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Abstract

We develop a mesh simplification strategy that pre-
serves angle bounds. Preliminary results for a sample of
planar Delaunay meshes are then presented. We demon-
strate significant improvements of Triangle output, in
terms of the number of Steiner points needed for a re-
quired angle bound, specially for large bounds where
Triangle is known to possibly perform poorly.

1 Introduction

Given an input Delaunay mesh, one goal of many mesh
improvement algorithms is to reduce the number of
points while preserving angle bounds, e.g., [1]. In
this paper, we develop a sampling-based technique that
achieves this goal by replacing a pair of neighboring
points with one point. We introduce a set of constraints
for the location of the new point based on the desired
minimum angle and compute an explicit representation
of the solution region, which we then sample from to
find the replacement point, as shown in Figure 1. This
strategy generalizes edge collapse, as it possibly com-
bines edge swaps to update the mesh after replacement.

The simplification concept we adopt is called sifting
and was first presented in [2]. While in this paper we
deal with arbitrary Delaunay meshes, e.g., output of
Delaunay Refinement (DR) [3], the study in [2] focused
mainly on explicit sizing functions and used constraints
based on separation of points and maximal coverage of
the domain. Thanks to the angle bounds, the number of
constraints is bounded by a constant and all updates are
local. With the sampling region defined, a replacement
sample can be found in constant time [4]. In the same
spirit, we call our method Delaunay Sifting (DS).

We develop the sift algorithm in Section 2. Then,
in Section 3, we show improvement of several Delaunay
meshes generated by Triangle [3]. Finally, we conclude
and highlight ongoing work in Section 4.

2 The Delaunay Sifting Algorithm

We define the sampling region as the set of valid re-
placement points that preserve the minimum angle con-
straints. We denote the minimum angle by α.
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Figure 1: Sifting example (orange: candidate, purple:
neighbors, green: sampling region, blue: replacement
point, dashed lines: retriangulation, other: constraints).

Given an edge, removing all edges incident on its two
end points creates a gap in the mesh. The gap is a
polygonal region that can be partitioned into triangles
by connecting all vertices on the boundary to the re-
placement of the removed pair of points. Shrinking the
gap, by creating ear triangles when possible, can also
help make sifting possible. Below, we list the constraints
that limit the location of valid replacement points.

2.1 Constraint(1) - Neighboring Circumcircles

Neighboring triangular faces surrounding the gap each
gives rise to a circumcircle. By definition of the Delau-
nay triangulation, such circumcircles should be empty.

2.2 Constraint(2) - No Thin Triangles

If we think of any given gap edge as the base of a new
triangle and the sample as its apex, then we need to
enforce the lower bound for both the apex angle and
base angles. For the apex angle, we can simply require
the sample point to fall within a circle having the edge
as a chord with a central angle of 2α. As for the base
angles, the sample point has to fall in the intersection
of two half-planes, each making an angle of α with the
base.

2.3 Constraint(3) - Boundary Segments

If the candidate edge is incident on a boundary segment,
sifting must ensure the boundary face remains the same.
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If only one end of the edge is a boundary vertex, it
cannot be a corner on the boundary. If the edge as a
whole is a boundary segment, it must be on a larger
segment with boundary neighbors on both sides. In
both cases, the new sample will be constrained to lie on
the larger boundary segment.

2.4 Putting It All Together

Applying all constraints simultaneously to all gap edges,
we compute the desired sampling region, as in Figure
1. We further classify these constraints into two types:
inclusive and exclusive constraints. From 2.1, we get a
set of exclusive circles and from 2.2 and 2.3, we get two
inclusive sets of arc-gons and possibly a line segment.
This reduces to a set of boolean conditions that can be
easily checked to test any candidate replacement point.

3 Implementation and Results

We opt for a maximal random sifting strategy and ap-
ply the DS operation in a uniformly random manner.
At each iteration, we generate a random permutation of
edges and attempt to sift them in that order. Whenever
sifting is successful, we start a new iteration. Otherwise,
no more sifting is possible. Other execution strategies
can be considered as future work, e.g., smallest-angles
first. Random order allows us to explore different evolu-
tion paths in our experiments, as we seek the minimum
possible number of points, and it also has proven ad-
vantages, from an efficiency standpoint. In addition,
choosing replacement points randomly preserves desir-
able spectral properties of the mesh, e.g., blue noise.

In Figure 2, we show a sample of results for our exper-
iments with planar meshes. For each model, we show
the input domain, the output of triangle -q351 and
the sifted mesh. For each mesh, we indicate the num-
ber of sample points and the sifting ratio achieved. The
sifting ratio is defined as the ratio between the reduced
number of points and the original number of points. Ta-
ble 1 shows a summary of more settings.

4 Conclusions and Future Work

Our current implementation can perform a few thou-
sand DS attempts per second. The total number of at-
tempts for a given mesh was observed to be linear in the
number of edges. Equivalently, it is linear in the number
of vertices when taking into account the minimum angle
constraints, which bound the degree of vertex connectiv-
ity. A slight decrease in the median of angles was also
observed. Currently, we are working on extensions to
curved surfaces and the derivation of analytical models
of both improvement and convergence.

1Generate a Delaunay mesh with angles no less than 35 ◦.

./triangle -q 20 30 35
B5 71 139 17% 197 29% 326 43%
Spiky 229 330 54% 505 59% 715 56%
Dolphin 260 471 31% 865 49% 3409 78%

Table 1: Size of Triangle outputs and achievable sifting.

(a) B5 (71) (b) Triangle (326) (c) Sifted (43%)

(d) Spiky (229) (e) Triangle (715) (f) Sifted (56%)

(g) Dolphin (260) (h) Triangle (3409) (i) Sifted (78%)

Figure 2: Model, triangle -q35 and sifted meshes.
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