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Abstract

Topological descriptors such as the generators of homol-
ogy groups are very useful in the analysis of complex
data sets. It is often desired to find the smallest such
generators to help localize the interesting features. One
interpretation of localization utilizes a covering of the
underlying space and computes generators contained
within these covers. A similar construction was later
used to compute persistence homology for smaller sub-
sets in parallel before gluing the results. In this pre-
sentation, we describe a more efficient version of this
construction and discuss how it can be used to find gen-
erators within a large class of subspaces.

1 Introduction

Persistent Homology is a crucial device in computa-
tional topology and finds wide application in data anal-
ysis and as a core component of a variety of algorithms.
Although the formalism of homology provides efficient
means to detect the existence of topological features,
it cannot directly locate them within the space. This
is often required to reason about the embedding of the
data set in the measurement space and to allow further
processing, e.g., cleaning up noises introduced in data
collection or detecting holes in sensor networks.

One approach to locating topological features is to
find the smallest generator for a given homology group
[3]. Another approach is localized homology [6], which
utilizes a covering of the space and computes homology
bases compatible with the bases of the local pieces de-
fined by the cover. However, choosing an appropriate
cover was left to the domain expert.

The idea of computing homology through a cover was
later reused to devise a parallel algorithm based on a
hierarchical decomposition of the domain [4]. The al-
gorithm performs reduction on local pieces in parallel
before gluing the results, which is inherently expensive.
Potentially better ways to go about gluing are provided
by spectral sequences [2, 5].

In this presentation, we take a different look at ho-
mology localization utilizing the model of computation
developed for the parallel setting. Using a hierarchi-
cal space decomposition, we aim to quickly report the
topological descriptors within nearly arbitrary covers by
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gluing partial precomputed results. Motivated by recent
developments in approximate range queries [1] we antic-
ipate similar notions in topological data analysis.

We start by revisiting the construction used in [4] to
enable finer decompositions of the domain as required
for range queries. Then, we discuss the anticipated no-
tion of topological range queries and their applications.

2 Preliminaries

A topological space X may be represented by a sim-
plicial complex K. A filtration is a nested sequence
of simplicial complexes K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.
Given a set of subcomplexes as a cover C = {Ki}i∈I ,
with K = ∪ C, the Mayer-Vietoris Blowup Complex
KC ⊆ K × I is defined as:

KC = ∪J⊆I ∪σ∈KJ σ × J, where KJ = ∩j∈JKj . (1)

Intuitively, the blowup complex creates one copy of
each simplex σ ∈ K for each of the covers containing
it. This allows each cover to be processed indepen-
dently. The blowup complex also includes additional
copies of simplices where each subset of covers overlap.
This marks the locations where these covers should be
glued together to recover the original space.

Formally, the projection π : KC → K takes an ele-
ment of the blowup to its first factor and induces a map
on homology π∗ : H(KC)→ H(K). As π is a homotopy
equivalence [6], π∗ is an isomorphism. Then, by the Per-
sistence Equivalence Theorem, the persistent homology
of K can be computed from KC [4].

3 The Hierarchical Blowup Complex

We start by formalizing the notion of the blowup com-
plex for a hierarchical cover as introduced in [4].

Definition 1 A Hierarchical Cover of height h is a sys-
tem of covers H = {Ci}i∈[h], with H = ∪ Ci ∀i, such

that ∀ ciα ∈ Ci, there is a unique j-parent, cjpj(α) ∈ Cj ,
∀j ∈ [i], satisfying ciα ⊆ c

j
pj(α)

, where pi(c
i
α) = ciα.

Consider a simplex σ ∈ K lying in the intersection
of two subcovers at the lowest level, i.e., σ ∈ chx ∩ chy
for x 6= y. We track σ through the hierarchy until it
possibly falls into a single subcover at a higher level.
Note that σ ∈ ci+1

α =⇒ σ ∈ cipi(α).
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Define the set of all levels where σ falls into a pairwise
intersection as λ = {j ∈ [h] | pj(x) 6= pj(y)}. It follows
that σ is contained in the intersection of h + |λ| cov-
ers. Letting Fh = ∪i∈[h]Ci, it follows from the product
formula of the blowup complex that KFh will generate
2h+|λ| − 1 copies of σ. Although the cover sets form
a hierarchy, they are distinct sets and KFh as defined
in [4] does not seem to exploit their nesting structure.
This makes it infeasible to work with deeper hierarchies
where h grows as a function of |K| as |KFh | = O(2h)|K|.

To remedy this, we propose a recursive construction.
Given a hierarchical cover H, we lift each level of the
hierarchy to a decomposition of the blowup complex at
the above level. We denote the lifted cover Ci as Ĉi.

Definition 2 Given a hierarchical cover H = {Ci}i∈[h],
the Hierarchical Blowup Complex {KHi}i∈[h] is defined
recursively as KH1 = KC1 and

KHi+1 = KHi
Ĉi+1

. (2)

Definition 3 A lifted cover Ĉi = {ĉi+1
α | ci+1

α ∈ Ci}
where ĉ1α = c1α and

ĉi+1
α = {(σ, J1, . . . , Ji) ∈ KHi | σ ∈ ci+1

α ∧ pi(α) ∈ Ji}.

Now, for σ ∈ chx ∩ chy and i = minλ, KHi generates

{(σ̂i−1, pi(x)), (σ̂i−1, pi(y)), (σ̂i−1, {pi(x), pi(y)})},

where σ̂i−1 is the lifted copy of σ in the common parent
ĉi−1pi−1(x)

. Further decomposing at level j > i ∈ λ, lifted

simplices with only pj−1(x) or pj−1(y) get one new copy
while mixed simplices again get three. Letting s(j) be
the number of copies of σ at level j, we get s(i) = 3
and s(j) = s(j − 1) + 2 for j > i. Summing over all
levels, KHh will only create h + O(|λ|2) copies of σ. If
H only has pairwise intersections at any level, |KHh | =
O(h2)|K|. For typical decompositions h = O(log |K|)
and we get only a polylogarithmic expansion.

Finally, we define the projections π1 : KH1 → K and
πi : KHi+1 → KHi . Again, these maps are homotopy
equivalences [6] and it follows that the induced maps on
the homology of the hierarchical blowup complex are
isomorphisms. We get the following:

Theorem 1 A filtration K1 ⊆ · · · ⊆ Ki ⊆ · · · ⊆ K
induces filtrations of all levels of a hierarchical blowup

complex K
Hj

1 ⊆ · · · ⊆ K
Hj

i ⊆ · · · ⊆ KHj . Passing to
homology, we get a sequence of homology groups con-
nected by isomorphisms at each level. By the Persis-
tence Equivalence Theorem, the persistence pairs in all
levels are the same.

H(K1) . . . H(Ki) . . . H(Kn)

H(KH1
1 ) . . . H(KH1

i ) . . . H(KH1
n )

H(KH2
1 ) . . . H(KH2

i ) . . . H(KH2
n )

π∗1,1 π∗1,i π∗1,n

π∗2,1 π∗2,i π∗2,n

In this example, for a filtration with a 2-level blowup
complex, the diagram commutes. Specifically, the per-
sistence pairs of Cj encoded into KHj may be computed
by gluing the results for subcovers at any level.

4 Topological Range Queries

We envision queries of the form (Qr, α, ε), where Qr is
a parameterized range and α is a filtration parameter.
For example, given a set of points P ⊂ Rd the query
can be defined over an implicit Vietoris-Rips Complex
Rα(P ∩ Qr), with approximations of both Qr and Rα
within ε. The query can then ask for the Betti numbers
at a given (r, α) or possibly the persistence barcodes for
a range of parameter settings, e.g., [r0, r1] or [α0, α1].

In Rd, ranges are often simple geometric primitives,
e.g., hyperrectangles and hyperspheres. To support a
larger class of embeddings, it would be interesting to
define corresponding notions of ranges in more general
metric spaces, for which a variety of algorithmic results
in the Euclidean setting were adapted. Another direc-
tion is to consider ranges defined directly on the com-
plex, e.g., geodesic balls, utilizing tools from graph the-
ory like recursive separators.
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