An $O(\log n / \log \log n)$-approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments

CATS @ UMD

April 22, 2016

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)
Given a set V if n points and a cost function $c: V \times V \rightarrow \mathbb{R}^{+}$, find a minimum cost tour that visits every vertex at least once.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function $c: V \times V \rightarrow \mathbb{R}^{+}$, find a minimum cost tour that visits every vertex at least once.

- c is not necessarily symmetric.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)
Given a set V if n points and a cost function $c: V \times V \rightarrow \mathbb{R}^{+}$, find a minimum cost tour that visits every vertex at least once.

- c is not necessarily symmetric.
- Every arc (u, v) in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)
Given a set V if n points and a cost function $c: V \times V \rightarrow \mathbb{R}^{+}$, find a minimum cost tour that visits every vertex at least once.

- c is not necessarily symmetric.
- Every arc (u, v) in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function $c: V \times V \rightarrow \mathbb{R}^{+}$, find a minimum cost tour that visits every vertex at least once.

- c is not necessarily symmetric.
- Every $\operatorname{arc}(u, v)$ in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.
- Integrality gap
- Lower bound: 2.
- Upper bound: $\log \log ^{O(1)} n$.

The Traveling Salesman Problem (TSP)

i.e. Symmetric

- Metric-TSP:
- APX-hard: 220/219.
- 1.5-approximation by Christofides.

The Traveling Salesman Problem (TSP)

i.e. Symmetric

- Metric-TSP:
- APX-hard: 220/219.
- 1.5-approximation by Christofides.
- Euclidean-TSP:
- PTAS by Arora and Mitchell.

The Traveling Salesman Problem (TSP)

i.e. Symmetric

- Metric-TSP:
- APX-hard: 220/219.
- 1.5-approximation by Christofides.
- Euclidean-TSP:
- PTAS by Arora and Mitchell.
- Graph-TSP:
- APX-hard.
- Lower bound on integrality gap: 4/3.

The Traveling Salesman Problem (TSP)

i.e. Symmetric

- Metric-TSP:
- APX-hard: 220/219.
- 1.5-approximation by Christofides.
- Euclidean-TSP:
- PTAS by Arora and Mitchell.
- Graph-TSP:
- APX-hard.
- Lower bound on integrality gap: $4 / 3$.
- Recent results breaking the 1.5 barrier.

Christofides

Algorithm

- Let T be the MST of G.
- Let O be the odd degree vertices of T. ($|O|$ is even.)
- Compute a minimum-weight perfect matching M for O.
- Combine the edges from M and T. (Every vertex has an even degree)
- Find an Eulerian circuit in $M \cup T$.
- Make the circuit Hamiltonian by skipping repeated vertices (shortcutting).

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around $O P T$.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around $O P T$.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around OPT.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- Group all paths starting at a vertex with an even index, call it $P_{\text {even }}$. Similarly for odd indices we get $P_{\text {odd }}$.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around OPT.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- Group all paths starting at a vertex with an even index, call it $P_{\text {even. }}$. Similarly for odd indices we get $P_{\text {odd }}$.
- $O P T=P_{\text {even }} \cup P_{\text {odd }}$. By averaging, either $c\left(P_{\text {even }}\right) \leq c(O P T) / 2$ or $c\left(P_{\text {odd }}\right) \leq c(O P T) / 2$.
- Recognize that each group defines a matching on O.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around OPT.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- Group all paths starting at a vertex with an even index, call it $P_{\text {even. }}$. Similarly for odd indices we get $P_{\text {odd }}$.
- $O P T=P_{\text {even }} \cup P_{\text {odd }}$. By averaging, either $c\left(P_{\text {even }}\right) \leq c(O P T) / 2$ or $c\left(P_{\text {odd }}\right) \leq c(O P T) / 2$.
- Recognize that each group defines a matching on O.
- It follows that $c(M) \leq c(O P T) / 2$ as well.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around OPT.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- Group all paths starting at a vertex with an even index, call it $P_{\text {even. }}$. Similarly for odd indices we get $P_{\text {odd }}$.
- $O P T=P_{\text {even }} \cup P_{\text {odd }}$. By averaging, either $c\left(P_{\text {even }}\right) \leq c(O P T) / 2$ or $c\left(P_{\text {odd }}\right) \leq c(O P T) / 2$.
- Recognize that each group defines a matching on O.
- It follows that $c(M) \leq c(O P T) / 2$ as well.
- For $T \cup M, c(T)+c(M) \leq 1.5 \cdot c(O P T)$.

Christofides

Analysis

Let $O P T$ be the optimal tour for G.

- Removing one edge from OPT yields a spanning tree. Hence, $c(T) \leq c(O P T)$.
- Number the vertices of O in cyclic order around OPT.
- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- Group all paths starting at a vertex with an even index, call it $P_{\text {even. }}$. Similarly for odd indices we get $P_{\text {odd }}$.
- $O P T=P_{\text {even }} \cup P_{\text {odd }}$. By averaging, either $c\left(P_{\text {even }}\right) \leq c(O P T) / 2$ or $c\left(P_{\text {odd }}\right) \leq c(O P T) / 2$.
- Recognize that each group defines a matching on O.
- It follows that $c(M) \leq c(O P T) / 2$ as well.
- For $T \cup M, c(T)+c(M) \leq 1.5 \cdot c(O P T)$.
- Shortcutting cannot increase the cost.

The Held-Karp Relaxation

Define $\delta^{+}(U)=\{a=(u, v) \in \vec{E} \mid u \in U, v \notin U\}$, and $\delta^{-}(U)=\delta^{+}(V \backslash U)$.

The Held-Karp Relaxation

> Define $\delta^{+}(U)=\{a=(u, v) \in \vec{E} \mid u \in U, v \notin U\}$, and $\delta^{-}(U)=\delta^{+}(V \backslash U)$.

$$
\begin{array}{lll}
\text { minimize } & \sum_{a} c(a) x_{a} & \\
\text { subject to } & x\left(\delta^{+}(U)\right) \geq 1 & \forall U \subset V, \tag{1}\\
& x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)=1 & \forall v \in V, \\
& x_{a} \geq 0 & \forall a .
\end{array}
$$

The Held-Karp Relaxation

$$
\begin{aligned}
& \text { Define } \delta^{+}(U)=\{a=(u, v) \in \vec{E} \mid u \in U, v \notin U\} \text {, and } \\
& \delta^{-}(U)=\delta^{+}(V \backslash U) \text {. }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { minimize } & \sum_{a} c(a) x_{a} & \\
\text { subject to } & x\left(\delta^{+}(U)\right) \geq 1 & \forall U \subset V, \tag{1}\\
& x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right)=1 & \forall v \in V, \\
& x_{a} \geq 0 & \forall a .
\end{array}
$$

Remark: the second set of constraints imply that $x\left(\delta^{+}(U)\right)=x\left(\delta^{-}(U)\right) \forall U \subset V$.

The Held-Karp Relaxation over Spanning Trees

- Let x^{*} denote an optimum solution to the Held-Karp LP. Thus, $c\left(x^{*}\right)=$ OPT $_{\text {HK }}$.

The Held-Karp Relaxation over Spanning Trees

Symmetrization

- Let x^{*} denote an optimum solution to the Held-Karp LP. Thus, $c\left(x^{*}\right)=$ OPT $_{\text {HK }}$.
- Define $z_{\{u, v\}}^{*}=\left(1-\frac{1}{n}\right)\left(x_{u v}^{*}+x_{v u}^{*}\right)$.

The Held-Karp Relaxation over Spanning Trees

Symmetrization

- Let x^{*} denote an optimum solution to the Held-Karp LP. Thus, $c\left(x^{*}\right)=\mathrm{OPT}_{\mathrm{HK}}$.
- Define $z_{\{u, v\}}^{*}=\left(1-\frac{1}{n}\right)\left(x_{u v}^{*}+x_{v u}^{*}\right)$.
- Also define the cost of an edge $\{u, v\}$ as $\min \{c(u, v), c(v, u)\}$.

OPT ${ }_{\text {HK }}$ in the Spanning Tree Polytope

Lemma
z^{*} belongs to the relative interior of the spanning tree polytope P.

OPT ${ }_{\text {HK }}$ in the Spanning Tree Polytope

Lemma

z^{*} belongs to the relative interior of the spanning tree polytope P.

- It follows that z^{*} may be expressed as a convex combination of spanning trees, with strictly positive coefficients (marginal probabilities).

OPT ${ }_{H K}$ in the Spanning Tree Polytope

Lemma
z^{*} belongs to the relative interior of the spanning tree polytope P.

- It follows that z^{*} may be expressed as a convex combination of spanning trees, with strictly positive coefficients (marginal probabilities).
- Next step: round z^{*} to a spanning tree.

Maximum Entropy Distribution

Let \mathcal{T} be the collection of all spanning trees of G.

Maximum Entropy Distribution

Let \mathcal{T} be the collection of all spanning trees of G.
Define the maximum entropy distribution p^{*} w.r.t z by the following convex program:

$$
\begin{array}{lll}
\text { infimum } & \sum_{T \in \mathcal{T}} p(T) \log p(T) \tag{2}\\
\text { subject to } & \sum_{T \ni e} p(T)=z_{e} & \forall e \subset E \\
& p(T) \geq 0 & \forall T \in \mathcal{T}
\end{array}
$$

Maximum Entropy Distribution

Let \mathcal{T} be the collection of all spanning trees of G.
Define the maximum entropy distribution p^{*} w.r.t z by the following convex program (CP):

$$
\begin{array}{lll}
\text { infimum } & \sum_{T \in \mathcal{T}} p(T) \log p(T) \\
\text { subject to } & \sum_{T \ni e} p(T)=z_{e} & \forall e \subset E \\
& p(T) \geq 0 & \forall T \in \mathcal{T} \tag{2}
\end{array}
$$

Remark: the constraints imply that $\sum_{T \in \mathcal{T}} p(T)=1$.

The Lagrange Dual

- For every edge $e \in E$, associate a Lagrange multiplier δ_{e} to the constraint for z_{e}.

The Lagrange Dual

- For every edge $e \in E$, associate a Lagrange multiplier δ_{e} to the constraint for z_{e}.
- Letting $\delta(T)=\sum_{e \in T} \delta_{e}$, it follows that

$$
p(T)=e^{\delta(T)-1}
$$

The Lagrange Dual

- For every edge $e \in E$, associate a Lagrange multiplier δ_{e} to the constraint for z_{e}.
- Letting $\delta(T)=\sum_{e \in T} \delta_{e}$, it follows that

$$
p(T)=e^{\delta(T)-1}
$$

- Apply a change of variables $\gamma_{e}=\delta_{e}-\frac{1}{n-1}$.

The Lagrange Dual

- For every edge $e \in E$, associate a Lagrange multiplier δ_{e} to the constraint for z_{e}.
- Letting $\delta(T)=\sum_{e \in T} \delta_{e}$, it follows that

$$
p(T)=e^{\delta(T)-1}
$$

- Apply a change of variables $\gamma_{e}=\delta_{e}-\frac{1}{n-1}$.
- z being in the relative interior of P is a Slater condition, so strong duality holds and the Lagrange dual value equals $\mathrm{OPT}_{\mathrm{CP}}$.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree polytope P on G, there exist γ_{e}^{*} for all $e \in E$ such that if we sample a spanning tree T of G according to $p^{*}(T)=e^{\gamma^{*}(T) \text {, }}$ $\operatorname{Pr}[e \in T]=z_{e}$ for every $e \in E$.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree polytope P on G, there exist γ_{e}^{*} for all $e \in E$ such that if we sample a spanning tree T of G according to $p^{*}(T)=e^{\gamma^{*}(T) \text {, }}$ $\operatorname{Pr}[e \in T]=z_{e}$ for every $e \in E$.

- Suffices to find $\tilde{\gamma}_{e}$ while allowing $\tilde{z}_{e} \leq(1+\epsilon) z_{e}$ for $\epsilon=0.2$.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree polytope P on G, there exist γ_{e}^{*} for all $e \in E$ such that if we
 $\operatorname{Pr}[e \in T]=z_{e}$ for every $e \in E$.

- Suffices to find $\tilde{\gamma}_{e}$ while allowing $\tilde{z}_{e} \leq(1+\epsilon) z_{e}$ for $\epsilon=0.2$.
- The tree sampled is λ-random for $\lambda_{e}=e^{\lambda_{e}}$. This yields efficient sampling procedures and sharp concentration bounds using the tools developed for λ-random trees.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree polytope P on G, there exist γ_{e}^{*} for all $e \in E$ such that if we sample a spanning tree T of G according to $p^{*}(T)=e^{\gamma^{*}(T) \text {, }}$ $\operatorname{Pr}[e \in T]=z_{e}$ for every $e \in E$.

- Suffices to find $\tilde{\gamma}_{e}$ while allowing $\tilde{z}_{e} \leq(1+\epsilon) z_{e}$ for $\epsilon=0.2$.
- The tree sampled is λ-random for $\lambda_{e}=e^{\lambda_{e}}$. This yields efficient sampling procedures and sharp concentration bounds using the tools developed for λ-random trees.
- Namely, the events $[e \in T]$ are negatively correlated.

Concentration Bounds

Theorem
For each edge e, let X_{e} be an indicator random variable associateed with the event $[e \in T]$, where T is a λ-random tree. Also, for any subset C of the edges of G, define $X(C)=\sum_{e \in C} X_{e}$.
Then we have

$$
\operatorname{Pr}[X(C) \geq(1+\delta) \mathbb{E}[X(C)]] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbb{E}[X(C)]}
$$

Concentration Bounds

Theorem

For each edge e, let X_{e} be an indicator random variable associateed with the event $[e \in T]$, where T is a λ-random tree. Also, for any subset C of the edges of G, define $X(C)=\sum_{e \in C} X_{e}$. Then we have

$$
\operatorname{Pr}[X(C) \geq(1+\delta) \mathbb{E}[X(C)]] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbb{E}[X(C)]}
$$

By the negative correlation of the events $[e \in T]$, this follows directly from the result of Panconesi and Srinivasan.

The Thinness Property

Definition

We say that a tree T is α-thin if for each set $U \subset V$,

$$
|T \cap \delta(U)| \leq \alpha \cdot z^{*}(\delta(U))
$$

Also we say that T is (α, s)-thin if it is α-thin and moreover,

$$
c(T) \leq s \cdot \mathrm{OPT}_{\mathrm{HK}} .
$$

Sampling Thin Trees

w.r.t. a single cut

Lemma
If T is a spanning tree sampled from distribution $\tilde{p}($.$) for \epsilon=0.2$ in a graph G with $n \geq 5$ vertices then for any set $U \subset V$,

$$
\operatorname{Pr}\left[|T \cap \delta(U)|>\beta \cdot z^{*}(\delta(U))\right] \leq n^{-2.5 z^{*}(\delta(U))}
$$

where $\beta=4 \frac{\log n}{\log \log n}$.

Sampling Thin Trees

w.r.t. a single cut

Lemma
If T is a spanning tree sampled from distribution $\tilde{p}($.$) for \epsilon=0.2$ in a graph G with $n \geq 5$ vertices then for any set $U \subset V$,

$$
\operatorname{Pr}\left[|T \cap \delta(U)|>\beta \cdot z^{*}(\delta(U))\right] \leq n^{-2.5 z^{*}(\delta(U))}
$$

where $\beta=4 \frac{\log n}{\log \log n}$.
The proof follows from the concentration bound with $1+\delta=\beta \frac{z^{*}(\delta(U))}{\tilde{z}(\delta(U))} \geq \frac{\beta}{1+\epsilon}$.

Sampling Thin Trees

Theorem
Let $n \geq 5$ and $\epsilon=0.2$. Let $T_{1}, \ldots, T_{\lceil 2 \log n\rceil}$ be $\lceil 2 \log n\rceil$ independent samples from $\tilde{p}($.$) . Let T^{*}$ be the tree among these samples that minimizes $c\left(T_{j}\right)$. Then T^{*} is
$(4 \log n / \log \log n, 2)$-thin with high probability.

Sampling Thin Trees

Theorem
Let $n \geq 5$ and $\epsilon=0.2$. Let $T_{1}, \ldots, T_{\lceil 2 \log n\rceil}$ be $\lceil 2 \log n\rceil$
independent samples from $\tilde{p}($.$) . Let T^{*}$ be the tree among these
samples that minimizes $c\left(T_{j}\right)$. Then T^{*} is
($4 \log n / \log \log n, 2$)-thin with high probability.
The proof follows by a union bound over all individual cuts using a result of Karger showing that there are at most $n^{2 k}$ cuts of size at most k times the minimum cut value for any half-integer $k \geq 1$.

From a Thin Trees to an Eulerian Walk

Theorem
Assume that we are given an (α, s)-thin spanning tree T^{*} w.r.t the $L P$ relaxation x^{*}. Then we can find a Hamiltonian cycle of cost no more than $(2 \alpha+s) c\left(x^{*}\right)=(2 \alpha+s) O P T_{H K}$ in polynomial time.

Thank You

Questions?

akader@cs.umd.edu

