
An O(log n/ log log n)-approximation Algorithm
for the Asymmetric Traveling Salesman Problem

and more recent developments

CATS @ UMD

April 22, 2016

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function c : V × V → R+,
find a minimum cost tour that visits every vertex at least once.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function c : V × V → R+,
find a minimum cost tour that visits every vertex at least once.

I c is not necessarily symmetric.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function c : V × V → R+,
find a minimum cost tour that visits every vertex at least once.

I c is not necessarily symmetric.

I Every arc (u, v) in the tour can be replaced by the shortest
path from u to v . Hence, we can assume c satisfies the
triangle inequality.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function c : V × V → R+,
find a minimum cost tour that visits every vertex at least once.

I c is not necessarily symmetric.

I Every arc (u, v) in the tour can be replaced by the shortest
path from u to v . Hence, we can assume c satisfies the
triangle inequality.

The Asymmetric Traveling Salesman Problem (ATSP)

Problem (ATSP)

Given a set V if n points and a cost function c : V × V → R+,
find a minimum cost tour that visits every vertex at least once.

I c is not necessarily symmetric.

I Every arc (u, v) in the tour can be replaced by the shortest
path from u to v . Hence, we can assume c satisfies the
triangle inequality.

I Integrality gap
I Lower bound: 2.
I Upper bound: log logO(1) n.

The Traveling Salesman Problem (TSP)
i.e. Symmetric

I Metric-TSP:
I APX-hard: 220/219.
I 1.5-approximation by Christofides.

The Traveling Salesman Problem (TSP)
i.e. Symmetric

I Metric-TSP:
I APX-hard: 220/219.
I 1.5-approximation by Christofides.

I Euclidean-TSP:
I PTAS by Arora and Mitchell.

The Traveling Salesman Problem (TSP)
i.e. Symmetric

I Metric-TSP:
I APX-hard: 220/219.
I 1.5-approximation by Christofides.

I Euclidean-TSP:
I PTAS by Arora and Mitchell.

I Graph-TSP:
I APX-hard.
I Lower bound on integrality gap: 4/3.

The Traveling Salesman Problem (TSP)
i.e. Symmetric

I Metric-TSP:
I APX-hard: 220/219.
I 1.5-approximation by Christofides.

I Euclidean-TSP:
I PTAS by Arora and Mitchell.

I Graph-TSP:
I APX-hard.
I Lower bound on integrality gap: 4/3.
I Recent results breaking the 1.5 barrier.

Christofides
Algorithm

I Let T be the MST of G .

I Let O be the odd degree vertices of T . (|O| is even.)

I Compute a minimum-weight perfect matching M for O.

I Combine the edges from M and T . (Every vertex has an even
degree)

I Find an Eulerian circuit in M ∪ T .

I Make the circuit Hamiltonian by skipping repeated vertices
(shortcutting).

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.
I Group all paths starting at a vertex with an even index, call it

Peven. Similarly for odd indices we get Podd.

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.
I Group all paths starting at a vertex with an even index, call it

Peven. Similarly for odd indices we get Podd.
I OPT = Peven ∪ Podd. By averaging, either

c(Peven) ≤ c(OPT)/2 or c(Podd) ≤ c(OPT)/2.
I Recognize that each group defines a matching on O.

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.
I Group all paths starting at a vertex with an even index, call it

Peven. Similarly for odd indices we get Podd.
I OPT = Peven ∪ Podd. By averaging, either

c(Peven) ≤ c(OPT)/2 or c(Podd) ≤ c(OPT)/2.
I Recognize that each group defines a matching on O.
I It follows that c(M) ≤ c(OPT)/2 as well.

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.
I Group all paths starting at a vertex with an even index, call it

Peven. Similarly for odd indices we get Podd.
I OPT = Peven ∪ Podd. By averaging, either

c(Peven) ≤ c(OPT)/2 or c(Podd) ≤ c(OPT)/2.
I Recognize that each group defines a matching on O.
I It follows that c(M) ≤ c(OPT)/2 as well.

I For T ∪M, c(T) + c(M) ≤ 1.5 · c(OPT).

Christofides
Analysis

Let OPT be the optimal tour for G .

I Removing one edge from OPT yields a spanning tree. Hence,
c(T) ≤ c(OPT).

I Number the vertices of O in cyclic order around OPT .
I Decompose OPT into a set of paths going from one vertex in

O to the next in cyclic order.
I Group all paths starting at a vertex with an even index, call it

Peven. Similarly for odd indices we get Podd.
I OPT = Peven ∪ Podd. By averaging, either

c(Peven) ≤ c(OPT)/2 or c(Podd) ≤ c(OPT)/2.
I Recognize that each group defines a matching on O.
I It follows that c(M) ≤ c(OPT)/2 as well.

I For T ∪M, c(T) + c(M) ≤ 1.5 · c(OPT).

I Shortcutting cannot increase the cost.

The Held-Karp Relaxation

Define δ+(U) = {a = (u, v) ∈
−→
E | u ∈ U, v /∈ U}, and

δ−(U) = δ+(V \ U).

The Held-Karp Relaxation

Define δ+(U) = {a = (u, v) ∈
−→
E | u ∈ U, v /∈ U}, and

δ−(U) = δ+(V \ U).

minimize
∑
a

c(a)xa

subject to x(δ+(U)) ≥ 1 ∀U ⊂ V ,
x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V ,
xa ≥ 0 ∀a.

(1)

The Held-Karp Relaxation

Define δ+(U) = {a = (u, v) ∈
−→
E | u ∈ U, v /∈ U}, and

δ−(U) = δ+(V \ U).

minimize
∑
a

c(a)xa

subject to x(δ+(U)) ≥ 1 ∀U ⊂ V ,
x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V ,
xa ≥ 0 ∀a.

(1)

Remark: the second set of constraints imply that
x(δ+(U)) = x(δ−(U)) ∀U ⊂ V .

The Held-Karp Relaxation over Spanning Trees

I Let x∗ denote an optimum solution to the Held-Karp LP.
Thus, c(x∗) = OPTHK.

The Held-Karp Relaxation over Spanning Trees
Symmetrization

I Let x∗ denote an optimum solution to the Held-Karp LP.
Thus, c(x∗) = OPTHK.

I Define z∗{u,v} = (1− 1
n)(x∗uv + x∗vu).

The Held-Karp Relaxation over Spanning Trees
Symmetrization

I Let x∗ denote an optimum solution to the Held-Karp LP.
Thus, c(x∗) = OPTHK.

I Define z∗{u,v} = (1− 1
n)(x∗uv + x∗vu).

I Also define the cost of an edge {u, v} as
min{c(u, v), c(v , u)}.

OPTHK in the Spanning Tree Polytope

Lemma
z∗ belongs to the relative interior of the spanning tree polytope P.

OPTHK in the Spanning Tree Polytope

Lemma
z∗ belongs to the relative interior of the spanning tree polytope P.

I It follows that z∗ may be expressed as a convex combination
of spanning trees, with strictly positive coefficients (marginal
probabilities).

OPTHK in the Spanning Tree Polytope

Lemma
z∗ belongs to the relative interior of the spanning tree polytope P.

I It follows that z∗ may be expressed as a convex combination
of spanning trees, with strictly positive coefficients (marginal
probabilities).

I Next step: round z∗ to a spanning tree.

Maximum Entropy Distribution

Let T be the collection of all spanning trees of G .

Maximum Entropy Distribution

Let T be the collection of all spanning trees of G .
Define the maximum entropy distribution p∗ w.r.t z by the
following convex program:

infimum
∑
T∈T

p(T) log p(T)

subject to
∑
T3e

p(T) = ze ∀e ⊂ E ,

p(T) ≥ 0 ∀T ∈ T .

(2)

Maximum Entropy Distribution

Let T be the collection of all spanning trees of G .
Define the maximum entropy distribution p∗ w.r.t z by the
following convex program (CP):

infimum
∑
T∈T

p(T) log p(T)

subject to
∑
T3e

p(T) = ze ∀e ⊂ E ,

p(T) ≥ 0 ∀T ∈ T .

(2)

Remark: the constraints imply that
∑

T∈T p(T) = 1.

The Lagrange Dual

I For every edge e ∈ E , associate a Lagrange multiplier δe to
the constraint for ze .

The Lagrange Dual

I For every edge e ∈ E , associate a Lagrange multiplier δe to
the constraint for ze .

I Letting δ(T) =
∑

e∈T δe , it follows that

p(T) = eδ(T)−1.

The Lagrange Dual

I For every edge e ∈ E , associate a Lagrange multiplier δe to
the constraint for ze .

I Letting δ(T) =
∑

e∈T δe , it follows that

p(T) = eδ(T)−1.

I Apply a change of variables γe = δe − 1
n−1 .

The Lagrange Dual

I For every edge e ∈ E , associate a Lagrange multiplier δe to
the constraint for ze .

I Letting δ(T) =
∑

e∈T δe , it follows that

p(T) = eδ(T)−1.

I Apply a change of variables γe = δe − 1
n−1 .

I z being in the relative interior of P is a Slater condition, so
strong duality holds and the Lagrange dual value equals
OPTCP.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree
polytope P on G , there exist γ∗e for all e ∈ E such that if we
sample a spanning tree T of G according to p∗(T) = eγ

∗(T),
Pr[e ∈ T] = ze for every e ∈ E .

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree
polytope P on G , there exist γ∗e for all e ∈ E such that if we
sample a spanning tree T of G according to p∗(T) = eγ

∗(T),
Pr[e ∈ T] = ze for every e ∈ E .

I Suffices to find γ̃e while allowing z̃e ≤ (1 + ε)ze for ε = 0.2.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree
polytope P on G , there exist γ∗e for all e ∈ E such that if we
sample a spanning tree T of G according to p∗(T) = eγ

∗(T),
Pr[e ∈ T] = ze for every e ∈ E .

I Suffices to find γ̃e while allowing z̃e ≤ (1 + ε)ze for ε = 0.2.

I The tree sampled is λ-random for λe = eλe . This yields
efficient sampling procedures and sharp concentration bounds
using the tools developed for λ-random trees.

Sampling Spanning Trees

Theorem
Given a vector z in the relative interior of the spanning tree
polytope P on G , there exist γ∗e for all e ∈ E such that if we
sample a spanning tree T of G according to p∗(T) = eγ

∗(T),
Pr[e ∈ T] = ze for every e ∈ E .

I Suffices to find γ̃e while allowing z̃e ≤ (1 + ε)ze for ε = 0.2.

I The tree sampled is λ-random for λe = eλe . This yields
efficient sampling procedures and sharp concentration bounds
using the tools developed for λ-random trees.

I Namely, the events [e ∈ T] are negatively correlated.

Concentration Bounds

Theorem
For each edge e, let Xe be an indicator random variable
associateed with the event [e ∈ T], where T is a λ-random tree.
Also, for any subset C of the edges of G , define X (C) =

∑
e∈C Xe .

Then we have

Pr[X (C) ≥ (1 + δ)E[X (C)]] ≤ (
eδ

(1 + δ)1+δ
)E[X (C)].

Concentration Bounds

Theorem
For each edge e, let Xe be an indicator random variable
associateed with the event [e ∈ T], where T is a λ-random tree.
Also, for any subset C of the edges of G , define X (C) =

∑
e∈C Xe .

Then we have

Pr[X (C) ≥ (1 + δ)E[X (C)]] ≤ (
eδ

(1 + δ)1+δ
)E[X (C)].

By the negative correlation of the events [e ∈ T], this follows
directly from the result of Panconesi and Srinivasan.

The Thinness Property
α-thin tree

Definition
We say that a tree T is α-thin if for each set U ⊂ V ,

|T ∩ δ(U)| ≤ α · z∗(δ(U)).

Also we say that T is (α, s)-thin if it is α-thin and moreover,

c(T) ≤ s · OPTHK.

Sampling Thin Trees
w.r.t. a single cut

Lemma
If T is a spanning tree sampled from distribution p̃(.) for ε = 0.2
in a graph G with n ≥ 5 vertices then for any set U ⊂ V ,

Pr[|T ∩ δ(U)| > β · z∗(δ(U))] ≤ n−2.5z
∗(δ(U)),

where β = 4 log n
log log n .

Sampling Thin Trees
w.r.t. a single cut

Lemma
If T is a spanning tree sampled from distribution p̃(.) for ε = 0.2
in a graph G with n ≥ 5 vertices then for any set U ⊂ V ,

Pr[|T ∩ δ(U)| > β · z∗(δ(U))] ≤ n−2.5z
∗(δ(U)),

where β = 4 log n
log log n .

The proof follows from the concentration bound with
1 + δ = β z∗(δ(U))

z̃(δ(U)) ≥
β

1+ε .

Sampling Thin Trees

Theorem
Let n ≥ 5 and ε = 0.2. Let T1, . . . ,Td2 log ne be d2 log ne
independent samples from p̃(.). Let T ∗ be the tree among these
samples that minimizes c(Tj). Then T ∗ is
(4 log n/ log log n, 2)-thin with high probability.

Sampling Thin Trees

Theorem
Let n ≥ 5 and ε = 0.2. Let T1, . . . ,Td2 log ne be d2 log ne
independent samples from p̃(.). Let T ∗ be the tree among these
samples that minimizes c(Tj). Then T ∗ is
(4 log n/ log log n, 2)-thin with high probability.

The proof follows by a union bound over all individual cuts using a
result of Karger showing that there are at most n2k cuts of size at
most k times the minimum cut value for any half-integer k ≥ 1.

From a Thin Trees to an Eulerian Walk

Theorem
Assume that we are given an (α, s)-thin spanning tree T ∗ w.r.t the
LP relaxation x∗. Then we can find a Hamiltonian cycle of cost no
more than (2α + s)c(x∗) = (2α + s)OPTHK in polynomial time.

Thank You

Questions?
akader@cs.umd.edu

	Introduction

