

Recovering Visibility and Dodging Obstacles in Pursuit-Evasion Games
Ahmed Abdelkader
Department of Computer Science, University of Maryland at College Park

Introduction

I Visibility-based pursuit-evasion:
. Motion: holonomic, max speed per player
. Visibility: omnidirectional, optional range
. Traditionally, the game ends when the pursuer loses sight of the evader.

I Applications:
. Surveillance, monitoring, FPS and racing games, etc.

Discretization and Strategy Matrix

I Represent the map as a grid of pixels (white: clear, black: obstacle).
I Assume the players take turns, with the evader moving first.
I For each pair of positions (p, e), S[p, e] = 1 iff the evader can win.
I Easily accommodates different motion and sensing models.
I Solve for the optimal strategy by backward induction.
IN (x) denotes the neighboring locations player x can reach in 1 turn.

The Classical (Primal) Game

I Is it possible to keep the evader in sight? How?
I Initialize with visibility queries then solve the recurrence:

S[p, e, i] =


¬v(p, e) if i = 0,∨
e′∈N (e)

∧
p′∈N (p)

S[p′, e′, i − 1] otherwise.

The Visibility Induction Loop

Input : An initialized strategy matrix S .
1begin
2 S ′← 0;
3 iter ← 0;
4 while S ′ 6= S do
5 S ′← S ;
6 foreach p ∈ w × h do
7 foreach e ∈ w × h do
8 foreach e′ ∈ N (e) do
9 isExit← True;

10 foreach p′ ∈ N (p) do
11 if S ′[p′, e′] = 0 then
12 isExit← False;
13 if isExit = True then
14 S[p, e]← 1;
15 break;
16 iter ← iter + 1;
17 return S ;

The Dual Game

I Is it possible to stay out of the pursuer’s sight? How?
I If a pursuer fails to keep an evader in sight, it may be able to recover.
I We get a new recurrence as the logical negation of the previous one:

S[p, e, i] =


¬v(p, e) if i = 0,∧
e′∈N (e)

∨
p′∈N (p)

¬S[p′, e′, i − 1] otherwise.

The Dual Induction Loop

Input : A strategy matrix S , grid map M, tolerance d .
1begin
2 iter ← 0;
3 while iter < d and S ′ 6= S do
4 S ′← S ;
5 foreach p ∈ w × h do
6 foreach e ∈ w × h do
7 hasExit← False;
8 foreach e′ ∈ N (e) do
9 isExit← True;

10 foreach p′ ∈ N (p) do
11 if M.vis(p′, e′) or S ′[p′, e′] = 0 then
12 isExit← False;
13 if isExit = True then
14 hasExit← True;
15 if hasExit = False then
16 S[p, e]← 0;
17 iter ← iter + 1;
18 return S ;

Recovering Visibility

I Pursuer view in the case with d = 0 (left) vs. d = 5 (right).

Dodging Obstacles

I Assume obstacle trajectories are known for a duration T .
I Time-varying visibility has to be incorporated into the recurrence:

S[p, e, t] =


¬vt(p, e) if t = T ,

¬vt(p, e) ∨
∨

e′∈N (e)

∧
p′∈N (p)

S[p′, e′, t + 1] otherwise.

The Dynamic Induction Loop

Input : A sequence of maps {Mt}, t = 1 . . .T .
1begin
2 S ← 0;
3 t ← T ;
4 while t > 0 do
5 S ′← S ;
6 foreach p ∈ w × h do
7 foreach e ∈ w × h do
8 foreach e′ ∈ N (e) do
9 isExit← True;

10 foreach p′ ∈ N (p) do
11 if Mt.vis(p, e) and S ′[p′, e′] = 0 then
12 isExit← False;
13 if isExit = True then
14 S[p, e]← 1;
15 break;
16 t ← t − 1;
17 return S ;

Maintain optimal strategies after a single update in the map

I Move obstacles by add/remove. Use primal/dual induction to update S .

Conclusions & Future Work

I Optimal strategies allowing visibility to be recovered within d turns
I Optimal strategies in dynamic environments
I Future directions
. State space reduction for improved running times
. Generate optimal strategies for more than two players

Created with LATEXbeamerposter http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

akader@cs.umd.edu

http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

