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The MAXCUT Problem

Problem (MAXCUT)

For an n-vertex graph G, find a bipartition (S , S̄) that maximizes∣∣{{u, v} ∈ E (G ) | u ∈ S , v ∈ S̄
}∣∣.

NP-Complete by a straightforward reduction from MAX-2-SAT:

{u, v} ∈ E (G ) | u ∈ S , v ∈ S̄ 7−→ (xu ∧ ¬xv ) ∨ (¬xu ∧ xv ).

Theorem (Håstad 2001, Trevisan et al. 2000)

It is NP-hard to approximate MAXCUT better than 16
17 ≈ 0.941.
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Unique Games and Label Covers

In pictures:

Problem ((c, s)-Gap Label Cover with Unique Constraints)

The promise problem (Lyes , Lno):
- Lyes = {G | some assignment satisfies ≥ c-fraction of the constraints}.
- Lno = {G | every assignment satisfies ≤ s-fraction of the constraints}.

Conjecture (Unique Games Conjecture (UCG))

For every sufficiently small pair of constants ε, δ > 0, ∃k s.t. the
(1− δ, ε)-gap label-cover problem with k colors is NP-hard.
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LP Shortcomings and SDP
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LP Rounding for MAXCUT?

A standard approach to design an approximation algorithm is to formulate
an Integer Linear Program (ILP), then solve a relaxed LP yielding a
(super)optimal solution in real variables, then round the solution back to
integers trying to preserve optimality.

(LP1) max
∑

{u,v}∈E(G)

zuv

s.t. zuv ≤ xu + xv

zuv ≤ (1− xu) + (1− xv )

zuv , xu ∈ {0, 1}

Claim

Allowing xu ∈ [0, 1], we can set xu = 1
2 ∀u and get zuv = 1 ∀{u, v}.

Hence, the optimal value of LP1 is |E |.

Bad: For Kn MAXCUT ∼ |E |/2.
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0.5-approximation by Random Guessing

Each vertex u ∈ E (G ) is added independently to S with probability 1
2 .

Pr [{u, v} is cut] = Pr [(u ∈ S) ∧ (v ∈ S̄)] + Pr [(u ∈ S̄) ∧ (v ∈ S)]

= Pr [u ∈ S ] · Pr [v ∈ S̄ ] + Pr [u ∈ S̄ ] · Pr [v ∈ S ]

=
1

2
× 1

2
+

1

2
× 1

2

=
1

2
.

Remark: Edge-by-edge analysis.
Remark(2): Sub-exponential lower bounds on the size of LP relaxations
beating 1

2 ∼ [P. Kothari et al., CATS@UMD February 17, 2017].
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High Level Goals for SDP

Generalize LP.

Simulate nonlinear programming, in some linear way.

Provide a systematic way to expand the search space by introducing
more and more variables to obtain tighter approximations to the
problem at hand.
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Features and Analogies to LP?

Variables: real-valued =⇒ vector-valued.

Linear constraints: on variables =⇒ on inner products.

Recover vectors defining a solution by decomposing resulting matrix.

Convex, well-behaved, solvable in polynomial time.

Analysis involves statements about high dimensional geometric graphs
(e.g., size of indep. set and expansion properties).
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Positive Semidefinite Matrices

Definition

A symmetric matrix X ∈ Rn×n is positive semidefinite (PSD), or X � 0, if
any of the following equivalent conditions holds:

1 aTXa ≥ 0, ∀a ∈ Rn.

2 X admits a Cholseky decomposition X = LLT .

3 All eigenvalues of X are non-negative.

Remark: Condition(1) encodes an (uncountably) infinite set of linear
constraints!
Remark(2): Condition(2) is equivalent to Xij = 〈vi , vj〉 for vectors
{v1, . . . , vn} corresponding to the columns of L.
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Standard Form (Primal)

(P) min〈C ,X 〉 :=
∑
ij

CijXij

s.t. 〈Ai ,X 〉 = bi ∀i ∈ {1, . . . ,m},
X � 0

Remark: LP is a special case of SDP for which X is a diagonal matrix.
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Dual Form

(D) max bT y

s.t.
∑

yiAi + S = C ,

S � 0

Remark: Weak duality holds.
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Powerful Technical Lemma

Lemma (∼ Condition(4) for PSD matrices)

For a symmetric matrix X ∈ Rn×n, X � 0 iff 〈A,X 〉 ≥ 0, ∀A � 0.

Fact(1): 〈A,X 〉 = Trace(ATX ).
Fact(2): Trace(AB) = Trace(BA) (cyclic permutations).

Proof (Do on board).

(⇐) Suppose X is not PSD and obtain a witness a ∈ Rn s.t. aTXa < 0.
(⇒) Suppose A � 0 and obtain the Cholseky decomposition A = LLT .
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Weak Duality

Lemma

If X , y are feasible for (P) and (D), respectively, then bT y ≤ 〈C ,X 〉.

Recall: In (P), X � 0 and in (D),
∑

i yiAi + S = C , with S � 0.

Proof.

〈C ,X 〉 = 〈
∑
i

yiAi + S ,X 〉 = 〈
∑
i

yiAi ,X 〉+ 〈S ,X 〉

=
∑
i

yi 〈Ai ,X 〉+ 〈S ,X 〉

=
∑
i

yi · bi +����〈S ,X 〉≥0 (X is feasible)

≥ bT y (By the technical lemma)
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Strong Duality?

When the value of (P) coincides with that of (D).

Usually holds under some condition.

Definition (Slater’s Condition)

Feasible region has an interior point. In other words, ∃ feasible X � 0.
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Goemans and Williamson
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SDP Formulation of MAXCUT

max
∑

{u,v}∈E(G)

(
1

2
− 1

2
Xuv )

s.t. Xuu = 1, ∀u ∈ V (G )

X � 0

Intuition: Set X = aaT for a ∈ Rn is defined as

au =

{
1, if u ∈ S ,

−1, o.w.

Cut edges contribute 1, uncut edges contribute 0.
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Rounding by a Random Hyperplane

Theorem (Goemans and Williamson)

There exists an αGW -approximation algorithm for MAXCUT where

αGW = min
0≤θ≤π

2

π
· θ

1− cos θ
≈ 0.87856 . . . .

- Solve the SDP to get the solution X .
- Recover vector variables yu for which

Xuv = 〈yu, yv 〉.

- Pick a uniformly random vector a ∈ Rn.
- Set xu = sgn(〈a, yu〉).
- Edge-by-edge analysis:
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Second Generation of SDP Rounding Algorithms

Beyond random hyperplanes.

Initiated by Arora, Rao and Vazirani for c-balanced cuts.

More global analysis.

Different formulation + “triangle inequality”.

Breadth-first search on weighted geometric graph.
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SOS Recap

Ahmed Abdelkader MAXCUT → SDP → SOS March 3, 2017 21 / 27



Certifying non-negativity over the hypercube

Problem (Non-negativity)

Given a low-degree polynomial f : {0, 1}n → R, decide if f ≥ 0 over the
hypercube or if there exists a point x ∈ {0, 1}n such that f (x) < 0.

Example: For an n-vertex graph G, we encode a bipartition of the vertex
set by a vector x ∈ {0, 1}n and we let fG (x) be the number of edges cut
by the bipartition x . We get the degree-2 polynomial

fG (x) =
∑

{i ,j}∈E(G)

(xi − xj)
2.

Deciding if the polynomial c − fG (x) is non-negative over the hypercube is
the same as deciding if MAXCUT (G ) ≥ c .
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Sum-of-Squares Certificates

Definition

A degree-d sos certificate (of non-negativity) for f : {0, 1}n → R consists
of polynomials g1, . . . , gr : {0, 1}n → R of degree at most d/2 for some
r ∈ N such that

f (x) = g2
1 (x) + · · ·+ g2

r (x),

for every x ∈ {0, 1}n.

A.k.a degree-d sos proof of the inequality f ≥ 0.

We can assume r = nO(d), thus verifying a certificate takes nO(d) time.
Just check that f − (g2

1 + · · ·+ g2
r ) vanishes for every x ∈ {0, 1}n.
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Finding SOS Certificates

Theorem

There exists an algorithm that given a polynomial f : {0, 1}n → R and a
number k ∈ N, outputs a degree-k sos certificate for f + 2−n in time nO(k)

if f has a degree-k sos certificate.

Intuition Such polynomials having a degree-d sos certificate form a
convex cone, which admits a small semidefinite programming formulation.
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PSD Matrices and SOS Certificates

Theorem

A polynomial f has a degree-d sos certificate iff there exists a PSD matrix
A such that for all x ∈ {0, 1}n,

f (x) =
〈
(1, x)⊗d/2,A(1, x)⊗d/2

〉
.

Proof (Do on board).

(⇐) For a PSD A, extract a degree-d certificate {g1, . . . gr}.
(⇒) For a degree-d sos certificate f =

∑r
i=1 g2

i form a PSD matrix A.
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SOS Certificates (Some time later?)
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The End

“.. often the sign of scientific success is when we eliminate the need for
creativity and make boring what was once exciting .. is it just a matter of

time until algorithm design will become as boring as solving a single
polynomial equation?”

Questions?
akader@cs.umd.edu
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