
s.t. zyw < xy+ Xy
zyy < (1—x4)+(1—x)
Zuy, Xy € {0,1}

Allowing x, € [0,1], we can set x, = % Vu and get z,, = 1¥{u, v}.
Hence, the optimal value of LP1 is |E].
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LP Rounding for MAXCUT?

A standard approach to design an approximation algorithm is to formulate
an Integer Linear Program (ILP), then solve a relaxed LP yielding a
(super)optimal solution in real variables, then round the solution back to
integers trying to preserve optimality.

(LP1) max Z Zuy
{uv}EE(G)
s.t. zyw < xy+ Xy
zyy < (1—x4)+(1—x)
Zuy, Xy € {0,1}

Allowing x, € [0,1], we can set x, = % Vu and get z,, = 1¥{u, v}.
Hence, the optimal value of LP1 is |E].

Bad: For K, MAXCUT ~ |E|/2.
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0.5-approximation by Random Guessing

Each vertex u € E(G) is added independently to S with probability %
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0.5-approximation by Random Guessing

Each vertex u € E(G) is added independently to S with probability %

Pr[{u,v}is cut] = Pr[(u€ S)A (v € S)]+ Prl(uec S)A(v ES)
= Prlu€ S]-Prlve S|+ PrlueS]- PrlveSs]
1 1 1 1

—2%2727%3

N =N
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0.5-approximation by Random Guessing

Each vertex u € E(G) is added independently to S with probability %

Pr[{u,v}is cut] = Pr[(u€ S)A (v € S)]+ Prl(uec S)A(v ES)
= Prlu€ S]-Prlve S|+ PrlueS]- PrlveSs]
1 1 1 1

“2%2732%3%

N =N

Remark: Edge-by-edge analysis.
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0.5-approximation by Random Guessing

Each vertex u € E(G) is added independently to S with probability %

Pr[{u,v}is cut] = Pr[(u€ S)A (v € S)]+ Prl(uec S)A(v ES)
= Prlu€ S]-Prlve S|+ PrlueS]- PrlveSs]
1 1 1 1

“2%2732%3%

N =N

Remark: Edge-by-edge analysis.
Remark(2): Sub-exponential lower bounds on the size of LP relaxations
beating 2 ~ [P. Kothari et al., CATS@UMD February 17, 2017].
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High Level Goals for SDP

@ Generalize LP.
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High Level Goals for SDP

o Generalize LP.
@ Simulate nonlinear programming, in some linear way.

@ Provide a systematic way to expand the search space by introducing
more and more variables to obtain tighter approximations to the
problem at hand.
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Features and Analogies to LP?

@ Variables: real-valued = vector-valued.
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Features and Analogies to LP?

o Variables: real-valued = vector-valued.
@ Linear constraints: on variables = on inner products.
@ Recover vectors defining a solution by decomposing resulting matrix.

o Convex, well-behaved, solvable in polynomial time.
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Features and Analogies to LP?

Variables: real-valued = vector-valued.
Linear constraints: on variables = on inner products.
Recover vectors defining a solution by decomposing resulting matrix.

Convex, well-behaved, solvable in polynomial time.

Analysis involves statements about high dimensional geometric graphs
(e.g., size of indep. set and expansion properties).
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Positive Semidefinite Matrices

A symmetric matrix X € R™" is positive semidefinite (PSD), or X > 0, if
any of the following equivalent conditions holds:

Q@ 2"Xa>0, VaeR"

@ X admits a Cholseky decomposition X = LLT.

© All eigenvalues of X are non-negative.
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Positive Semidefinite Matrices

Definition

A symmetric matrix X € R™" is positive semidefinite (PSD), or X > 0, if
any of the following equivalent conditions holds:

Q@ 2"Xa>0, VaeR"
@ X admits a Cholseky decomposition X = LLT.

© All eigenvalues of X are non-negative.

Remark: Condition(1) encodes an (uncountably) infinite set of linear
constraints!
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Positive Semidefinite Matrices

Definition

A symmetric matrix X € R™" is positive semidefinite (PSD), or X > 0, if
any of the following equivalent conditions holds:

Q@ 2"Xa>0, VaeR"
@ X admits a Cholseky decomposition X = LLT.

© All eigenvalues of X are non-negative.

Remark: Condition(1) encodes an (uncountably) infinite set of linear
constraints!

Remark(2): Condition(2) is equivalent to Xj; = (v;, v;) for vectors
{v1,...,vn} corresponding to the columns of L.

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 11 /27



Standard Form (Primal)

Ahmed Abdelkader

(P)  min(C,X) ZCUXU

s.t. <A,‘,X> = b; VI S {1,...,m},
X =0
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Standard Form (Primal)

(P)  min(C,X) ZCUXU

s.t. <A,‘,X> = b; VI S {1,...,m},
X =0

Remark: LP is a special case of SDP for which X is a diagonal matrix.
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(D) maxbTy
s.t. ZyiA,' +5=0C,
S$>0
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(D) maxbTy
s.t. ZyiA,' +5=0C,
S$>0

Remark: Weak duality holds.

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 13 /27



Powerful Technical Lemma

Lemma (~ Condition(4) for PSD matrices)

For a symmetric matrix X € R"™", X = 0 iff (A, X) > 0, VA = 0.
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Powerful Technical Lemma

Lemma (~ Condition(4) for PSD matrices)

For a symmetric matrix X € R"™", X = 0 iff (A, X) > 0, VA = 0.

Fact(1): (A, X) = Trace(AT X).
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Powerful Technical Lemma

Lemma (~ Condition(4) for PSD matrices)

For a symmetric matrix X € R"™", X = 0 iff (A, X) > 0, VA = 0.

Fact(1): (A, X) = Trace(AT X).
Fact(2): Trace(AB) = Trace(BA) (cyclic permutations).
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Powerful Technical Lemma

Lemma (~ Condition(4) for PSD matrices)

For a symmetric matrix X € R"™", X = 0 iff (A, X) > 0, VA = 0.

Fact(1): (A, X) = Trace(AT X).
Fact(2): Trace(AB) = Trace(BA) (cyclic permutations).

Proof (Do on board).

(<) Suppose X is not PSD and obtain a witness a € R" s.t. a’ Xa < 0.
(=) Suppose A > 0 and obtain the Cholseky decomposition A= LLT. [J
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Weak Duality

If X,y are feasible for (P) and (D), respectively, then b"y < (C, X).
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Weak Duality

If X,y are feasible for (P) and (D), respectively, then b"y < (C, X).

Recall: In (P), X = 0 and in (D), >, yiAi+ S = C, with S > 0.
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Weak Duality

If X,y are feasible for (P) and (D), respectively, then bTy < (C, X).

Recall: In (P), X = 0 and in (D), >, yiAi+S = C, with § = 0.

(C,X) = Zy,A+5X Zy,A,,X (S, X)

= Zy, (Ai, X) + (S, X)

= ZYi - b + {SX5° (X is feasible)
>bTy (By the technical lemma)
[]

V.

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 15 / 27



Strong Duality?

When the value of (P) coincides with that of (D).
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Strong Duality?

When the value of (P) coincides with that of (D).
Usually holds under some condition.
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Strong Duality?

When the value of (P) coincides with that of (D).
Usually holds under some condition.

Definition (Slater's Condition)

Feasible region has an interior point. In other words, 3 feasible X > 0.
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Goemans and Williamson
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SDP Formulation of MAXCUT

1 1
max Z (E_EXW)

{u,v}€E(G)
st. Xuw=1, VYueV(G)
X0

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 18 / 27



SDP Formulation of MAXCUT

1 1
max Z (E_EXW)

{u,v}€E(G)
st. Xuw=1, VYueV(G)
X0

Intuition: Set X = aa’ for a € R" is defined as

{1, ifues,
a, =

-1, o.w.
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SDP Formulation of MAXCUT

1 1
max Z (E_EXW)

{u,v}€E(G)
st. Xuw=1, VYueV(G)
X0

Intuition: Set X = aa’ for a € R" is defined as

{1, ifues,
a, =

-1, o.w.

Cut edges contribute 1, uncut edges contribute 0.
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb
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Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb

- Solve the SDP to get the solution X.

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 19 / 27



Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb

- Solve the SDP to get the solution X.
- Recover vector variables y, for which

Xy = <}/Ua)/v>-
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb

- Solve the SDP to get the solution X.
- Recover vector variables y, for which

Xy = <}/Ua)/v>-

- Pick a uniformly random vector a € R".
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb

- Solve the SDP to get the solution X.
- Recover vector variables y, for which

Xy = <}/Ua)/v>-

- Pick a uniformly random vector a € R".
- Set x, = 5gn(<aa}/u>)'
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0
acw = mi ~ 0.87856....

n S —
0<6<mm™ 1 — cosb

- Solve the SDP to get the solution X.
- Recover vector variables y, for which

Xy = <}/Ua)/v>-

- Pick a uniformly random vector a € R".

- Set x, = sgn({(a, yu)).
- Edge-by-edge analysis:
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an agy -approximation algorithm for MAXCUT where

2 0

agw = min —- —— ~ 0.87856....
cw 0<6<zmm 1 —cosf
- Solve the SDP to get the solution X. The probability that
- Recover vector variables y, for which two vectors are separated

by a random hyperplane
Xy = <}/Ua)/v>-

- Pick a uniformly random vector a € R".

- Set x, = sgn({(a, yu)).
- Edge-by-edge analysis:

N |

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 19 / 27



Second Generation of SDP Rounding Algorithms

@ Beyond random hyperplanes.
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o Initiated by Arora, Rao and Vazirani for c-balanced cuts.
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Second Generation of SDP Rounding Algorithms

Beyond random hyperplanes.
Initiated by Arora, Rao and Vazirani for c-balanced cuts.
More global analysis.

Different formulation + “triangle inequality” .
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Second Generation of SDP Rounding Algorithms

Beyond random hyperplanes.
Initiated by Arora, Rao and Vazirani for c-balanced cuts.
More global analysis.

Different formulation + “triangle inequality” .

Breadth-first search on weighted geometric graph.
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SOS Recap
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Certifying non-negativity over the hypercube

Problem (Non-negativity)

Given a low-degree polynomial f : {0,1}" — R, decide if f > 0 over the
hypercube or if there exists a point x € {0,1}" such that f(x) < 0.
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Certifying non-negativity over the hypercube

Problem (Non-negativity)

Given a low-degree polynomial f : {0,1}" — R, decide if f > 0 over the
hypercube or if there exists a point x € {0,1}" such that f(x) < 0.

Example: For an n-vertex graph G, we encode a bipartition of the vertex
set by a vector x € {0,1}" and we let fg(x) be the number of edges cut
by the bipartition x. We get the degree-2 polynomial

()= > (xi—x)

{ij}eE(G)
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Certifying non-negativity over the hypercube

Problem (Non-negativity)

Given a low-degree polynomial f : {0,1}" — R, decide if f > 0 over the
hypercube or if there exists a point x € {0,1}" such that f(x) < 0.

Example: For an n-vertex graph G, we encode a bipartition of the vertex
set by a vector x € {0,1}" and we let fg(x) be the number of edges cut
by the bipartition x. We get the degree-2 polynomial

()= > (xi—x)

{ij}eE(G)

Deciding if the polynomial ¢ — fg(x) is non-negative over the hypercube is
the same as deciding if MAXCUT(G) > c.
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Sum-of-Squares Certificates

Definition

A degree-d sos certificate (of non-negativity) for f : {0,1}" — R consists
of polynomials g1,...,gr : {0,1}" — R of degree at most d/2 for some
r € N such that

f(x) = gf(x) + - + &7 (x),

for every x € {0,1}".
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Sum-of-Squares Certificates

Definition

A degree-d sos certificate (of non-negativity) for f : {0,1}" — R consists
of polynomials g1,...,gr : {0,1}" — R of degree at most d/2 for some
r € N such that

f(x) = gf(x) + - + &7 (x),

for every x € {0,1}".

A.k.a degree-d sos proof of the inequality f > 0.
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Sum-of-Squares Certificates

Definition

A degree-d sos certificate (of non-negativity) for f : {0,1}" — R consists
of polynomials g1,...,gr : {0,1}" — R of degree at most d/2 for some
r € N such that

f(x) = gf(x) + - + &7 (x),

for every x € {0,1}".

A.k.a degree-d sos proof of the inequality f > 0.

We can assume r = n®(d) thus verifying a certificate takes n®() time.
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Sum-of-Squares Certificates

Definition

A degree-d sos certificate (of non-negativity) for f : {0,1}" — R consists
of polynomials g1,...,gr : {0,1}" — R of degree at most d/2 for some
r € N such that

f(x) = gf(x) + - + &7 (x),

for every x € {0,1}".

A.k.a degree-d sos proof of the inequality f > 0.

We can assume r = n®(d) thus verifying a certificate takes n®() time.
Just check that f — (g2 + - -+ + g2) vanishes for every x € {0,1}".
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Finding SOS Certificates

There exists an algorithm that given a polynomial f : {0,1}" — R and a

number k € N, outputs a degree-k sos certificate for f +2" in time n©()

if f has a degree-k sos certificate.
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Finding SOS Certificates

There exists an algorithm that given a polynomial f : {0,1}" — R and a
number k € N, outputs a degree-k sos certificate for f +2" in time n©()
if f has a degree-k sos certificate.

Intuition Such polynomials having a degree-d sos certificate form a
convex cone, which admits a small semidefinite programming formulation.

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 24 /27



PSD Matrices and SOS Certificates

A polynomial f has a degree-d sos certificate iff there exists a PSD matrix
A such that for all x € {0,1}",

f(x) = ((1,x)%92, A1, x)®9/?).
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PSD Matrices and SOS Certificates

A polynomial f has a degree-d sos certificate iff there exists a PSD matrix
A such that for all x € {0,1}",

f(x) = ((1,x)%92, A1, x)®9/?).

Proof (Do on board).

(«<=) For a PSD A, extract a degree-d certificate {g1,...g}.
(=) For a degree-d sos certificate f = >_7_; g? form a PSD matrix A. [
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SOS Certificates (Some time later?)

Ahmed Abdelkader MAXCUT — SDP — SOS March 3, 2017 26 / 27



. often the sign of scientific success is when we eliminate the need for

creativity and make boring what was once exciting .. is it just a matter of

time until algorithm design will become as boring as solving a single
polynomial equation?”

Questions?

akader@cs.umd.edu
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