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Introduction

Proximity Searching: Applications

Proximity searching:

A set of related geometric retrieval problems that involve finding the objects
close to a given query object.

Pattern recognition and classification

Object recognition in images

Content-based retrieval:

Shape matching
Image/Document retrieval
Biometric identification (face/fingerprint/voice recognition)

Clustering and phylogeny

Data compression (vector quantization)

Physical simulation (collision detection and response)

Computer graphics: photon mapping and point-based modeling

. . . and many more
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Introduction

Nearest Neighbor Searching

Nearest Neighbor Searching

Preprocess a point set P ⊂ Rd , so that given any query point q ∈ Rd , can
efficiently find its closest point in P.

Assumptions:

Real d-dimensional space

Assume Euclidean distance

Dimension is a constant (e.g., d ≤ 20)
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Introduction

Nearest Neighbor Searching - Exact?

Ideal: O(n) space and O(log n) query time

Voronoi Diagrams

Subdivide space into regions according to
which point is closest

Apply point location to answer queries

In R2: O(n) space and O(log n) time

No good solutions higher dimensions

Curse of dimensionality
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Introduction

Nearest Neighbor Searching - Approximate ..

Approximate Nearest Neighbor (ANN)

Given a query point q, whose true nearest
neighbor is p∗, return any point p ∈ P, such
that

dist(q, p) ≤ (1 + ε) · dist(q, p∗)

q

p∗
p
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Introduction

Brief Survey

Logarithmic query times, exponential dependencies on d

Trees (e.g., k-d trees, BBD, AVD)
Grids (e.g., bucketing, shifted/rotated, DVD)
Algebraic (Chebyshev polymonials)

Sublinear query times, near-linear storage, polymonial dependencies on d

Locality-sensitive Hashing (LSH)

And many more

Neighborhood graphs
Spectral methods (PCA)
Dynamic Continuous Indexing (DCI)
Offline (e.g., one-shot, batch queries)
Other metric spaces (e.g., doubling-dimension, Bregman distances)
Other variants: moving points, uncertainty, ...
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Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

p∗

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction kd-Trees

ANN Search with kd-Trees

ANN Searching with kd-trees

Preprocessing: O(n log n) time, O(n)
space

Query Processing:

Locate the cell containing q
Establish initial search radius
Visit cells in increasing order of distance
Stop when: cell-dist > NN-dist/(1 + ε)

Query time: O(log n + (1/ε)d)

Works well in practice

q

Ahmed Abdelkader (UMCP) CATS@UMD 10/06/2017 7 / 34



Introduction AVDs

Approximate Voronoi Diagrams

Trade-offs: More space but lower query times?

Approximate Voronoi Diagram (AVD)

Quadtree subdivision into cells

Each cell stores a representative, r ∈ P,
such that r is an ε-ANN of any point q in
the cell

Har-Peled (2001):
Given a set of n points in Rd , ε-approximate
nearest neighbor queries can be answered in
space Õ(n/εd−1) and in time O(log(n/ε))
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Introduction AVDs

Space-Time Tradeoffs

Multi-Rep AVDs [Arya, Malamatos (2002)]

Quadtree subdivision into cells

Each cell stores up to t representatives,
{r1, . . . , rt} ∈ P

Given any point q in the cell, at least one
rep is an ε-ANN of q

Increase t ⇒ decrease space, increase
query time

Theoretical bounds are strong
[Arya, et al. 2009, 2017]

Storage can be prohibitive in practice

p1p2

reps = {p1, p2}
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ANN and Polytopes Lifting

ANN Searching and Polytope Approximation

Lifting and Distances

Project a point p vertically to p↑ on a
paraboloid Ψ

Let h be the tangent hyperplane at p↑

For any point q at distance δ from p, the
vertical distance between Ψ and h is δ2

Lifting and Voronoi Diagrams

Lift the points of P vertically to Ψ

Intersect their tangent upper halfspaces

The projected skeleton of the resulting
polytope is the Voronoi diagram of P

δ

δ2

p

p↑

h

Ψ

q
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ANN and Polytopes Lifting

ANN Searching and Polytope Approximation

Lifting and Voronoi Diagrams

Lift the points of P to Ψ, take the upper
envelope of the tangent hyperplanes, and
project the skeleton back onto the plane. The
result is the Voronoi diagram of P.

Intuition: Improved representations of
polytopes lead to improvements for ANN
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ANN and Polytopes Lifting

Polytope Membership Queries

Polytope Membership Queries

Given a polytope K in Rd , preprocess K to answer
membership queries:

Given a point q ∈ Rd , is q ∈ K?

Assumptions:

Dimension d is a constant

K given as intersection of n halfspaces

Dual: Halfspace emptiness searching [Matoušek (1992)]

d ≤ 3 ⇒ Space: O(n), Query time: O(log n)

d ≥ 4 ⇒ Space: O(nbd/2c), Query time: O(log n)

out
in
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ANN and Polytopes APM

Approximate Polytope Membership Queries

ε-APM Queries:

Given an approximation parameter ε > 0 (at
preprocessing time)

Assume the polytope scaled to unit diameter

If the query point’s distance from K :

0 ⇒ Inside
> ε⇒ Outside
Otherwise: Either answer is acceptable

Arya, da Fonesca, Mount [SODA 2017]

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε(d−1)/2) ← optimal

out
in

ε

?
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ANN and Polytopes APM

Polytope Approximation and Ray Shooting Queries

(b)(a)

K

O
q

p
K

O

1
2

γ
2

(c)

K

O

q

h

p

Ray shooting preliminaries
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ANN and Polytopes APM

Polytope Approximation and Ray Shooting Queries (2)

Data structure for APM based on ray shooting
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ANN and Polytopes APM

Polytope Approximation and Ray Shooting Queries (3)

h(p)

(a) (b)

E(R) ∩ F

f+

Ψ

F

+1

−1
f−

E(R)Ψ

p q

p↑

q↑

qp

Projective transformation for vertical ray shooting

p
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3

p0

2
5

2

1

4
3

p

8
3

−2
3

p0

2
5

2

1

2
3

4
3

T (E(R) ∩ F )

< 3 + d
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ANN and Polytopes APM

State-of-the-art in ANN

p1p2

reps = {p1, p2}

p
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T (E(R) ∩ F )

< 3 + d

Nearly two decades of work on this problem
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ANN and Polytopes APM

Skip this ad in 5 seconds

Matt Might, The Illustrated Guide to a Ph.D.
http://matt.might.net/articles/phd-school-in-pictures/
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Simple APM Intuition

Intuition - Quadtree Search

Quadtree-based query approach:

Preprocessing: Build a quadtree, subdividing
each node that cannot be resolved as being
inside or outside

Stop at diameter ε

Query: Find the leaf node containing q and
return its label

Analysis:

Query time: O(log 1
ε ) (Quadtree descent)

Storage: O(1/εd−1) (Number of leaves)
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Simple APM Intuition

Intuition - Hierarchy of Covers by Balls

Hierarchy of covering balls:

Preprocessing: Cover K by balls of diameter
1, 1

2 ,
1
4 , . . . , ε

DAG Structure: Each ball stores pointers to
overlapping balls at next level

Query: Find any ball at each level that
contains q. If none ⇒ “outside”.

Need only check O(1) balls that overlap
previous

Analysis:

Query: O(log 1
ε ) (Log depth, constant degree)

Storage: O(1/εd−1) (Number of leaves)

K
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Need only check O(1) balls that overlap
previous

Analysis:

Query: O(log 1
ε ) (Log depth, constant degree)

Storage: O(1/εd−1) (Number of leaves)

q

level i− 1

level i
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Simple APM Macbeath Regions

Macbeath Regions

Want cells that conform to K ’s shape

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s

reflection around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x
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Simple APM Macbeath Regions

Properties of Macbeath Regions

Properties:

Symmetry: Mλ(x) is convex and centrally
symmetric about x

Expansion-Containment: [Ewald et al (1970)]
If for λ < 1, Mλ(x) and Mλ(y) intersect,
then

Mλ(y) ⊆ Mcλ(x), where c =
3 + λ

1− λ.

Upshot: By expansion-containment, shrunken
Macbeath regions behave “like” Euclidean balls,
but they conform locally to K ’s boundary
... metric balls?

K

x

2x− K

MK(x)

M
1/2
K (x)
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Simple APM Macbeath Regions

Metric Spaces

Metric Space: A set X and distance measure f : X× X→ R that satisfies:

Nonnegativity: f (x , y) ≥ 0, and f (x , y) = 0 if and only if x = y

Symmetry: f (x , y) = f (y , x)

Triangle Inequality: f (x , z) ≤ f (x , y) + f (y , z)
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Simple APM Macbeath Regions

Macbeath Regions and the Hilbert Geometry

Hilbert Metric: Given x , y ∈ K , let x ′ and y ′ be
the intersection of ←→xy with ∂K . Define

fK (x , y) =
1

2
ln

(‖x ′ − y‖
‖x ′ − x‖

‖x − y ′‖
‖y − y ′‖

)
Hilbert Ball: BH(x , δ) = {y ∈ K : fK (x , y) ≤ δ}

[Vernicos and Walsh (2016)]

For all x ∈ K and 0 ≤ λ < 1:

BH

(
x ,

1

2
ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x ,

1

2
ln

1 + λ

1− λ

)

e.g. BH(x , 0.091) ⊆ M0.2(x) ⊆ BH(x , 0.203),∀x ∈ K .

K

x
y
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Simple APM Macbeath Regions

Macbeath Ellipsoids

Mλ(x)

x

Macbeath regions can be combinatorially
complex. Want a coarse approximation of
low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in
Rd , there exist ellipsoids E1,E2 such that
E1 ⊆ M ⊆ E2 and E2 is a

√
d-scaling of E1

Macbeath ellipsoid:

E (x): maximum volume ellipsoid in M(x)

Eλ(x): scaling by factor λ

Eλ(x) ⊆ Mλ(x) ⊆ Eλ
√
d(x)
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Simple APM Delone Sets

Delone Sets

A subset X ⊆ X is an:

ε-packing: If the balls of radius ε/2 centered
at every point of X are disjoint

ε-covering: If every point of X is within
distance ε of some point of X

(εp, εc)-Delone Set: If X is an εp-packing
and an εc -covering

We seek economical Delone sets for K , that fit
within K ’s δ-expansion for δ = 1, 1

2 ,
1
4 , . . . , ε
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Simple APM Delone Sets

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids:

For δ > 0, let Kδ be an expansion of K by
distance δ

Let λ0 be a small constant (1/(4
√
d + 1))

Let Xδ ⊂ K be a maximal set of points such
that Eλ0 (x) are disjoint for all x ∈ Xδ

Exp-containment ⇒ ⋃
x∈Xδ E

1
2 (x) cover K

Macbeath-Based Delone Set

Xδ is essentially a ( 1
2 , 2λ0)-Delone set for K

K
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Simple APM Data Structure for ε-APM

APM Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1
whose 1

2
-scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2
-scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

K
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Simple APM Data Structure for ε-APM

Analysis

Total Query time: O(log 1
ε )

Out-degree: O(1) (By expansion-containment)

Query time per level: O(1)

Number of levels: O(log 1
ε

) (From ε to O(1))

Total storage: O(1/ε(d−1)/2)

Economical cap cover [AFM (2016)]: Number of Macbeath regions
needed to cover Kδi is O(1/δ(d−1)/2)

Storage for bottom level: O(1/ε(d−1)/2)

Geometric progression shows that leaf level dominates
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New Data Structure for ANN Bypass Lifting

Bypassing the Lifting Transform

Implications of approximating the upper envelope

δ-expanded Voronoi Cell

Vδ(p) = {x ∈ Rd : ‖p−x‖2 ≤ ‖p′−x‖2+δ2,∀p′ ∈ P} p

p′

V (p)

Vδ(p)
px

Mδ(x)

M
1/2
δ (x)

(a) (b)

δ2

2‖p′−p‖

Vδ(p)
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⋂
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New Data Structure for ANN Bypass Lifting

Working with Expanded Voronoi Cells

Macbeath regions w.r.t. expanded Voronoi cells

Points from different cells ...

Lemma - Expansion-Containment

If x , y ∈ Rd such that Mλ
δ (x) ∩Mλ

δ (y) 6= ∅, then for

any α ≥ 0 and β = 2+α(1+λ)
1−λ , Mαλ(y) ⊆ M2βλ(x).
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New Data Structure for ANN Layering

New Data Structure for ANN

(rmin, rmax)-restricted ε-ANN queries:

If d(q,P) > rmax ⇒ Outside

If d(q,P) ≤ rmin ⇒ Any p′ with d(p′, q) < rmin

Otherwise: return an ε-ANN for q

Layers

Setting γ0 = rmin, γi = 2iγ0 and γ̂i = min(γi , rmax)

Li (P) = {x ∈ Rd : dist(x ,P) ≤ γ̂i+1}
(a)

Li(P )

(b)

x

E′δi(x)

p

V (p) Vδi(p)

γ̂i+1

Li−1(P )

γ̂i
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New Data Structure for ANN Layering

New Data Structure for ANN

Set rmin = δmin/2, rmax = δmax/ε and
Φ(P) = δmax/δmin.

Theorem

Given an n-element point set P ⊂ Rd and ε > 0,
there exists a DAG structure of height

` = O
(

log Φ(P)
ε

)
that can answer ε-ANN queries in

time O(`) space O(`n/ε(d−1)/2).

Remove Φ(P) using ideas from [Har-Peled (2001)].(a)

Li(P )

(b)

x
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Conclusions

Concluding Remarks

Much simpler and optimal solution to ε-APM queries:

Query time: O(log 1
ε

)

Storage: O(1/ε(d−1)/2)

Much simpler data structure for ε-ANN queries

Extra log factor ..

Goals

Match or improve upon state-of-the-art
Other metrics

Thank you for your attention!
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