### An $O(\log n / \log \log n)$ -approximation Algorithm for the Asymmetric Traveling Salesman Problem and more recent developments

CATS @ UMD

April 22, 2016

#### Problem (ATSP)

Given a set V if n points and a cost function  $c : V \times V \rightarrow \mathbb{R}^+$ , find a minimum cost tour that visits every vertex at least once.

#### Problem (ATSP)

Given a set V if n points and a cost function  $c : V \times V \rightarrow \mathbb{R}^+$ , find a minimum cost tour that visits every vertex at least once.

c is not necessarily symmetric.

#### Problem (ATSP)

Given a set V if n points and a cost function  $c : V \times V \rightarrow \mathbb{R}^+$ , find a minimum cost tour that visits every vertex at least once.

- *c* is not necessarily symmetric.
- Every arc (u, v) in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.

#### Problem (ATSP)

Given a set V if n points and a cost function  $c : V \times V \rightarrow \mathbb{R}^+$ , find a minimum cost tour that visits every vertex at least once.

- *c* is not necessarily symmetric.
- Every arc (u, v) in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.

#### Problem (ATSP)

Given a set V if n points and a cost function  $c : V \times V \rightarrow \mathbb{R}^+$ , find a minimum cost tour that visits every vertex at least once.

- *c* is not necessarily symmetric.
- Every arc (u, v) in the tour can be replaced by the shortest path from u to v. Hence, we can assume c satisfies the triangle inequality.

- Integrality gap
  - Lower bound: 2.
  - Upper bound:  $\log \log^{O(1)} n$ .

i.e. Symmetric

- Metric-TSP:
  - ► APX-hard: 220/219.
  - 1.5-approximation by Christofides.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

i.e. Symmetric

- Metric-TSP:
  - ► APX-hard: 220/219.
  - 1.5-approximation by Christofides.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Euclidean-TSP:
  - PTAS by Arora and Mitchell.

i.e. Symmetric

- Metric-TSP:
  - APX-hard: 220/219.
  - 1.5-approximation by Christofides.
- Euclidean-TSP:
  - PTAS by Arora and Mitchell.
- ► Graph-TSP:
  - APX-hard.
  - Lower bound on integrality gap: 4/3.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

i.e. Symmetric

- Metric-TSP:
  - ► APX-hard: 220/219.
  - 1.5-approximation by Christofides.
- Euclidean-TSP:
  - PTAS by Arora and Mitchell.
- ► Graph-TSP:
  - APX-hard.
  - Lower bound on integrality gap: 4/3.
  - Recent results breaking the 1.5 barrier.

Algorithm

- Let T be the MST of G.
- Let O be the odd degree vertices of T. (|O| is even.)
- Compute a minimum-weight perfect matching *M* for *O*.
- ► Combine the edges from *M* and *T*. (Every vertex has an even degree)
- Find an Eulerian circuit in  $M \cup T$ .
- Make the circuit Hamiltonian by skipping repeated vertices (shortcutting).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analysis

Let OPT be the optimal tour for G.

• Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Analysis

Let OPT be the optimal tour for G.

• Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .

▶ Number the vertices of *O* in cyclic order around *OPT*.

Analysis

Let OPT be the optimal tour for G.

- Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .
- ▶ Number the vertices of *O* in cyclic order around *OPT*.
  - Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Analysis

Let OPT be the optimal tour for G.

- Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .
- ▶ Number the vertices of *O* in cyclic order around *OPT*.
  - Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
  - ▶ Group all paths starting at a vertex with an even index, call it P<sub>even</sub>. Similarly for odd indices we get P<sub>odd</sub>.

Analysis

Let OPT be the optimal tour for G.

- Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .
- ▶ Number the vertices of *O* in cyclic order around *OPT*.
  - Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
  - ▶ Group all paths starting at a vertex with an even index, call it P<sub>even</sub>. Similarly for odd indices we get P<sub>odd</sub>.

- ▶  $OPT = P_{even} \cup P_{odd}$ . By averaging, either  $c(P_{even}) \le c(OPT)/2$  or  $c(P_{odd}) \le c(OPT)/2$ .
- Recognize that each group defines a matching on *O*.

Analysis

Let OPT be the optimal tour for G.

• Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .

▶ Number the vertices of *O* in cyclic order around *OPT*.

- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- ▶ Group all paths starting at a vertex with an even index, call it P<sub>even</sub>. Similarly for odd indices we get P<sub>odd</sub>.

- ▶  $OPT = P_{even} \cup P_{odd}$ . By averaging, either  $c(P_{even}) \le c(OPT)/2$  or  $c(P_{odd}) \le c(OPT)/2$ .
- Recognize that each group defines a matching on O.
- It follows that  $c(M) \leq c(OPT)/2$  as well.

Analysis

Let OPT be the optimal tour for G.

• Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .

▶ Number the vertices of *O* in cyclic order around *OPT*.

- Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
- ▶ Group all paths starting at a vertex with an even index, call it P<sub>even</sub>. Similarly for odd indices we get P<sub>odd</sub>.
- ►  $OPT = P_{even} \cup P_{odd}$ . By averaging, either  $c(P_{even}) \le c(OPT)/2$  or  $c(P_{odd}) \le c(OPT)/2$ .
- Recognize that each group defines a matching on O.
- It follows that  $c(M) \leq c(OPT)/2$  as well.
- ▶ For  $T \cup M$ ,  $c(T) + c(M) \leq 1.5 \cdot c(OPT)$ .

Analysis

Let OPT be the optimal tour for G.

- Removing one edge from *OPT* yields a spanning tree. Hence,  $c(T) \leq c(OPT)$ .
- Number the vertices of *O* in cyclic order around *OPT*.
  - Decompose OPT into a set of paths going from one vertex in O to the next in cyclic order.
  - ▶ Group all paths starting at a vertex with an even index, call it P<sub>even</sub>. Similarly for odd indices we get P<sub>odd</sub>.

- ▶  $OPT = P_{even} \cup P_{odd}$ . By averaging, either  $c(P_{even}) \le c(OPT)/2$  or  $c(P_{odd}) \le c(OPT)/2$ .
- Recognize that each group defines a matching on O.
- It follows that  $c(M) \leq c(OPT)/2$  as well.
- ▶ For  $T \cup M$ ,  $c(T) + c(M) \leq 1.5 \cdot c(OPT)$ .
- Shortcutting cannot increase the cost.

#### The Held-Karp Relaxation

Define 
$$\delta^+(U) = \{a = (u, v) \in \overrightarrow{E} \mid u \in U, v \notin U\}$$
, and  $\delta^-(U) = \delta^+(V \setminus U)$ .

<□ > < @ > < E > < E > E のQ @

#### The Held-Karp Relaxation

Define 
$$\delta^+(U) = \{a = (u, v) \in \overrightarrow{E} \mid u \in U, v \notin U\}$$
, and  $\delta^-(U) = \delta^+(V \setminus U)$ .

$$\begin{array}{ll} \text{minimize} & \sum_{a} c(a) x_{a} \\ \text{subject to} & x(\delta^{+}(U)) \geq 1 & \forall U \subset V, \\ & x(\delta^{+}(v)) = x(\delta^{-}(v)) = 1 & \forall v \in V, \\ & x_{a} \geq 0 & \forall a. \end{array}$$

<□ > < @ > < E > < E > E のQ @

#### The Held-Karp Relaxation

Define 
$$\delta^+(U) = \{a = (u, v) \in \overrightarrow{E} \mid u \in U, v \notin U\}$$
, and  $\delta^-(U) = \delta^+(V \setminus U)$ .

$$\begin{array}{ll} \text{minimize} & \sum_{a} c(a) x_{a} \\ \text{subject to} & x(\delta^{+}(U)) \geq 1 & \forall U \subset V, \\ & x(\delta^{+}(v)) = x(\delta^{-}(v)) = 1 & \forall v \in V, \\ & x_{a} \geq 0 & \forall a. \end{array}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark: the second set of constraints imply that  $x(\delta^+(U)) = x(\delta^-(U)) \ \forall U \subset V.$ 

#### The Held-Karp Relaxation over Spanning Trees

Let x\* denote an optimum solution to the Held-Karp LP. Thus, c(x\*) = OPT<sub>HK</sub>.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The Held-Karp Relaxation over Spanning Trees

Let x\* denote an optimum solution to the Held-Karp LP. Thus, c(x\*) = OPT<sub>HK</sub>.

• Define 
$$z^*_{\{u,v\}} = (1 - \frac{1}{n})(x^*_{uv} + x^*_{vu}).$$

# The Held-Karp Relaxation over Spanning Trees Symmetrization

Let x\* denote an optimum solution to the Held-Karp LP. Thus, c(x\*) = OPT<sub>HK</sub>.

• Define 
$$z^*_{\{u,v\}} = (1 - \frac{1}{n})(x^*_{uv} + x^*_{vu}).$$

► Also define the cost of an edge {u, v} as min{c(u, v), c(v, u)}.  $\mathsf{OPT}_{\mathsf{HK}}$  in the Spanning Tree Polytope

Lemma

 $z^*$  belongs to the relative interior of the spanning tree polytope P.

#### $\mathsf{OPT}_{\mathsf{HK}}$ in the Spanning Tree Polytope

#### Lemma

 $z^*$  belongs to the relative interior of the spanning tree polytope P.

It follows that z\* may be expressed as a convex combination of spanning trees, with strictly positive coefficients (marginal probabilities).

#### $\mathsf{OPT}_{\mathsf{HK}}$ in the Spanning Tree Polytope

#### Lemma

 $z^*$  belongs to the relative interior of the spanning tree polytope P.

It follows that z\* may be expressed as a convex combination of spanning trees, with strictly positive coefficients (marginal probabilities).

▶ Next step: round *z*<sup>\*</sup> to a spanning tree.

#### Maximum Entropy Distribution

Let  $\mathcal{T}$  be the collection of all spanning trees of G.



#### Maximum Entropy Distribution

Let  $\mathcal{T}$  be the collection of all spanning trees of G. Define the maximum entropy distribution  $p^*$  w.r.t z by the following convex program:

infimum 
$$\sum_{\substack{T \in \mathcal{T} \\ r \ni e}} p(T) \log p(T)$$
  
subject to 
$$\sum_{\substack{T \ni e \\ p(T) \ge 0}} p(T) = z_e \quad \forall e \subset E, \qquad (2)$$

#### Maximum Entropy Distribution

Let  $\mathcal{T}$  be the collection of all spanning trees of G. Define the maximum entropy distribution  $p^*$  w.r.t z by the following convex program (CP):

infimum 
$$\sum_{T \in \mathcal{T}} p(T) \log p(T)$$
  
subject to 
$$\sum_{T \ni e}^{T \ni e} p(T) = z_e \quad \forall e \subset E, \qquad (2)$$
$$p(T) \ge 0 \qquad \forall T \in \mathcal{T}.$$

Remark: the constraints imply that  $\sum_{T \in T} p(T) = 1$ .

For every edge e ∈ E, associate a Lagrange multiplier δ<sub>e</sub> to the constraint for z<sub>e</sub>.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- For every edge e ∈ E, associate a Lagrange multiplier δ<sub>e</sub> to the constraint for z<sub>e</sub>.
- Letting  $\delta(T) = \sum_{e \in T} \delta_e$ , it follows that

$$p(T)=e^{\delta(T)-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- For every edge e ∈ E, associate a Lagrange multiplier δ<sub>e</sub> to the constraint for z<sub>e</sub>.
- Letting  $\delta(T) = \sum_{e \in T} \delta_e$ , it follows that

$$p(T) = e^{\delta(T)-1}$$

• Apply a change of variables  $\gamma_e = \delta_e - \frac{1}{n-1}$ .

- For every edge e ∈ E, associate a Lagrange multiplier δ<sub>e</sub> to the constraint for z<sub>e</sub>.
- Letting  $\delta(T) = \sum_{e \in T} \delta_e$ , it follows that

$$p(T)=e^{\delta(T)-1}.$$

- Apply a change of variables  $\gamma_e = \delta_e \frac{1}{n-1}$ .
- z being in the relative interior of P is a Slater condition, so strong duality holds and the Lagrange dual value equals OPT<sub>CP</sub>.

#### Sampling Spanning Trees

#### Theorem

Given a vector z in the relative interior of the spanning tree polytope P on G, there exist  $\gamma_e^*$  for all  $e \in E$  such that if we sample a spanning tree T of G according to  $p^*(T) = e^{\gamma^*(T)}$ ,  $Pr[e \in T] = z_e$  for every  $e \in E$ .

# Sampling Spanning Trees

### Theorem

Given a vector z in the relative interior of the spanning tree polytope P on G, there exist  $\gamma_e^*$  for all  $e \in E$  such that if we sample a spanning tree T of G according to  $p^*(T) = e^{\gamma^*(T)}$ ,  $Pr[e \in T] = z_e$  for every  $e \in E$ .

• Suffices to find  $\tilde{\gamma}_e$  while allowing  $\tilde{z}_e \leq (1 + \epsilon)z_e$  for  $\epsilon = 0.2$ .

# Sampling Spanning Trees

### Theorem

Given a vector z in the relative interior of the spanning tree polytope P on G, there exist  $\gamma_e^*$  for all  $e \in E$  such that if we sample a spanning tree T of G according to  $p^*(T) = e^{\gamma^*(T)}$ ,  $Pr[e \in T] = z_e$  for every  $e \in E$ .

- Suffices to find  $\tilde{\gamma}_e$  while allowing  $\tilde{z}_e \leq (1 + \epsilon) z_e$  for  $\epsilon = 0.2$ .
- The tree sampled is λ-random for λ<sub>e</sub> = e<sup>λe</sup>. This yields efficient sampling procedures and sharp concentration bounds using the tools developed for λ-random trees.

(日) (同) (三) (三) (三) (○) (○)

# Sampling Spanning Trees

### Theorem

Given a vector z in the relative interior of the spanning tree polytope P on G, there exist  $\gamma_e^*$  for all  $e \in E$  such that if we sample a spanning tree T of G according to  $p^*(T) = e^{\gamma^*(T)}$ ,  $Pr[e \in T] = z_e$  for every  $e \in E$ .

- Suffices to find  $\tilde{\gamma}_e$  while allowing  $\tilde{z}_e \leq (1 + \epsilon)z_e$  for  $\epsilon = 0.2$ .
- The tree sampled is λ-random for λ<sub>e</sub> = e<sup>λ<sub>e</sub></sup>. This yields efficient sampling procedures and sharp concentration bounds using the tools developed for λ-random trees.

▶ Namely, the events  $[e \in T]$  are negatively correlated.

### **Concentration Bounds**

### Theorem

For each edge e, let  $X_e$  be an indicator random variable associateed with the event  $[e \in T]$ , where T is a  $\lambda$ -random tree. Also, for any subset C of the edges of G, define  $X(C) = \sum_{e \in C} X_e$ . Then we have

$$\Pr[X(C) \geq (1+\delta)\mathbb{E}[X(C)]] \leq (rac{e^{\delta}}{(1+\delta)^{1+\delta}})^{\mathbb{E}[X(C)]}$$

### **Concentration Bounds**

### Theorem

For each edge e, let  $X_e$  be an indicator random variable associateed with the event  $[e \in T]$ , where T is a  $\lambda$ -random tree. Also, for any subset C of the edges of G, define  $X(C) = \sum_{e \in C} X_e$ . Then we have

$${\it Pr}[X({\it C}) \geq (1+\delta)\mathbb{E}[X({\it C})]] \leq (rac{e^{\delta}}{(1+\delta)^{1+\delta}})^{\mathbb{E}[X({\it C})]}$$

(日) (同) (三) (三) (三) (○) (○)

By the negative correlation of the events  $[e \in T]$ , this follows directly from the result of Panconesi and Srinivasan.

# The Thinness Property

 $\alpha$ -thin tree

### Definition

We say that a tree T is  $\alpha$ -thin if for each set  $U \subset V$ ,

$$|T \cap \delta(U)| \leq \alpha \cdot z^*(\delta(U)).$$

Also we say that T is  $(\alpha, s)$ -thin if it is  $\alpha$ -thin and moreover,

 $c(T) \leq s \cdot \mathsf{OPT}_{\mathsf{HK}}.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

w.r.t. a single cut

#### Lemma

If T is a spanning tree sampled from distribution  $\tilde{p}(.)$  for  $\epsilon = 0.2$ in a graph G with  $n \ge 5$  vertices then for any set  $U \subset V$ ,

$$Pr[|T \cap \delta(U)| > \beta \cdot z^*(\delta(U))] \le n^{-2.5z^*(\delta(U))},$$

where  $\beta = 4 \frac{\log n}{\log \log n}$ .

w.r.t. a single cut

#### Lemma

If T is a spanning tree sampled from distribution  $\tilde{p}(.)$  for  $\epsilon = 0.2$ in a graph G with  $n \ge 5$  vertices then for any set  $U \subset V$ ,

$$\Pr[|T \cap \delta(U)| > \beta \cdot z^*(\delta(U))] \le n^{-2.5z^*(\delta(U))},$$

where  $\beta = 4 \frac{\log n}{\log \log n}$ . The proof follows from the concentration bound with  $1 + \delta = \beta \frac{z^*(\delta(U))}{\tilde{z}(\delta(U))} \ge \frac{\beta}{1+\epsilon}$ .

#### Theorem

Let  $n \ge 5$  and  $\epsilon = 0.2$ . Let  $T_1, \ldots, T_{\lceil 2 \log n \rceil}$  be  $\lceil 2 \log n \rceil$ independent samples from  $\tilde{p}(.)$ . Let  $T^*$  be the tree among these samples that minimizes  $c(T_j)$ . Then  $T^*$  is  $(4 \log n / \log \log n, 2)$ -thin with high probability.

### Theorem

Let  $n \ge 5$  and  $\epsilon = 0.2$ . Let  $T_1, \ldots, T_{\lceil 2 \log n \rceil}$  be  $\lceil 2 \log n \rceil$ independent samples from  $\tilde{p}(.)$ . Let  $T^*$  be the tree among these samples that minimizes  $c(T_j)$ . Then  $T^*$  is  $(4 \log n / \log \log n, 2)$ -thin with high probability.

The proof follows by a union bound over all individual cuts using a result of Karger showing that there are at most  $n^{2k}$  cuts of size at most k times the minimum cut value for any half-integer  $k \ge 1$ .

### From a Thin Trees to an Eulerian Walk

#### Theorem

Assume that we are given an  $(\alpha, s)$ -thin spanning tree  $T^*$  w.r.t the LP relaxation  $x^*$ . Then we can find a Hamiltonian cycle of cost no more than  $(2\alpha + s)c(x^*) = (2\alpha + s)OPT_{HK}$  in polynomial time.

### Thank You

# Questions?

akader@cs.umd.edu