A Unified Approach to Proximity Search Through Delone Sets

Ahmed Abdelkader

Department of Computer Science University of Maryland, College Park

(Joint work with David Mount)

Presented at the Capital Area Theory Seminar 10/06/2017

(日) (周) (三) (三)

Proximity Searching: Applications

Proximity searching:

A set of related geometric retrieval problems that involve finding the objects close to a given query object.

- Pattern recognition and classification
- Object recognition in images
- Content-based retrieval:
 - Shape matching
 - Image/Document retrieval
 - Biometric identification (face/fingerprint/voice recognition)
- Clustering and phylogeny
- Data compression (vector quantization)
- Physical simulation (collision detection and response)
- Computer graphics: photon mapping and point-based modeling
- ...and many more

イロト 不得 トイヨト イヨト

Nearest Neighbor Searching

Nearest Neighbor Searching

Preprocess a point set $P \subset \mathbb{R}^d$, so that given any query point $q \in \mathbb{R}^d$, can efficiently find its closest point in P.

Assumptions:

- Real *d*-dimensional space
- Assume Euclidean distance
- Dimension is a constant (e.g., $d \leq 20$)

Ideal: O(n) space and $O(\log n)$ query time

Voronoi Diagrams

- Subdivide space into regions according to which point is closest
- Apply point location to answer queries
- In \mathbb{R}^2 : O(n) space and $O(\log n)$ time
- No good solutions higher dimensions
- Curse of dimensionality

Ideal: O(n) space and $O(\log n)$ query time

Voronoi Diagrams

- Subdivide space into regions according to which point is closest
- Apply point location to answer queries
- In \mathbb{R}^2 : O(n) space and $O(\log n)$ time
- No good solutions higher dimensions
- Curse of dimensionality

Ideal: O(n) space and $O(\log n)$ query time

Voronoi Diagrams

- Subdivide space into regions according to which point is closest
- Apply point location to answer queries
- In \mathbb{R}^2 : O(n) space and $O(\log n)$ time
- No good solutions higher dimensions
- Curse of dimensionality

Ideal: O(n) space and $O(\log n)$ query time

Voronoi Diagrams

- Subdivide space into regions according to which point is closest
- Apply point location to answer queries
- In \mathbb{R}^2 : O(n) space and $O(\log n)$ time
- No good solutions higher dimensions
- Curse of dimensionality

Nearest Neighbor Searching - Approximate ...

Approximate Nearest Neighbor (ANN)

Given a query point q, whose true nearest neighbor is p^* , return any point $p \in P$, such that

 $\operatorname{dist}(q, p) \leq (1 + \varepsilon) \cdot \operatorname{dist}(q, p^*)$

伺い くまい くまい

Introduction

Brief Survey

- Logarithmic query times, exponential dependencies on d
 - Trees (e.g., k-d trees, BBD, AVD)
 - Grids (e.g., bucketing, shifted/rotated, DVD)
 - Algebraic (Chebyshev polymonials)
- Sublinear query times, near-linear storage, polymonial dependencies on d
 - Locality-sensitive Hashing (LSH)
- And many more
 - Neighborhood graphs
 - Spectral methods (PCA)
 - Dynamic Continuous Indexing (DCI)
 - Offline (e.g., one-shot, batch queries)
 - Other metric spaces (e.g., doubling-dimension, Bregman distances)
 - Other variants: moving points, uncertainty, ...

・ロト ・個ト ・ヨト ・ヨト

ANN Searching with kd-trees

- Preprocessing: $O(n \log n)$ time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

<ロト <回ト < 回ト < 回ト

ANN Searching with kd-trees

- Preprocessing: $O(n \log n)$ time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

<ロ> (日) (日) (日) (日) (日)

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$

Works well in practice

- 4 回 2 - 4 □ 2 - 4 □

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

<ロ> (日) (日) (日) (日) (日)

ANN Searching with kd-trees

- Preprocessing: O(n log n) time, O(n) space
- Query Processing:
 - Locate the cell containing q
 - Establish initial search radius
 - Visit cells in increasing order of distance
 - Stop when: cell-dist > NN-dist/ $(1 + \varepsilon)$
- Query time: $O(\log n + (1/\varepsilon)^d)$
- Works well in practice

- 4 回 2 - 4 □ 2 - 4 □

AVDs

Approximate Voronoi Diagrams

Trade-offs: More space but lower query times?

Approximate Voronoi Diagram (AVD)

- Quadtree subdivision into cells
- Each cell stores a representative, r ∈ P, such that r is an ε-ANN of any point q in the cell

Har-Peled (2001):

Given a set of *n* points in \mathbb{R}^d , ε -approximate nearest neighbor queries can be answered in space $\widetilde{O}(n/\varepsilon^{d-1})$ and in time $O(\log(n/\varepsilon))$

AVDs

Approximate Voronoi Diagrams

Trade-offs: More space but lower query times?

Approximate Voronoi Diagram (AVD)

- Quadtree subdivision into cells
- Each cell stores a representative, r ∈ P, such that r is an ε-ANN of any point q in the cell

Har-Peled (2001):

Given a set of *n* points in \mathbb{R}^d , ε -approximate nearest neighbor queries can be answered in space $\widetilde{O}(n/\varepsilon^{d-1})$ and in time $O(\log(n/\varepsilon))$

イロト 不得 トイヨト イヨト

AVDs

Space-Time Tradeoffs

Multi-Rep AVDs [Arya, Malamatos (2002)]

- Quadtree subdivision into cells
- Each cell stores up to t representatives, $\{r_1, \ldots, r_t\} \in P$
- Given any point q in the cell, at least one rep is an ε -ANN of q
- Increase t ⇒ decrease space, increase query time
- Theoretical bounds are strong [Arya, et al. 2009, 2017]
- Storage can be prohibitive in practice

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lifting and Distances

- Project a point *p* vertically to *p*[↑] on a paraboloid Ψ
- Let *h* be the tangent hyperplane at p^{\uparrow}
- For any point q at distance δ from p, the vertical distance between Ψ and h is δ²

Lifting and Voronoi Diagrams

- Lift the points of P vertically to Ψ
- Intersect their tangent upper halfspaces
- The projected skeleton of the resulting polytope is the Voronoi diagram of *P*

イロト イポト イヨト イヨト

Lifting and Distances

- Project a point *p* vertically to *p*[↑] on a paraboloid Ψ
- Let *h* be the tangent hyperplane at p^{\uparrow}
- For any point q at distance δ from p, the vertical distance between Ψ and h is δ²

Lifting and Voronoi Diagrams

- Lift the points of P vertically to Ψ
- Intersect their tangent upper halfspaces
- The projected skeleton of the resulting polytope is the Voronoi diagram of *P*

Lifting and Distances

- Project a point *p* vertically to *p*[↑] on a paraboloid Ψ
- Let *h* be the tangent hyperplane at p^{\uparrow}
- For any point q at distance δ from p, the vertical distance between Ψ and h is δ²

Lifting and Voronoi Diagrams

- Lift the points of P vertically to Ψ
- Intersect their tangent upper halfspaces
- The projected skeleton of the resulting polytope is the Voronoi diagram of *P*

Lifting and Distances

- Project a point *p* vertically to *p*[↑] on a paraboloid Ψ
- Let *h* be the tangent hyperplane at p^{\uparrow}
- For any point q at distance δ from p, the vertical distance between Ψ and h is δ²

Lifting and Voronoi Diagrams

- Lift the points of P vertically to Ψ
- Intersect their tangent upper halfspaces
- The projected skeleton of the resulting polytope is the Voronoi diagram of *P*

Lifting and Voronoi Diagrams

Lift the points of P to Ψ , take the upper envelope of the tangent hyperplanes, and project the skeleton back onto the plane. The result is the Voronoi diagram of P.

Intuition: Improved representations of polytopes lead to improvements for ANN

イロト イポト イヨト イヨト

Polytope Membership Queries

Polytope Membership Queries

Given a polytope K in \mathbb{R}^d , preprocess K to answer membership queries:

Given a point $q \in \mathbb{R}^d$, is $q \in K$?

Assumptions:

- Dimension *d* is a constant
- K given as intersection of n halfspaces

Dual: Halfspace emptiness searching [Matoušek (1992)]

- $d \leq 3 \Rightarrow$ Space: O(n), Query time: $O(\log n)$
- $d \ge 4 \Rightarrow$ Space: $O(n^{\lfloor d/2 \rfloor})$, Query time: $O(\log n)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Approximate Polytope Membership Queries

ε -APM Queries:

- Given an approximation parameter ε > 0 (at preprocessing time)
- Assume the polytope scaled to unit diameter
- If the query point's distance from K:
 - 0 \Rightarrow Inside
 - $> \varepsilon \Rightarrow \mathsf{Outside}$
 - Otherwise: Either answer is acceptable

Arya, da Fonesca, Mount [SODA 2017]

Query time: $O(\log \frac{1}{\varepsilon})$ \leftarrow optimalStorage: $O(1/\varepsilon^{(d-1)/2})$ \leftarrow optimal

イロト イヨト イヨト イヨト

Approximate Polytope Membership Queries

ε -APM Queries:

- Given an approximation parameter ε > 0 (at preprocessing time)
- Assume the polytope scaled to unit diameter
- If the query point's distance from K:
 - 0 \Rightarrow Inside
 - $> \varepsilon \Rightarrow \mathsf{Outside}$
 - Otherwise: Either answer is acceptable

Arya, da Fonesca, Mount [SODA 2017] Query time: $O(\log \frac{1}{\varepsilon})$ \leftarrow optimal Storage: $O(1/\varepsilon^{(d-1)/2})$ \leftarrow optimal

イロト イヨト イヨト イヨト

Polytope Approximation and Ray Shooting Queries

Ray shooting preliminaries

Polytope Approximation and Ray Shooting Queries (2)

Data structure for APM based on ray shooting

Ahmed Abdelkader (UMCP)

- ▲圖 ト ▲ 国 ト ▲ 国 ト

Polytope Approximation and Ray Shooting Queries (3)

Projective transformation for vertical ray shooting

→ Ξ → < Ξ →</p>

- The second sec

State-of-the-art in ANN

Nearly two decades of work on this problem

<ロ> (日) (日) (日) (日) (日)

Skip this ad in 5 seconds

Matt Might, The Illustrated Guide to a Ph.D. http://matt.might.net/articles/phd-school-in-pictures/

イロン イ団と イヨン イヨン

Intuition - Quadtree Search

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

イロト イヨト イヨト イヨト

Intuition - Quadtree Search

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

イロト イヨト イヨト イヨト

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- $\bullet\,$ Stop at diameter $\varepsilon\,$
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based query approach:

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis:

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

・ロト ・回ト ・ヨト ・ヨトー

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

イロン イ団と イヨン イヨン

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

イロン イ団と イヨン イヨン

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

<ロ> (四) (四) (三) (三) (三) (三)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

・ロト ・個ト ・ヨト ・ヨト

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover *K* by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains *q*. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

level i – 1 q level i

・ロト ・個ト ・ヨト ・ヨト

Analysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_K^{\lambda}(x)$: Scaling of $M_K(x)$ by factor λ

Will omit K when clear

(日) (部) (注) (注) (日)

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

K ×

(日) (部) (王) (王)

Will omit K when clear

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_{K}^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_K^{\lambda}(x)$: Scaling of $M_K(x)$ by factor λ

Will omit K when clear

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_{K}^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_{K}^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

$$M^{\lambda}(y) \subseteq M^{c\lambda}(x), ext{ where } c = rac{3+\lambda}{1-\lambda}.$$

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to *K*'s boundary ... metric balls?

E + 4 E +

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

$$M^{\lambda}(y) \subseteq M^{c\lambda}(x), \text{ where } c = \frac{3+\lambda}{1-\lambda}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to *K*'s boundary ... metric balls?

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

$$M^{\lambda}(y) \subseteq M^{c\lambda}(x), \text{ where } c = rac{3+\lambda}{1-\lambda}.$$

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to *K*'s boundary ... metric balls?

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

$$M^{\lambda}(y) \subseteq M^{c\lambda}(x), \text{ where } c = rac{3+\lambda}{1-\lambda}.$$

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to *K*'s boundary ... metric balls?

Metric Spaces

Metric Space: A set X and distance measure $f : X \times X \to \mathbb{R}$ that satisfies:

- Nonnegativity: $f(x, y) \ge 0$, and f(x, y) = 0 if and only if x = y
- Symmetry: f(x, y) = f(y, x)
- Triangle Inequality: $f(x, z) \le f(x, y) + f(y, z)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

 Hilbert Metric: Given x, y ∈ K, let x' and y' be the intersection of xy with ∂K. Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

• Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$

[Vernicos and Walsh (2016)] For all $x \in K$ and $0 \le \lambda < 1$: $B_H(x, \frac{1}{2} \ln (1 + \lambda)) \subseteq M^{\lambda}(x) \subseteq B_H\left(x, \frac{1}{2} \ln \frac{1 + \lambda}{1 - \lambda}\right)$

e.g. $B_H(x, 0.091) \subseteq M^{0.2}(x) \subseteq B_H(x, 0.203), \forall x \in K.$

イロト 不得 トイヨト イヨト

 Hilbert Metric: Given x, y ∈ K, let x' and y' be the intersection of xy with ∂K. Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

• Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$

[Vernicos and Walsh (2016)] For all $x \in K$ and $0 \le \lambda < 1$: $B_H(x, \frac{1}{2} \ln (1 + \lambda)) \subseteq M^{\lambda}(x) \subseteq B_H\left(x, \frac{1}{2} \ln \frac{1 + \lambda}{1 - \lambda}\right)$

e.g. $B_H(x, 0.091) \subseteq M^{0.2}(x) \subseteq B_H(x, 0.203), \forall x \in K.$

イロト 不得 トイヨト イヨト

 Hilbert Metric: Given x, y ∈ K, let x' and y' be the intersection of xy with ∂K. Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

• Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$

[Vernicos and Walsh (2016)] For all $x \in K$ and $0 \le \lambda < 1$: $B_H(x, \frac{1}{2} \ln (1 + \lambda)) \subseteq M^{\lambda}(x) \subseteq B_H\left(x, \frac{1}{2} \ln \frac{1 + \lambda}{1 - \lambda}\right)$

・ロト ・回ト ・ヨト ・ヨトー

e.g. $B_H(x, 0.091) \subseteq M^{0.2}(x) \subseteq B_H(x, 0.203), \forall x \in K.$

 Hilbert Metric: Given x, y ∈ K, let x' and y' be the intersection of Xy with ∂K. Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

• Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$

[Vernicos and Walsh (2016)] For all $x \in K$ and $0 \le \lambda < 1$: $B_H(x, \frac{1}{2} \ln (1 + \lambda)) \subseteq M^{\lambda}(x) \subseteq B_H\left(x, \frac{1}{2} \ln \frac{1 + \lambda}{1 - \lambda}\right)$

・ロン ・四 と ・ ヨ と ・ ヨ と

e.g. $B_H(x, 0.091) \subseteq M^{0.2}(x) \subseteq B_H(x, 0.203), \forall x \in K.$

Macbeath Ellipsoids

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

• E(x): maximum volume ellipsoid in M(x)

イロン イヨン イヨン イヨン

- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subset M^{\lambda}(x) \subset E^{\lambda\sqrt{d}}(x)$

Macbeath Ellipsoids

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

• E(x): maximum volume ellipsoid in M(x)

・ロン ・四 と ・ ヨ と ・ ヨ と …

- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$

Macbeath Ellipsoids

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

• E(x): maximum volume ellipsoid in M(x)

イロト 不得 トイヨト イヨト

- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$

Macbeath Ellipsoids

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

• E(x): maximum volume ellipsoid in M(x)

- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

<ロ> (日) (日) (日) (日) (日)

A subset $X \subseteq \mathbb{X}$ is an:

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

イロン イヨン イヨン イヨン

A subset $X \subseteq \mathbb{X}$ is an:

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

・ロン ・四 と ・ ヨ と ・ ヨ と …

A subset $X \subseteq \mathbb{X}$ is an:

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

・ロン ・四 と ・ ヨ と ・ ヨ と …

A subset $X \subseteq \mathbb{X}$ is an:

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

A subset $X \subseteq \mathbb{X}$ is an:

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε -covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

< ロ > < 同 > < 回 > < 回 > < 回 > <

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)

イロト 不得 トイヨト イヨト

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)

イロト 不得 トイヨト イヨト

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)

< ロ > < 同 > < 回 > < 回 > < □ > <

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell|=1$ (at $\delta_\ell=O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

・ロン ・四 と ・ ヨ と ・ ヨ と …

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_\ell| = 1$ (at $\delta_\ell = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Analysis

- Total Query time: $O(\log \frac{1}{\varepsilon})$
 - Out-degree: O(1) (By expansion-containment)
 - Query time per level: O(1)
 - Number of levels: $O(\log \frac{1}{\varepsilon})$ (From ε to O(1))
- Total storage: $O(1/\varepsilon^{(d-1)/2})$
 - Economical cap cover [AFM (2016)]: Number of Macbeath regions needed to cover K_{δ_i} is $O(1/\delta^{(d-1)/2})$
 - Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
 - Geometric progression shows that leaf level dominates

《曰》《圖》《臣》《臣》

Analysis

- Total Query time: $O(\log \frac{1}{\varepsilon})$
 - Out-degree: O(1) (By expansion-containment)
 - Query time per level: O(1)
 - Number of levels: $O(\log \frac{1}{\varepsilon})$ (From ε to O(1))
- Total storage: $O(1/\varepsilon^{(d-1)/2})$
 - Economical cap cover [AFM (2016)]: Number of Macbeath regions needed to cover K_{δi} is O(1/δ^{(d-1)/2})
 - Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
 - Geometric progression shows that leaf level dominates

<ロ> (四) (四) (三) (三) (三) (三)

Implications of approximating the upper envelope

 $\delta\text{-expanded}$ Voronoi Cell

$$V_{\delta}(p) = \{ x \in \mathbb{R}^d : \|p - x\|^2 \le \|p' - x\|^2 + \delta^2, \forall p' \in P \}$$

<ロ> (日) (日) (日) (日) (日)

Implications of approximating the upper envelope

 $\delta\text{-expanded}$ Voronoi Cell

$$V_{\delta}(p) = \{ x \in \mathbb{R}^d : \|p - x\|^2 \le \|p' - x\|^2 + \delta^2, \forall p' \in P \}$$

- 本間 ト イヨト イヨト

Implications of approximating the upper envelope

with $v_{p'} = 2(p' - p)$ and $a_{p'} = ||p'||^2 - ||p||^2$.

Implications of approximating the upper envelope

Working with Expanded Voronoi Cells

- Macbeath regions w.r.t. expanded Voronoi cells
- Points from different cells ...

Lemma - Expansion-Containment

If $x, y \in \mathbb{R}^d$ such that $M^{\lambda}_{\delta}(x) \cap M^{\lambda}_{\delta}(y) \neq \emptyset$, then for any $\alpha \ge 0$ and $\beta = \frac{2+\alpha(1+\lambda)}{1-\lambda}$, $M^{\alpha\lambda}(y) \subseteq M^{2\beta\lambda}(x)$.

Working with Expanded Voronoi Cells

- Macbeath regions w.r.t. expanded Voronoi cells
- Points from different cells ...

Lemma - Expansion-Containment

If $x, y \in \mathbb{R}^d$ such that $M_{\delta}^{\lambda}(x) \cap M_{\delta}^{\lambda}(y) \neq \emptyset$, then for any $\alpha \ge 0$ and $\beta = \frac{2+\alpha(1+\lambda)}{1-\lambda}$, $M^{\alpha\lambda}(y) \subseteq M^{2\beta\lambda}(x)$.

Working with Expanded Voronoi Cells

- Macbeath regions w.r.t. expanded Voronoi cells
- Points from different cells ...

Lemma - Expansion-Containment

If $x, y \in \mathbb{R}^d$ such that $M_{\delta}^{\lambda}(x) \cap M_{\delta}^{\lambda}(y) \neq \emptyset$, then for any $\alpha \ge 0$ and $\beta = \frac{2+\alpha(1+\lambda)}{1-\lambda}$, $M^{\alpha\lambda}(y) \subseteq M^{2\beta\lambda}(x)$.

(r_{\min}, r_{\max}) -restricted ε -ANN queries:

- If $d(q, P) > r_{max} \Rightarrow \text{Outside}$
- If $d(q, P) \leq r_{min} \Rightarrow \text{Any } p' \text{ with } d(p', q) < r_{min}$
- Otherwise: return an ε -ANN for q

Layers

Setting
$$\gamma_0 = r_{min}$$
, $\gamma_i = 2^i \gamma_0$ and $\widehat{\gamma}_i = \min(\gamma_i, r_{max})$

$$L_i(P) = \{x \in \mathbb{R}^d : \operatorname{dist}(x, P) \le \widehat{\gamma}_{i+1}\}$$

(r_{\min}, r_{\max}) -restricted ε -ANN queries:

- If $d(q, P) > r_{max} \Rightarrow \text{Outside}$
- If $d(q, P) \leq r_{min} \Rightarrow \text{Any } p' \text{ with } d(p', q) < r_{min}$
- Otherwise: return an ε -ANN for q

Layers

Setting $\gamma_0 = r_{min}$, $\gamma_i = 2^i \gamma_0$ and $\widehat{\gamma}_i = \min(\gamma_i, r_{max})$

$$L_i(P) = \{x \in \mathbb{R}^d : \operatorname{dist}(x, P) \leq \widehat{\gamma}_{i+1}\}$$

Set
$$r_{\min} = \delta_{\min}/2$$
, $r_{\max} = \delta_{\max}/\varepsilon$ and $\Phi(P) = \delta_{\max}/\delta_{\min}$.

Theorem

Given an *n*-element point set $P \subset \mathbb{R}^d$ and $\varepsilon > 0$, there exists a DAG structure of height $\ell = O(\log \frac{\Phi(P)}{\varepsilon})$ that can answer ε -ANN queries in time $O(\ell)$ space $O(\ell n / \varepsilon^{(d-1)/2})$.

・ロト ・個ト ・ヨト ・ヨト

Remove $\Phi(P)$ using ideas from [Har-Peled (2001)].

Set
$$r_{\min} = \delta_{\min}/2$$
, $r_{\max} = \delta_{\max}/\varepsilon$ and $\Phi(P) = \delta_{\max}/\delta_{\min}$.

Theorem

Given an *n*-element point set $P \subset \mathbb{R}^d$ and $\varepsilon > 0$, there exists a DAG structure of height $\ell = O(\log \frac{\Phi(P)}{\varepsilon})$ that can answer ε -ANN queries in time $O(\ell)$ space $O(\ell n / \varepsilon^{(d-1)/2})$.

イロン イヨン イヨン イヨン

Remove $\Phi(P)$ using ideas from [Har-Peled (2001)].

Set
$$r_{\min} = \delta_{\min}/2$$
, $r_{\max} = \delta_{\max}/\varepsilon$ and $\Phi(P) = \delta_{\max}/\delta_{\min}$.

Theorem

Given an *n*-element point set $P \subset \mathbb{R}^d$ and $\varepsilon > 0$, there exists a DAG structure of height $\ell = O(\log \frac{\Phi(P)}{\varepsilon})$ that can answer ε -ANN queries in time $O(\ell)$ space $O(\ell n / \varepsilon^{(d-1)/2})$.

(4回) (4回) (4回)

Remove $\Phi(P)$ using ideas from [Har-Peled (2001)].

Conclusions

Concluding Remarks

- Much simpler and optimal solution to ε -APM queries:
 - Query time: $O(\log \frac{1}{\varepsilon})$
 - Storage: $O(1/\varepsilon^{(d-1)/2})$
- Much simpler data structure for ε -ANN queries
 - Extra log factor ..
- Goals
 - Match or improve upon state-of-the-art
 - Other metrics

Conclusions

Concluding Remarks

- Much simpler and optimal solution to ε -APM queries:
 - Query time: $O(\log \frac{1}{\varepsilon})$
 - Storage: $O(1/\varepsilon^{(d-1)/2})$
- Much simpler data structure for ε -ANN queries
 - Extra log factor ..
- Goals
 - Match or improve upon state-of-the-art
 - Other metrics

Thank you for your attention!