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Problem (ATSP)

Given a set V if n points and a cost function c : V x V — RT,
find a minimum cost tour that visits every vertex at least once.

> C is not necessarily symmetric.

» Every arc (u, v) in the tour can be replaced by the shortest
path from u to v. Hence, we can assume c satisfies the
triangle inequality.

> Integrality gap

» Lower bound: 2.
» Upper bound: Ioglogo(l) n.
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The Traveling Salesman Problem (TSP)

i.e. Symmetric

» Metric-TSP:

» APX-hard: 220/219.

» 1.5-approximation by Christofides.
» Euclidean-TSP:

» PTAS by Arora and Mitchell.
» Graph-TSP:

» APX-hard.

» Lower bound on integrality gap: 4/3.
> Recent results breaking the 1.5 barrier.



Christofides

Algorithm

Let T be the MST of G.

Let O be the odd degree vertices of T. (O] is even.)
Compute a minimum-weight perfect matching M for O.
Combine the edges from M and T. (Every vertex has an even
degree)

Find an Eulerian circuit in MU T.

Make the circuit Hamiltonian by skipping repeated vertices
(shortcutting).
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Christofides

Analysis

Let OPT be the optimal tour for G.

» Removing one edge from OPT yields a spanning tree. Hence,
c(T) < c(OPT).
» Number the vertices of O in cyclic order around OPT.

» Decompose OPT into a set of paths going from one vertex in
O to the next in cyclic order.

» Group all paths starting at a vertex with an even index, call it
Peven- Similarly for odd indices we get Poyq.

» OPT = Peyen U Pogq. By averaging, either
€(Peven) < c(OPT)/2 or c(Podd) < c(OPT)/2.

» Recognize that each group defines a matching on O.

> It follows that ¢(M) < ¢(OPT)/2 as well.

» For TUM, ¢(T)+c(M)<15-c(OPT).

» Shortcutting cannot increase the cost.
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The Held-Karp Relaxation

Define 6+(U) = {a= (u,v) € E |ue U,v ¢ U}, and
5(U) = §+(V\ U).

subject to  x(6T(U)) >1 YU CV,
x(0t(v))=x(6"(v))=1 VveV,
x; >0 Va

Remark: the second set of constraints imply that
x(6T(U)) = x(6(U)) YU C V.
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The Held-Karp Relaxation over Spanning Trees

Symmetrization

» Let x* denote an optimum solution to the Held-Karp LP.
Thus, C(X*) == OPTHK.

> Define zf, \ = (1= 1), + x5)-

» Also define the cost of an edge {u, v} as
min{c(u, v),c(v,u)}.
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OPTyk in the Spanning Tree Polytope

Lemma
z* belongs to the relative interior of the spanning tree polytope P.

> It follows that z* may be expressed as a convex combination
of spanning trees, with strictly positive coefficients (marginal
probabilities).

> Next step: round z* to a spanning tree.
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Maximum Entropy Distribution

Let 7 be the collection of all spanning trees of G.
Define the maximum entropy distribution p* w.r.t z by the
following convex program (CP):

infimum Z p(T)logp(T)

TeT

subject to Z p(T)=2z. VecCE, (2)
Toe
p(T) >0 VT eT.

Remark: the constraints imply that > ;. p(T) = 1.
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The Lagrange Dual

v

For every edge e € E, associate a Lagrange multiplier d to
the constraint for z..

Letting (T) = >_.c7 Je, it follows that

v

p(T) = (D

v

Apply a change of variables ve = 0. — = 1

» z being in the relative interior of P is a Slater condition, so
strong duality holds and the Lagrange dual value equals
OPTcp.
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Sampling Spanning Trees

Theorem

Given a vector z in the relative interior of the spanning tree
polytope P on G, there exist v} for all e € E such that if we
sample a spanning tree T of G according to p*(T) = e (T),
Prle € T| = z. for every e € E.

» Suffices to find J. while allowing Z. < (1 + €)z, for e = 0.2.

» The tree sampled is A-random for A\ = e*s. This yields
efficient sampling procedures and sharp concentration bounds
using the tools developed for A-random trees.

» Namely, the events [e € T] are negatively correlated.
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Concentration Bounds

Theorem

For each edge e, let X. be an indicator random variable
associateed with the event [e € T|, where T is a A-random tree.
Also, for any subset C of the edges of G, define X(C) = .. Xe.
Then we have

5
PAX(C) > (1 +6)E[X(C)]] < ((]-:W)IE[X(C)].

By the negative correlation of the events [e € T], this follows
directly from the result of Panconesi and Srinivasan.



The Thinness Property

a-thin tree

Definition
We say that a tree T is a-thin if for each set U C V,

|TNSU)| < a-z*(5(V)).
Also we say that T is («, s)-thin if it is a-thin and moreover,

C(T) <s- OPTHK.
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P T NS(U)| > 8- 2*(8(U))] < n=257 (V)

_ log n
where B - 4'Iog logn-*




Sampling Thin Trees

w.r.t. a single cut

Lemma
If T is a spanning tree sampled from distribution p(.) for e = 0.2
in a graph G with n > 5 vertices then for any set U C V,

PA| T No(U)| > B - 2*(6(U))] < n~ 257" (0W),

_ log n
where 5 = 4Iog logn

The proof follows from the concentration bound with

z*(o(U
1+6 =855 > £
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Theorem
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samples that minimizes c(T;). Then T* is
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Sampling Thin Trees

Theorem

Let n>5and e =0.2. Let T1,..., Traiogn) be [2logn]
independent samples from p(.). Let T* be the tree among these
samples that minimizes c(T;). Then T* is

(4log n/ loglog n, 2)-thin with high probability.

The proof follows by a union bound over all individual cuts using a
result of Karger showing that there are at most n?* cuts of size at
most k times the minimum cut value for any half-integer k > 1.



From a Thin Trees to an Eulerian Walk

Theorem

Assume that we are given an («, s)-thin spanning tree T* w.r.t the
LP relaxation x*. Then we can find a Hamiltonian cycle of cost no
more than (2a+ s)c(x*) = (2a + s)OP Ty in polynomial time.
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