

Steiner Point Reduction in Planar Delaunay Meshes

Ahmed Abdelkader^{*}, Scott A. Mitchell[†], Mohamed S. Ebeida[†] ^{*} Department of Computer Science, University of Maryland [†] Sandia National Laboratories

Outline

- Background
- Motivation
- Proposed Method
- Sample Results
- Discussion
- Extras

Background: Delaunay Triangulation

- Empty circumcircles
- Maximizes minimum angle
- Unique if points in general position

(Left) A Deluanay Triangulation. (Right) Corresponding Voronoi Diagram (constant weighted dual). [Source: Wikipedia]

Background: Constrained DT

- Empty circumcircles (Not *true* Delaunay)
- Fewer elements
- Better bounds (min. angles + grading)

(Left) A Deluanay Triangulation with empty circumcircles. (Right) Circumcircle of t_i contains point p, which is not to the interior of t_i . [Source: Wikipedia (left), Chrisochoides et al.(right)]

Background: Meshing Algorithms

- Input: (P, [S]), α. Output: good [conformal] Delaunay complex.
- Ruppert's Delaunay Refinement Algorithm (DR) [1]
 - " ... perhaps the first theoretically guaranteed meshing algorithm to be truly satisfactory in practice" [2].
 - Halts for an angle constraint of up to 20.7° [1], 26.45° [3].
- Chew's Second Algorithm [4]
 - Terminates with minimum angle up to 26.57° [2], 28.6° [5].

[1] Ruppert. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. J. of Alg., 1995.
[2] Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl., 2002.
[3] Miller, Pav, and Walkington. When and why Delaunay refinement algorithms work. Int. J. Comp. Geom. Appl., 2005.
[4] Chew. Guaranteed-quality mesh generation for curved surfaces. Symp. Comput. Geom., 1993.
[5] Rand, Where and How Chew's Second Delaunay Refinement Algorithm Works, Canad. Conf. Comp. Geom., 2011.

Background: Why Triangulate?

- Complicated object -> collection of simple objects
- Interpolation
 - Graphics rendering
- Finite element analysis
 - Convergence and accuracy
 - Condition number of the linear system

Motivation

- Reduce mesh size (number of points)
- Retain angle bounds
- Preserve all features

Proposed Method: Sifting

- 1. Replace an edge (2 points) with 1 point
- 2. Constrain the region of valid replacement points
- 3. Sample uniformly from this region
- 4. Repeat until no more sifting is possible

Constraint #1: Neighboring Circumcircles

Constraint #2: No Thin Triangles

Constraint #2: No Thin Triangles (Cont.)

Examples

Constraint #3: Boundary Segments

Quantitative Results

./triangle -q		20		30		35	
B5	71	139	17%	197	29%	326	43%
Spiky	229	330	54%	505	59%	715	56%
Dolphin	260	471	31%	865	49%	3409	78%

model_name | #input points | (#Triangle's output size, reduction ratio)

Sensational Results: B5 Model

Sensational Results: Spiky Model

Sensational Results: Dolphin Model

(g) Dolphin (260) (h) Triangle (3409) (i) Sifted (78%)

Discussion

- Sifting order
 - Edges chosen at random
- Random Sampling
 - Replacement points chosen at random (from region)

• Runtime

- Expected number of "sifting attempts" per edge
- Quantify improvement?

Questions?

Thank You!

akader@cs.umd.edu

Extra Slide #1: Adaptive Local Max.

Varying the angle bound used. Left to right: 20, 30, 40, 50.

Extra Slide #2: Surface Teaser

~1: Neighboring Circumspheres

~2: No Thin Triangular Faces

Steiner Point Reduction in Planar Delaunay Meshes

Ahmed Abdelkader^{*}, Scott A. Mitchell[†], Mohamed S. Ebeida[†] ^{*} Department of Computer Science, University of Maryland [†] Sandia National Laboratories

- Goal: reduce the number of points while retaining the angle bounds.
- Local update strategy (Sifting)
 - Remove 2 points
 - Constrain sampling region
 - Neighbor Circumcircles
 - Angle bounds
 - Pick a replacement point

• Example: 78% reduction

Input Model

Triangle Mesh

Sifted Mesh