The Inapproximability of Illuminating Polygons by α -Floodlights

A. Abdelkader¹ A. Saeed ² K. Harras ³ A. Mohamed ⁴

¹Department of Computer Science University of Maryland at College Park

²Department of Computer Science Georgia Institute of Technology

³Department of Computer Science Carnegie Mellon University

⁴Department of Computer Science and Engineering Qatar University

CCCG, 2015

Guarding

Illumination

< 一型

э

360°

 $0^{\circ} < \alpha < 360^{\circ}$

э CCCG, 2015 2 / 15

Illumination

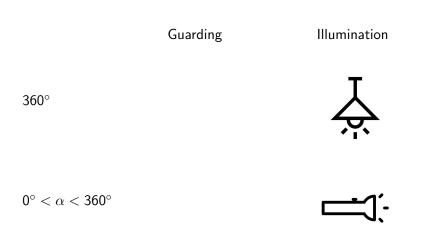
- 一司

< ∃ ►

 $0^{\circ} < \alpha < 360^{\circ}$

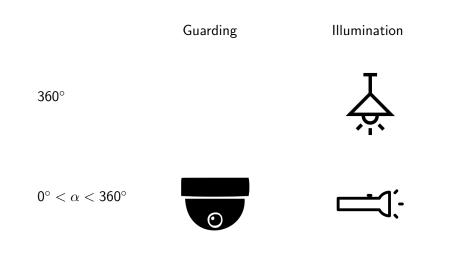
э CCCG, 2015 2 / 15

э

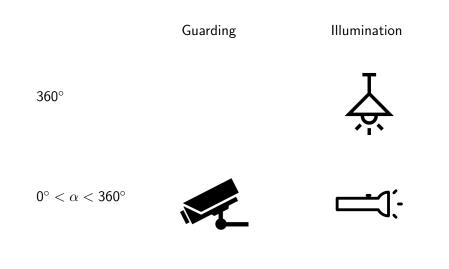


- 一司

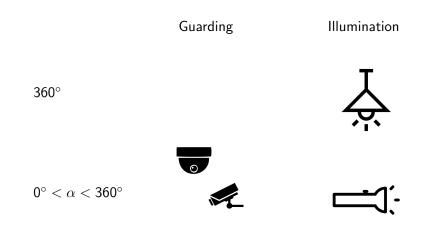
.



3 ×

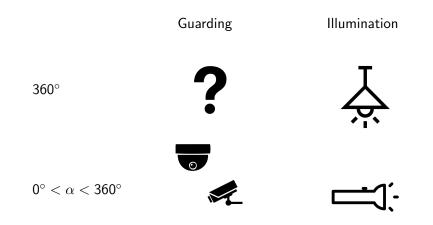


3 ×



- 一司

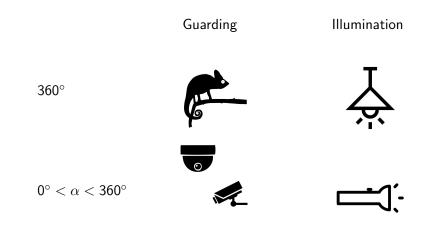
< ∃ ►



< ≣ > <

э

- 一司



< ≣ > <

э

- 一司

Definition (α -Floodlight)

An α -floodlight at point p, with orientation θ , is the infinite wedge $W(p, \alpha, \theta)$ bounded between the two rays $\overrightarrow{v_l}$ and $\overrightarrow{v_r}$ starting at p with angles $\theta \pm \frac{\alpha}{2}$. In a polygon P, a point q belongs to the α -floodlight if \overline{pq} lies entirely in both P and $W(p, \alpha, \theta)$.

Definition (α -Floodlight)

An α -floodlight at point p, with orientation θ , is the infinite wedge $W(p, \alpha, \theta)$ bounded between the two rays $\overrightarrow{v_l}$ and $\overrightarrow{v_r}$ starting at p with angles $\theta \pm \frac{\alpha}{2}$. In a polygon P, a point q belongs to the α -floodlight if \overline{pq} lies entirely in both P and $W(p, \alpha, \theta)$.

Problem (Polygon Illumination by α -Floodlights (PFIP))

Given a simple polygon P with n sides, a positive integer m and an angular aperture α , determine if P can be illuminated by at most m α -floodlights placed in its interior.

Problem (Art Gallery Problem)

Let P be a simple polygon without holes. Find the minimum subset S of the vertices of P such that the interior of P is visible from S.

¹Lee, D.-T. and Lin, A. K. (1986). Computational complexity of art gallery problems. Information Theory, IEEE Transactions on, 32(2):276–282

²Eidenbenz, S., Stamm, C., and Widmayer, P. (2001). Inapproximability results for guarding polygons and terrains. *Algorithmica*, 31(1):79–113

 3 King, J. and Kirkpatrick, D. (2011). Improved approximation for guarding simple galleries from the perimeter.

Discrete & Computational Geometry, 46(2):252–269

イロト イポト イヨト イヨト

Brief History

Problem (Art Gallery Problem)

Let P be a simple polygon without holes. Find the minimum subset S of the vertices of P such that the interior of P is visible from S.

• Decision version is NP-hard¹.

¹Lee, D.-T. and Lin, A. K. (1986). Computational complexity of art gallery problems. Information Theory, IEEE Transactions on, 32(2):276–282

²Eidenbenz, S., Stamm, C., and Widmayer, P. (2001). Inapproximability results for guarding polygons and terrains. *Algorithmica*, 31(1):79–113

 3 King, J. and Kirkpatrick, D. (2011). Improved approximation for guarding simple galleries from the perimeter.

Discrete & Computational Geometry, 46(2):252–269

Brief History

Problem (Art Gallery Problem)

Let P be a simple polygon without holes. Find the minimum subset S of the vertices of P such that the interior of P is visible from S.

• Decision version is NP-hard¹.

• APX-hard².

¹Lee, D.-T. and Lin, A. K. (1986). Computational complexity of art gallery problems. Information Theory, IEEE Transactions on, 32(2):276–282

²Eidenbenz, S., Stamm, C., and Widmayer, P. (2001). Inapproximability results for guarding polygons and terrains. *Algorithmica*, 31(1):79–113

 3 King, J. and Kirkpatrick, D. (2011). Improved approximation for guarding simple galleries from the perimeter.

Discrete & Computational Geometry, 46(2):252–269

イロト イポト イヨト イヨト

Problem (Art Gallery Problem)

Let P be a simple polygon without holes. Find the minimum subset S of the vertices of P such that the interior of P is visible from S.

- Decision version is NP-hard¹.
- APX-hard².
- $O(\log \log OPT)$ -approximation³.

¹Lee, D.-T. and Lin, A. K. (1986). Computational complexity of art gallery problems. *Information Theory, IEEE Transactions on*, 32(2):276–282

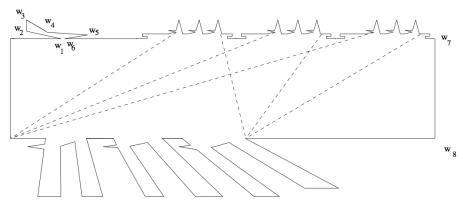
²Eidenbenz, S., Stamm, C., and Widmayer, P. (2001). Inapproximability results for guarding polygons and terrains. *Algorithmica*, 31(1):79–113

 3 King, J. and Kirkpatrick, D. (2011). Improved approximation for guarding simple galleries from the perimeter.

Discrete & Computational Geometry, 46(2):252–269

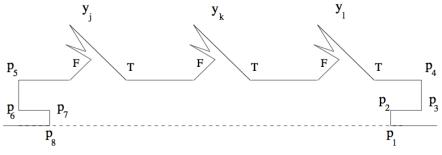
(日) (同) (日) (日) (日)

Reduction from 3SAT [Eidenbenz et al.] Big Picture



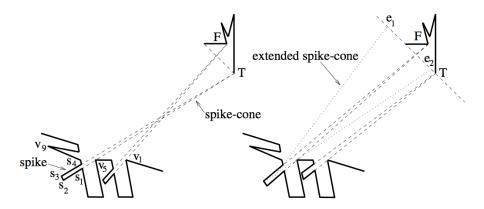
[Fig. 3 in Eidenbenz, ISAAC '98]

Reduction from 3SAT [Eidenbenz et al.] Clauses & Literals

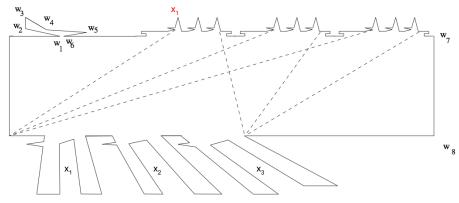


[Fig. 2 in Eidenbenz, ISAAC '98]

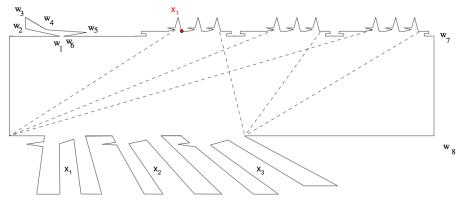
Reduction from 3SAT [Eidenbenz et al.] Variables & Literals



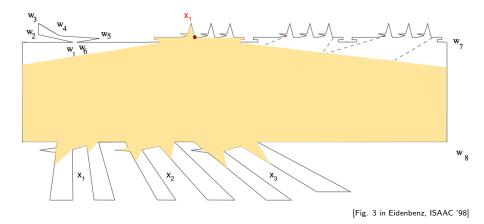
[Fig. 4 in Eidenbenz, ISAAC '98]

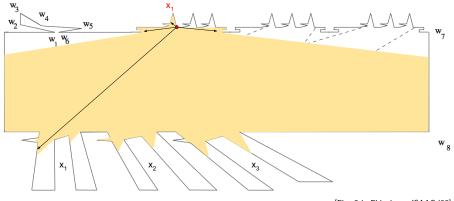


[Fig. 3 in Eidenbenz, ISAAC '98]

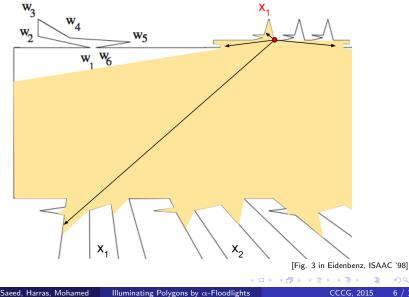


[Fig. 3 in Eidenbenz, ISAAC '98]

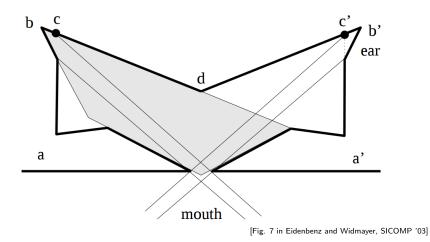




[Fig. 3 in Eidenbenz, ISAAC '98]



Beam Machine Culberson and Reckhow, FOCS'88 & JAlg'94

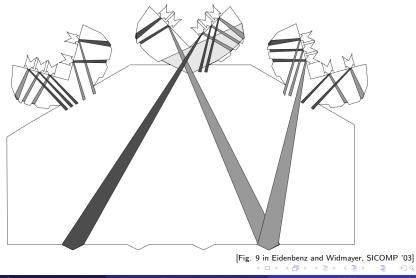


CCCG, 2015 7 / 15

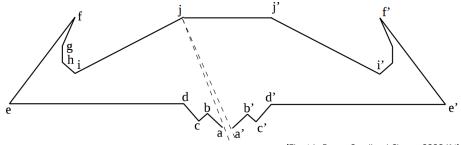
→ Ξ →

э

Beam Machine Culberson and Reckhow, FOCS'88 & JAlg'94

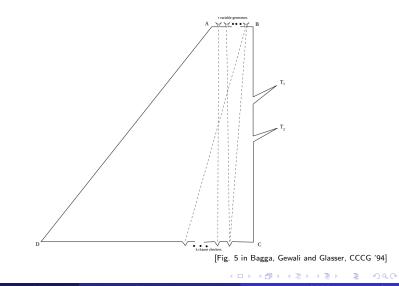


Beam Machine Bagga, Gewali and Glasser, CCCG'96

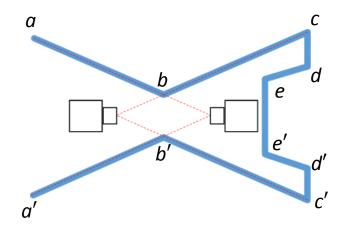


[Fig. 1 in Bagga, Gewali and Glasser, CCCG '94]

Beam Machine Bagga, Gewali and Glasser, CCCG'96



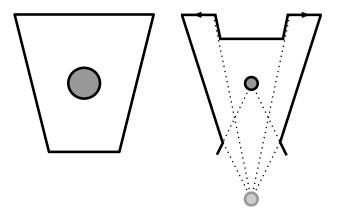
Floodlight Gadget



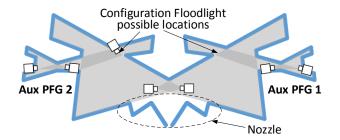
CCCG, 2015 8 / 15

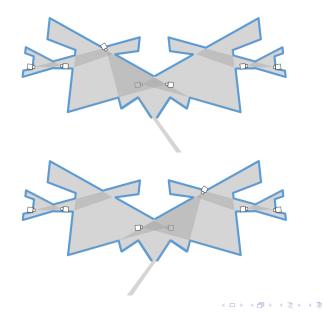
.∃ >

Floodlight Gadget

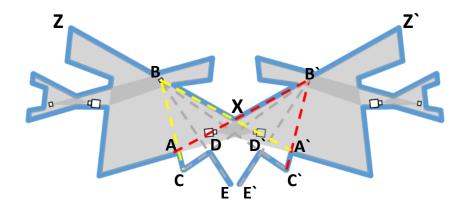


▶ < 重 ト 重 少 Q @ CCCG, 2015 8 / 15



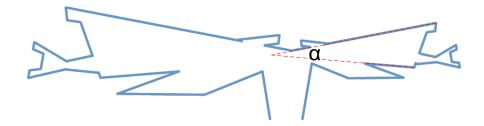


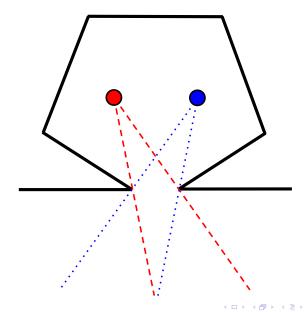
▶ < ≣ ▶ ≣ ∽ ९. CCCG, 2015 9 / 15



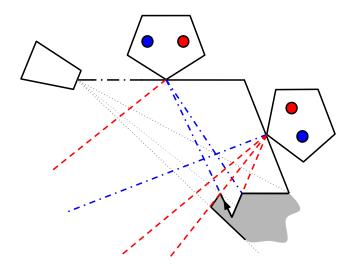
CCCG, 2015 9 / 15

• • = • •

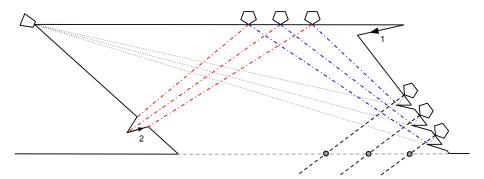




Beam Coupling



New Clause Gadget

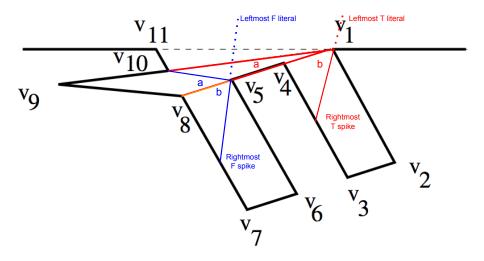


Abdelkader^{*}, Saeed, Harras, Mohamed Illuminating Polygons by α -Floodlights

▶ < 불 ▷ 불 · ○ < ○ CCCG, 2015 11 / 15

<ロト </p>

New Variable Gadget



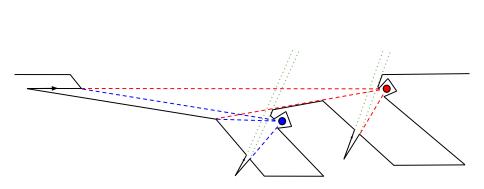
[Fig. 1 in Eidenbenz, ISAAC '98]

∃ →

• • • • • • • • • • • •

3 CCCG, 2015 12 / 15

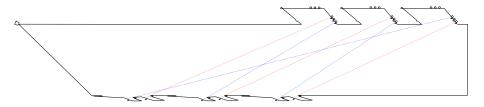
New Variable Gadget



Abdelkader^{*}, Saeed, Harras, Mohamed Illuminating Polygons by α -Floodlights

CCCG, 2015 12 / 15

Hardness Results



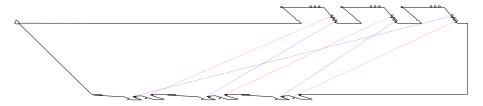
э CCCG, 2015 13 / 15

э

◆ □ ▶ ◆ 🗇

A E A

Hardness Results

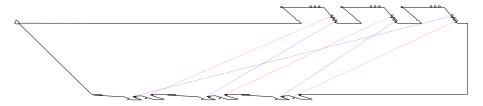


Theorem

PFIP is NP-hard.

< ≣ >

Hardness Results



Theorem

PFIP is NP-hard.

Theorem

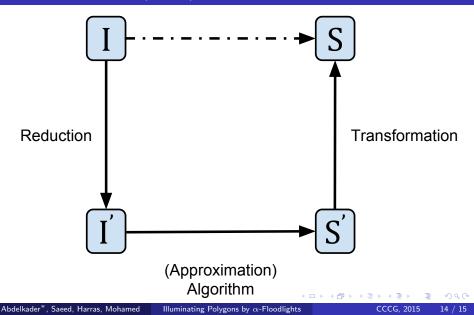
FIP is NP-hard.

Abdelkader^{*}, Saeed, Harras, Mohamed Illuminating Polygons by α -Floodlights

< ∃ >

APX-hardness

Gap Preserving Reductions (informal)

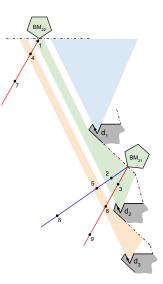


Problem (5-OCC-MAX-3-SAT)

Given a boolean formula Φ in conjunctive normal form, with m clauses and n variables, 3 literals at most per clause, and 5 literals at most per variable, find an assignment of the variables that satisfies as many clauses as possible.

APX-hardness

Transformation Process



<ロ> (日) (日) (日) (日) (日)

Definition (Flushing Condition)

An α -floodlight is *flush with the vertices of the polygon* P if at least one of $\overrightarrow{v_l}$ or $\overrightarrow{v_r}$ passes through some vertex of P, different from p, such that θ is determined implicitly.

Definition (Flushing Condition)

An α -floodlight is *flush with the vertices of the polygon* P if at least one of $\overrightarrow{v_l}$ or $\overrightarrow{v_r}$ passes through some vertex of P, different from p, such that θ is determined implicitly.

Theorem

R-PFIP is APX-hard.

Definition (Flushing Condition)

An α -floodlight is *flush with the vertices of the polygon* P if at least one of $\overrightarrow{v_l}$ or $\overrightarrow{v_r}$ passes through some vertex of P, different from p, such that θ is determined implicitly.

Theorem

R-PFIP is APX-hard.

Theorem

R-FIP is APX-hard.

Questions?

akader@cs.umd.edu

▶ < 불 ▷ 불 ∽ < < CCCG, 2015 15 / 15