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Introduction

Voronoi Meshing

Given a bounded open set O in Euclidean space, decompose its interior
into Voronoi cells of bounded aspect-ratio. The cells should naturally
conform to the bounding surface M = ∂O.

To the best of our knowledge, this stands as an open problem for
non-convex domains.

This is in contrast with tetrahedral meshing, which is well-established.

The VoroCrust project developed the first solution to this problem.

In this talk, we focus on the subproblem of surface reconstruction,
assuming a set of sample points from M is given as input.
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Problem Definition and State-of-the-art

Surface Reconstruction for Voronoi Meshing

Given a set of sample points from a closed 2-manifold M in Euclidean
space, decompose its interior into Voronoi cells of bounded aspect-ratio.
The cells should naturally conform to a surface mesh approximating M.

Typically, cells near the boundary are clipped, introducing defects.

Power crust [Amenta et al.] produces such a decomposition. However,

Generators (poles) are restricted to lie near the medial axis of M.
Instead of the Voronoi diagram, it is based on the power diagram.
Nonetheless, rich theory with strong approximation guarantees.
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VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)

(3) Compute Voronoi diagram

(2) Collect intersection points

(4) Keep the separating facets
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The Union of Balls and Its Dual Shape [Edelsbrunner]

Power distance and cell

For a ball b centered at c with radius r , π(b, x) = ‖cx‖2 − r2.
Vb = {x ∈ Rd | π(b, x) ≤ π(b′, x) ∀b′ ∈ B}.

Weighted α-complex and α-shape

Define K = Nerve({Vb ∩ b | b ∈ B}) and S as the underlying space |K|.

Figures from [Edelsbrunner]

Homotopy-equivalence

The nerve theorem implies S = |K| has the same homotopy-type as ∪B.
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ε-Sampling and Topological Thickening

Local features size (lfs)

The local feature size at a point x ∈M is its
distance to the medial axis of M.

ε-sample

A set of points P on M such that ∀x ∈M∃p ∈ P
s.t. ||px || ≤ ε · lfs(x).

Medial Axis
Figure from [Wolter]

From balls to surfaces [Chazal, Lieutier]

Let P be an ε-sample of M, with ε < 1/160, and define bp as the ball
centered at p ∈ P with radius αp · lfs(p), where 1/20 < αp < 1/10. Then,
M is a deformation retraction of ∪bp.
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Beyond Homeomorphism: Isotopic Equivalence

Torus: unknot vs. knot
Figures from [Wikipedia]

A purely topological condition [Chazal, Cohen-Steiner]

Suppose that:

M′ is homeomorphic to M,

M′ is included in a topological thickening M of M,

M′ separates the sides of M.

Then, M′ is isotopic to M in M.
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VoroCrust - The Abstract Algorithm

Start with an ε-sample P ⊂M with weights
(δ ≥ ε) defining the associated δ-lfs balls B.

Collect the corner points G of ∪B as a crude
set of witnesses of the simplices in K.

Compute the Voronoi diagram of G, Vor(G).

Produce the surface approximation as the
facets of Vor(G) separating interior/exterior
corners; we call this the VoroCrust of G (VC).

Include in G more samples from the volume
bounded by M to further decompose it.

Sandwich theorem

VC ⊆ S ⊆ ∪B.
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VoroCrust - Ball Intersections
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VoroCrust - Sampling Conditions for Disk Caps

Disk Caps

Each sample ball contributes exactly two caps, i.e.,
topological-disks, to the boundary of the union.

Sampling Conditions

For constants ε ≤ δ, we require an ε-sampling P,
with associated balls of radii ri = δ · lfs(pi )
satisfying the following sparsity condition:

lfs(q) ≥ lfs(p) =⇒ ‖p − q‖ ≥ ε · lfs(p).

Lemma

Taking ε = 1/160 and δ = 1/20, we get disk caps.

↑
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VoroCrust - Sample Results
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Announcements

The VoroCrust software package is scheduled for release soon.

Successful implementation of more ideas than what this talk covers,
e.g., sharp features, medial axis approximation, sizing estimation.

Mohamed S. Ebeida (msebeid@sandia.gov) is the VoroCrust
point-of-contact at Sandia National Labs (SNL).
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