

Ahmed Abdelkader

Department of Computer Science, University of Maryland at College Park

Introduction

Visibility-based pursuit-evasion: ▷ Motion: holonomic, max speed per player ▷ Visibility: omnidirectional, optional range ▷ Traditionally, the game ends when the pursuer loses sight of the evader. Applications: ▷ Surveillance, monitoring, FPS and racing games, etc.

Discretization and Strategy Matrix

► Represent the map as a grid of pixels (white: clear, black: obstacle).

- ► Assume the players take turns, with the evader moving first.
- For each pair of positions (p, e), S[p, e] = 1 iff the evader can win.
- Easily accommodates different motion and sensing models.
- ► Solve for the optimal strategy by backward induction.
- $\triangleright \mathcal{N}(x)$ denotes the neighboring locations player x can reach in 1 turn.

The Classical (Primal) Game

- ► Is it possible to keep the evader in sight? How?
- ► Initialize with visibility queries then solve the recurrence:

$$S[p, e, i] = \begin{cases} \neg v(p, e) & \text{if } i \\ \bigvee & \bigwedge \\ e' \in \mathcal{N}(e) \ p' \in \mathcal{N}(p) \end{cases} S[p', e', i - 1] & \text{othe} \end{cases}$$

The Visibility Induction Loop

```
Input : An initialized strategy matrix S.
 1 begin
2 \mid S' \leftarrow \mathbf{0};
3 iter \leftarrow 0;
 4 while S' \neq S do
5 \mid S' \leftarrow S;
    foreach p \in w \times h do
      foreach e \in w \times h do
        foreach e' \in \mathcal{N}(e) do
          isExit \leftarrow True;
         foreach p' \in \mathcal{N}(p) do
10
           if S'[p', e'] = 0 then
            isExit \leftarrow False;
12
         if isExit = True then
13
           S[p,e] \leftarrow 1;
           break;
16 | iter \leftarrow iter + 1;
17 return S;
```

Recovering Visibility and Dodging Obstacles in Pursuit-Evasion Games

The Dual Game

- ► Is it possible to stay out of the pursuer's sight? How?
- ► If a pursuer fails to keep an evader in sight, it may be able to recover.
- ► We get a new recurrence as the logical negation of the previous one: $\left(\right)$

$$S[p,e,i] = \left\{ egin{array}{c}

e$$

The Dual Induction Loop

= 0,erwise.

Input : A strategy matrix
$$S$$
, grid map M
1 begin
2 | iter $\leftarrow 0$;
3 while iter $< d$ and $S' \neq S$ do
4 | $S' \leftarrow S$;
5 | foreach $p \in w \times h$ do
6 | foreach $e \in w \times h$ do
7 | | hasExit \leftarrow False;
8 | foreach $e' \in \mathcal{N}(e)$ do
9 | | isExit \leftarrow True;
0 | | isExit \leftarrow True;
0 | | isExit \leftarrow False;
3 | | if $M.vis(p', e')$ or $S'[p', e'] = 0$
2 | | | isExit \leftarrow False;
3 | | if isExit \leftarrow True;
5 | if hasExit $=$ True then
4 | | hasExit \leftarrow True;
5 | if hasExit $=$ False then
6 | | $S[p, e] \leftarrow 0$;
7 | iter \leftarrow iter $+ 1$;
8 | return S ;

Recovering Visibility

if
$$i = 0$$
,
 $i', e', i - 1$] otherwise

', tolerance **d**.

then

Dodging Obstacles

$$S[p, e, t] = \begin{cases} \neg v_t(p, e) \\ \neg v_t(p, e) \\ \lor \end{cases}$$

The Dynamic Induction Loop

Input : A sequence of maps $\{M_t\}$, $t = 1 \dots T$. 1 begin $2 \mid S \leftarrow 0;$ $3 \mid t \leftarrow T;$ 4 while t > 0 do $5 \mid S' \leftarrow S;$ 6 | foreach $p \in w \times h$ do foreach $e \in w \times h$ do foreach $e' \in \mathcal{N}(e)$ do $isExit \leftarrow True;$ foreach $p' \in \mathcal{N}(p)$ do 10 11 $isExit \leftarrow False;$ 12 if *isExit* = *True* then 13 $S[p,e] \leftarrow 1;$ 14 break; 15 16 $| t \leftarrow t - 1;$ 17 **return** *S*;

Conclusions & Future Work

- Optimal strategies in dynamic environments
- ► Future directions
- ▷ State space reduction for improved running times

 \blacktriangleright Assume obstacle trajectories are known for a duration T. ► Time-varying visibility has to be incorporated into the recurrence:

if t = T, S[p', e', t + 1] otherwise. $e' \in \mathcal{N}(e) \ p' \in \mathcal{N}(p)$

if M_t .vis(p, e) and S'[p', e'] = 0 then

Maintain optimal strategies after a single update in the map \blacktriangleright Move obstacles by add/remove. Use primal/dual induction to update S.

 \blacktriangleright Optimal strategies allowing visibility to be recovered within d turns

▷ Generate optimal strategies for more than two players

Created with LATEX beamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php