Sampling Conditions for Clipping-free Voronoi Meshing by the VoroCrust Algorithm

Scott Mitchell¹, Ahmed Abdelkader², Ahmad Rushdi³, Mohamed Ebeida¹, Ahmed Mahmoud³, John Owens³ and Chandrajit Bajaj⁴

¹Sandia National Laboratories

²University of Maryland, College Park

³University of California, Davis

⁴University of Texas, Austin

Given a bounded open set \mathcal{O} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally *conform* to the bounding surface $\mathcal{M} = \partial \mathcal{O}$.

• To the best of our knowledge, this stands as an open problem for non-convex domains.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.
- The VoroCrust project developed the first solution to this problem.

- To the best of our knowledge, this stands as an open problem for non-convex domains.
- This is in contrast with tetrahedral meshing, which is well-established.
- The VoroCrust project developed the first solution to this problem.
- In this talk, we focus on the subproblem of surface reconstruction, assuming a set of sample points from \mathcal{M} is given as input.

Given a set of sample points from a closed 2-manifold \mathcal{M} in Euclidean space, decompose its interior into Voronoi cells of bounded aspect-ratio. The cells should naturally *conform* to a surface mesh approximating \mathcal{M} .

• Typically, cells near the boundary are *clipped*, introducing defects.

- Typically, cells near the boundary are *clipped*, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,

- Typically, cells near the boundary are *clipped*, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of \mathcal{M} .

- Typically, cells near the boundary are *clipped*, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of \mathcal{M} .
 - Instead of the Voronoi diagram, it is based on the power diagram.

- Typically, cells near the boundary are *clipped*, introducing defects.
- Power crust [Amenta et al.] produces such a decomposition. However,
 - Generators (poles) are restricted to lie near the medial axis of \mathcal{M} .
 - Instead of the Voronoi diagram, it is based on the power diagram.
 - Nonetheless, rich theory with strong approximation guarantees.

∃ ▶ ∢

(2) Collect intersection points

(3) Compute Voronoi diagram

(2) Collect intersection points

(2) Collect intersection points

(3) Compute Voronoi diagram

Power distance and cell

For a ball b centered at c with radius r,
$$\pi(b, x) = ||cx||^2 - r^2$$
.
 $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \forall b' \in B\}.$

Power distance and cell

For a ball b centered at c with radius r,
$$\pi(b, x) = ||cx||^2 - r^2$$
.
 $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \ \forall b' \in B\}.$

Weighted α -complex and α -shape

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in B\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Power distance and cell

For a ball b centered at c with radius r,
$$\pi(b, x) = ||cx||^2 - r^2$$
.
 $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \ \forall b' \in B\}.$

Weighted α -complex and α -shape

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in B\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]

Power distance and cell

For a ball *b* centered at *c* with radius *r*,
$$\pi(b, x) = ||cx||^2 - r^2$$
.
 $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \ \forall b' \in B\}.$

Weighted α -complex and α -shape

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in B\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]

Homotopy-equivalence

The nerve theorem implies $\mathcal{S} = |\mathcal{K}|$ has the same homotopy-type as $\cup B$.

Local features size (lfs)

The local feature size at a point $x \in \mathcal{M}$ is its distance to the medial axis of \mathcal{M} .

Medial Axis Figure from [Wolter]

Local features size (lfs)

The local feature size at a point $x \in \mathcal{M}$ is its distance to the medial axis of \mathcal{M} .

ϵ -sample

A set of points P on \mathcal{M} such that $\forall x \in \mathcal{M} \exists p \in P$ s.t. $||px|| \leq \epsilon \cdot lfs(x)$.

Medial Axis Figure from [Wolter]

Local features size (lfs)

The local feature size at a point $x \in \mathcal{M}$ is its distance to the medial axis of \mathcal{M} .

ϵ -sample

A set of points P on \mathcal{M} such that $\forall x \in \mathcal{M} \exists p \in P$ s.t. $||px|| \leq \epsilon \cdot lfs(x)$. Medial Axis Figure from [Wolter]

(日) (同) (三) (三)

From balls to surfaces [Chazal, Lieutier]

Let P be an ϵ -sample of \mathcal{M} , with $\epsilon < 1/160$, and define b_p as the ball centered at $p \in P$ with radius $\alpha_p \cdot lfs(p)$, where $1/20 < \alpha_p < 1/10$. Then, \mathcal{M} is a deformation retraction of $\cup b_p$.

Beyond Homeomorphism: Isotopic Equivalence

Torus: unknot vs. knot Figures from [Wikipedia]

Beyond Homeomorphism: Isotopic Equivalence

Torus: unknot vs. knot Figures from [Wikipedia]

A purely topological condition [Chazal, Cohen-Steiner]

Suppose that:

- \mathcal{M}' is homeomorphic to \mathcal{M} ,
- \mathcal{M}' is included in a topological thickening $\mathbb M$ of \mathcal{M} ,
- \mathcal{M}' separates the sides of \mathbb{M} .

Then, \mathcal{M}' is isotopic to \mathcal{M} in \mathbb{M} .

 Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.

- Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.
- Collect the corner points G of ∪B as a crude set of witnesses of the simplices in K.

- Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.
- Collect the corner points G of ∪B as a crude set of witnesses of the simplices in K.
- Compute the Voronoi diagram of \mathcal{G} , $Vor(\mathcal{G})$.

- Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.
- Collect the corner points G of ∪B as a crude set of witnesses of the simplices in K.
- Compute the Voronoi diagram of \mathcal{G} , $Vor(\mathcal{G})$.
- Produce the surface approximation as the facets of Vor(G) separating interior/exterior corners; we call this the VoroCrust of G (VC).

- Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.
- Collect the corner points G of ∪B as a crude set of witnesses of the simplices in K.
- Compute the Voronoi diagram of \mathcal{G} , $Vor(\mathcal{G})$.
- Produce the surface approximation as the facets of Vor(G) separating interior/exterior corners; we call this the VoroCrust of G (VC).
- Include in G more samples from the volume bounded by M to further decompose it.

- Start with an ε-sample P ⊂ M with weights (δ ≥ ε) defining the associated δ-lfs balls B.
- Collect the corner points G of ∪B as a crude set of witnesses of the simplices in K.
- Compute the Voronoi diagram of \mathcal{G} , $Vor(\mathcal{G})$.
- Produce the surface approximation as the facets of Vor(G) separating interior/exterior corners; we call this the VoroCrust of G (VC).
- Include in G more samples from the volume bounded by M to further decompose it.

Sandwich theorem

 $VC \subseteq S \subseteq \cup B.$

VoroCrust - Ball Intersections

æ

(日) (周) (三) (三)

VoroCrust - Sampling Conditions for Disk Caps

Disk Caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

VoroCrust - Sampling Conditions for Disk Caps

Disk Caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling Conditions

For constants $\epsilon \leq \delta$, we require an ϵ -sampling P, with associated balls of radii $r_i = \delta \cdot lfs(p_i)$ satisfying the following sparsity condition:

$$\mathsf{lfs}(q) \ge \mathsf{lfs}(p) \implies \|p-q\| \ge \epsilon \cdot \mathsf{lfs}(p).$$

VoroCrust - Sampling Conditions for Disk Caps

Disk Caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling Conditions

For constants $\epsilon \leq \delta$, we require an ϵ -sampling P, with associated balls of radii $r_i = \delta \cdot lfs(p_i)$ satisfying the following sparsity condition:

$$lfs(q) \ge lfs(p) \implies ||p-q|| \ge \epsilon \cdot lfs(p).$$

Lemma

Taking $\epsilon=1/160$ and $\delta=1/20,$ we get disk caps.

VoroCrust - Sample Results

- The VoroCrust software package is scheduled for release soon.
 - Successful implementation of more ideas than what this talk covers, e.g., sharp features, medial axis approximation, sizing estimation.
- Mohamed S. Ebeida (msebeid@sandia.gov) is the VoroCrust point-of-contact at Sandia National Labs (SNL).

