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Abstract

2048 is a single-player online puzzle game that went
viral in March 2014. The game is played on a 4 × 4
board by sliding around and merging equal valued tiles
to create tiles of higher value. The player wins by cre-
ating the 2048 valued tile, hence the name. We study
the complexity of a slightly adapted version and prove
that a number of natural decision problems turn out to
be NP-Complete. We reduce from 3SAT and implement
our reduction as an online game.

1 Introduction

Each turn, the player picks a move from {←,→, ↑, ↓} to
slide all tiles on the board. Tiles slide as far as possible
in the chosen direction until they hit either another tile
or an edge of the board. When a sliding tile runs into
a stationary one of equal value, they merge into a tile
of double that value. Trailing tiles following a tile that
just merged continue to slide uninterrupted and may
merge among themselves as they come to rest one after
the other. However, newly merged tiles cannot merge
further in the same move. After each move, a 2 or 4
tile is generated in one of the empty cells. The player
wins when a 2048 tile is created, hence the name of the
game. Otherwise, the player loses when the board is full
and no merges can be performed.

2048 combines features from two families of games:
Candy Crush Saga [1] and PushPush [2]. A more de-
tailed draft of this work appears in [3], where we also
discuss the attempt in [4]. The interactive gadgets and
playable reduction can be accessed at [5].

1.1 Adaptations and Problem Definition

We adapt the original 2048 as follows: (1) The input
encodes the complete board configuration and no new
tiles are generated. (2) The board is a rectangular grid
of arbitrary size. In this paper, we are primarily con-
cerned with the following decision problem:

Definition 1 (2048-GAME) Given a configuration of
tiles on an m×n board, is it possible to obtain a tile of
value 2048? (More generally, 2k with k ≥ 8.)
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[6] presented a proof of membership in NP , that ap-
plies to 2048-GAME. The crucial piece is to bound the
number of moves between two consecutive merges. Us-
ing a canonical orientation, all moves are interpreted as
flips of the board, which send tiles along orbits of O(mn)
length. A pair of tiles that end up merging requires no
more than LCM(O(mn), O(mn)) = O(m2n2) moves.

In this paper, we prove NP-hardness by a reduction
from 3SAT and obtain the main result.

Theorem 1 2048-GAME is NP-Complete.

2 Reduction from 3SAT

Given an instance of 3SAT with n variables and m
clauses, we produce an instance of 2048-GAME. The
board is filled using a 2-4 lattice to provide a rigid base
for placing gadgets and planning their movements. We
allow no merges using lattice tiles, which requires pre-
serving their parity. This confines all merges to multi-
ples of 2× 2 blocks. We use row and column to denote
a 2-row and a 2-column, respectively.

Displacers: These are the building blocks of all gad-
gets which allow us to communicate signals across the
board. They come in two main forms: horizontal D and
vertical DT . Typically, a displacer starts in an inactive
state where the middle 2×2 block, highlighted below, is
shifted perpendicularly to the displacer’s direction. An
inactive displacer cannot merge, by any move sequence,
before it is activated. The only way to activate it is
to use another properly aligned displacer to engage its
middle block. Collapsing tiles in a displacer shrinks it
to a 2×2 block, which results in a parity-preserving pull
in a row or a column.

D =

[
8 8 16 16
32 32 64 64

]
Variable Gadget: Each variable is represented by

two horizontal displacers on the same row. This enables
variables to move the portion of its row between their
two displacers to the right or left. We enforce the as-
signment of variables in the order of their indices. A
variable is assigned T or F using a → or ← move, re-
spectively. The displacers of x1 come activated in the
initial configuration to allow the game to start. No mat-
ter how variable xi is assigned, the connector displacers
in its row get activated and allow xi+1 on top of it to
be activated by a ↓ move in the following turn.
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Figure 1: Annotated reduction. Only x0 is active. We apply log2 and hide paddings to help display a large board.

Clause Gadget: Literals are encoded using a similar
mechanism to the connectors in the variable gadget. but
are only activated by the appropriate assignment. When
a literal is activated, it allows a ↓ pull in the clause’s
column to effectively satisfy this clause. Each satisfied
clause eventually contributes one horizontal displacer by
providing its middle block.

Key-Lock Gadget: To check that all clauses are sat-
isfied, it helps to arrange for a special event to happen
only after all variables have been assigned. To achieve
this, an auxiliary variable xaux = xn+1 activates the
lock portion of this gadget. Satisfying all clauses corre-
sponds to using the correct key. Together, the activated
key-lock gadget is a sequence of displacers that can acti-
vate a unique displacer with two 1024 tiles. Collapsing
that unique displacer creates the desired 2048 tile.

2.1 Properties of the Reduction

Size: As variables are stacked on top of each other all
the way up to xaux and the key-lock gadget, the number
of rows is O(n). Then, each variable has to activate the
connectors to the next variable. We get a pyramid shape
with variable displacers on both sides and literals in the
middle, plus the unique displacer taking up 2(m + 1)
columns far to the right, for a total of O(m+n) columns.

Gaps and Padding: A gap is created iff two tiles
merge. The construction guarantees that gaps are only
created near the edges of the board and accumulate at
the corners. To make sure such gaps do not result in
undesired shifts within the core, it has to be surrounded
by enough padding. As the number of active gadgets
is O(m + n) and each gadget contributes a constant
number of gaps, a padding of O(m+n) thickness suffices.

Game Play: When no merges happen, two consec-
utive moves in opposite directions leave the board un-
changed e.g. [←,→,←] is effectively reduced to [←].
Effective moves alternate between horizontal and verti-
cal. The alternation accumulates newly created gaps,
resulting from the merge, at the corners so the decision
encoded by the previous move cannot be altered. Fur-
thermore, any row or column may witness merges during
at most one turn. In particular, clause columns cannot
experience more than one ↓ pull. This implies consis-
tent assignments. Finally, ↑moves are useless since they
must be canceled or otherwise the player cannot win.

Hardness: Aligning the two 1024 tiles requires a 2m
shift, which only satisfied clauses can provide with each
satisfied clause contributing 2. Hence, the 2048 tile can
be created iff the 3SAT instance is satisfiable.

References
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