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Preliminaries

Definition (α-Floodlight)

An α-floodlight at point p, with orientation θ, is the infinite wedge
W (p, α, θ) bounded between the two rays −→vl and −→vr starting at p with
angles θ ± α

2 . In a polygon P, a point q belongs to the α-floodlight if pq
lies entirely in both P and W (p, α, θ).

Problem (Polygon Illumination by α-Floodlights (PFIP))

Given a simple polygon P with n sides, a positive integer m and an
angular aperture α, determine if P can be illuminated by at most m
α-floodlights placed in its interior.
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Brief History

Problem (Art Gallery Problem)

Let P be a simple polygon without holes. Find the minimum subset S of
the vertices of P such that the interior of P is visible from S.

Decision version is NP-hard1.

APX-hard2.

O(log log OPT )-approximation3.

1Lee, D.-T. and Lin, A. K. (1986). Computational complexity of art gallery problems.
Information Theory, IEEE Transactions on, 32(2):276–282

2Eidenbenz, S., Stamm, C., and Widmayer, P. (2001). Inapproximability results for
guarding polygons and terrains.
Algorithmica, 31(1):79–113

3King, J. and Kirkpatrick, D. (2011). Improved approximation for guarding simple
galleries from the perimeter.
Discrete & Computational Geometry, 46(2):252–269
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Reduction from 3SAT [Eidenbenz et al.]
Big Picture

[Fig. 3 in Eidenbenz, ISAAC ’98]
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Reduction from 3SAT [Eidenbenz et al.]
Clauses & Literals

[Fig. 2 in Eidenbenz, ISAAC ’98]

Abdelkader∗, Saeed, Harras, Mohamed Illuminating Polygons by α-Floodlights CCCG, 2015 5 / 15



Reduction from 3SAT [Eidenbenz et al.]
Variables & Literals

[Fig. 4 in Eidenbenz, ISAAC ’98]
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Requirements on Guard Coverage?

x1 x2 x3

x1

[Fig. 3 in Eidenbenz, ISAAC ’98]
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Beam Machine
Culberson and Reckhow, FOCS’88 & JAlg’94

[Fig. 7 in Eidenbenz and Widmayer, SICOMP ’03]
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Beam Machine
Culberson and Reckhow, FOCS’88 & JAlg’94

[Fig. 9 in Eidenbenz and Widmayer, SICOMP ’03]
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Beam Machine
Bagga, Gewali and Glasser, CCCG’96

[Fig. 1 in Bagga, Gewali and Glasser, CCCG ’94]
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Beam Machine
Bagga, Gewali and Glasser, CCCG’96

[Fig. 5 in Bagga, Gewali and Glasser, CCCG ’94]
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Floodlight Gadget
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Floodlight Gadget
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New Beam Machine

Configuration Floodlight 
possible locations

Nozzle

Aux PFG 1Aux PFG 2
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New Beam Machine
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New Beam Machine

A

X

A`

B B`

D D`

E`E

Z Z`

C C`
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Beam Coupling
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New Clause Gadget

1

2
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New Variable Gadget

a b

a
b

Leftmost T literalLeftmost F literal

Rightmost 
T spike

Rightmost 
F spike

[Fig. 1 in Eidenbenz, ISAAC ’98]
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New Variable Gadget
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Hardness Results

Theorem

PFIP is NP-hard.

Theorem

FIP is NP-hard.
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APX-hardness
Gap Preserving Reductions (informal)

I

I’

S

S’

Reduction Transformation

(Approximation)
Algorithm
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APX-hardness
An APX Representative

Problem (5-OCC-MAX-3-SAT)

Given a boolean formula Φ in conjunctive normal form, with m clauses and
n variables, 3 literals at most per clause, and 5 literals at most per
variable, find an assignment of the variables that satisfies as many clauses
as possible.
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APX-hardness
Transformation Process

1

2

3

4

5

6

d1

d2

d3

BM21

BM22

7

8

9
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APX-hardness

Definition (Flushing Condition)

An α-floodlight is flush with the vertices of the polygon P if at least one
of −→vl or −→vr passes through some vertex of P, different from p, such that θ
is determined implicitly.
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APX-hardness
Inapproximability Results

Definition (Flushing Condition)

An α-floodlight is flush with the vertices of the polygon P if at least one
of −→vl or −→vr passes through some vertex of P, different from p, such that θ
is determined implicitly.

Theorem

R-PFIP is APX-hard.

Abdelkader∗, Saeed, Harras, Mohamed Illuminating Polygons by α-Floodlights CCCG, 2015 14 / 15



APX-hardness
Inapproximability Results

Definition (Flushing Condition)

An α-floodlight is flush with the vertices of the polygon P if at least one
of −→vl or −→vr passes through some vertex of P, different from p, such that θ
is determined implicitly.

Theorem

R-PFIP is APX-hard.

Theorem

R-FIP is APX-hard.

Abdelkader∗, Saeed, Harras, Mohamed Illuminating Polygons by α-Floodlights CCCG, 2015 14 / 15



Thank You

Questions?
akader@cs.umd.edu
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