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1 Introduction

In recent years, street network analysis has re-
ceived substantial attention in scholarly and pro-
fessional urban planning and transportation engi-
neering [7]. Street networks are typically modeled
as a graph with intersections as nodes connected
to one another by street segments as edges. This
graph model enables the computation of vari-
ous metric, connectivity, and topological mea-
sures by efficient algorithms, including accessi-
bility [36, 40], connectivity [21, 25, 28], central-
ity [15, 30, 39] eccentricity [34], betweenness [3],
clustering [27], block lengths [4, 9], and average
circuity [6, 8, 20,23].

One drawback of most existing research in
street network analysis is the common assumption
of planarity [11] or approximate planarity [15] of
the network. In a planar model, the street net-
work is represented in two dimensions such that
grade-separated edge crossings such as bridges
and tunnels create artificial nodes in the graph.
While planar simplifications can be useful for com-
putational tractability, they misrepresent many
real-world urban street networks. The failure of
this assumption can lead to substantial errors in
analytical results [10].

For the present study, we focus in particular
on map comparison, which can serve the field of
urban morphology [5,26,38] and the evaluation
of map reconstruction algorithms [2]. A recent
line of work showed the advantage of topology-
based measures for map comparison [1]. Using
the common representation of streets by their cen-
terlines [11,14,18,25,29,30,33], streets are split
into a sequence of line segments or street segments
in 2D. Leveraging insights from the nascent field

of topological data analysis, the shape of the
network can be described by tracing how the con-
nectivity of street segments evolves as segments
are gradually thickened [16]. These methods of
topological map comparison can be applied in
transportation engineering and urban planning
research/practice to quantify the difference be-
tween two graphs—accounting for non-planarity—
to measure street network evolution over time, to
compare the structural and functional differences
among proposed urban design alternatives, or to
match trip trajectories to pre-existing infrastruc-
ture models.

In this abstract, we extend and enhance the
topology-based measure presented in [1] to ac-
commodate grade-separated nonplanar street net-
works. Our work is similar in spirit to the study of
multi-layered environments [35] in motion plan-
ning. With the aim of extending known algo-
rithms and data structures for 2D spaces to ac-
commodate surfaces embedded in 3D, the surface
is partitioned into layers. Each layer is required
to project onto the ground plane without self-
intersection. The connections between layers can
be thought of as staircases and ramps. Ignoring
heights, paths across layers are measured by the
projected distance in R2 [32]. Similar ideas have
been explored in architecture and urban planning
to model circulation paths through multi-story
buildings [31,37].

2 Preliminaries

Topological data analysis is fueled by the concept
of persistent homology, which exposes the shape
of data by tracing the evolution of topological
features [17]. By varying the scale, a sequence of
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nested complexes derived from the data yields a
filtration. Computing the persistent homology on
the filtration reveals all the topological features
in the data, where each feature is described by
its dimension, and the scales at which it appears
and disappears [41]. This is often encoded as a
barcode, which consists of an interval representing
the lifespan of each feature from its birth time
to its death time [19]. In that way, persistent
homology enables us to compare two data sets
by comparing their respective barcodes. One
way to carry out this comparison is to find the
minimum-cost matching between the intervals
in each barcode as used to define the bottleneck
distance. The validity of this distance measure
stems from its stability against small changes in
the data [12]. For further information, the reader
is referred to [16,22].

Our work is an enhancement and extension of
the topology-based distance for street networks
proposed in [1]. Under the assumption of pla-
narity, a point is fixed in the plane and the goal
is to define a topological signature of the local
neighborhood of this point. To define the neigh-
borhood, a window is placed with the point at
its center and the street networks are restricted
within this window by clipping any segments that
extend beyond. A filtration is defined by tracing
the topology of the thickened clipped graph, rela-
tive to the boundary of the clipping region. The
persistence diagram summarizing this filtration
is the local persistent homology (LPH) diagram.
Given two street networks, the signatures can be
compared by computing their bottleneck distance.
This distance can be integrated by varying the
scale and center point used to define the window
to obtain a pseudo-metric; see [1] for the details.

3 Defining and Computing Lay-
ered LPH Distance

In this abstract, we propose a new distance be-
tween street networks which relaxes the planarity
assumption. We also describe the computation

of this distance by explaining how to compute
the Layered Čech Filtration. If all street seg-
ments lie in the same layer, the desired distance
can be found by examining the segment Voronoi
diagram [24], and using the proposed distance
for planar LPH distance in [1]. In what follows,
we define the (local) Layered Čech Filtration by
‘thickening’ the graph G while allowing travel
through portals. Similar to the one-layer case,
our zero-simplices of the Layered Čech Filtration
correspond to straight-line embedded edges and
appear at radius zero, our one-simplices appear
at the radius when two thickened edges overlap.
We note that the edges may thicken through a
portal, which is where the interesting part of the
algorithm lies. Finally, the two-simplices corre-
spond to a three-way intersection of thickened
edges (again, possibly thickening through por-
tals). Since our domain is a street network, the
most interesting topology lies in the connected
components and looping behavior, so we do not
compute higher-dimensional simplices.

Assumptions and Notation Let G = (V,E)
be our piecewise-linear graph immersed in R2. In
what follows, we assume that an oracle ` : E → N
assigns an edge e ∈ E to layer `(e). We may
further assume that `(e) ≤ m for all edges e ∈ E,
for some m ∈ N. We denote a layer Li := `−1(i).
Whenever `(e) = i, with e = (u, v), we say say
that the vertices u, v are also in Li. We define
a portal as a vertex shared between at least two
layers, and assume any layer has at most k portals,
for some k ∈ N. Notice that while edges map
to a single layer, a portal may map to multiple
layers (which happens when adjacent edges map
to different layers).

3.1 The Layered Čech Filtration

Since we assume that the graph has at most m
layers, we think of this graph as m graphs, each
of which resides in its own copy of R2, with por-
tals defining identifications between the layers.
We denote this embedding space (m copies of R2
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Figure 1: Offset of a segment uv across three
layers. Notice that the thickening in the third
layer starts when the portal c is reached in the
second layer.

with an equivalence relation induced from portals)
by L. For ε > 0, we define the thickened graph Gε

to be the tubular neighborhood around G of ra-
dius ε. We can also think of this as the union of
thickened edges. A thickened edge looks like a
tubular neighborhood in one layer and a union
of disks centered at portals in other layers. The
disks need not have the same radius.

One way to approximate the union of thickened
sets is through computing the nerve. In our set-
ting, we call this nerve filtration the Layered Čech
Filtration. Specifically, the zero-simplices corre-
spond to the set of edges in the input graph G, the
one-simplices correspond to pairwise intersections
between edges (and appears at half the distance
needed for that intersection to be nontrivial), and
the two-simplices correspond to the three-way
intersections between thickened edges. When in-
tersections between sets are collapsible, the nerve
lemma states that the nerve of the set is homo-
topic to the union of sets. In our setting, however,
the portals allow for nontrivial intersections be-
tween thickened edges (in fact, a thickened edge
might not be contractible). Nonetheless, we use
the nerve, as the local connectivity information
is important to capture.

3.2 Computation

To compute the Layered Čech Filtration, we must
be able to determine values for the thickening ra-
dius such that pairs and triples of thickened edges
begin to intersect. Since the thickening radius
between two edges is half the distance between
the edges, first, we describe how to compute dis-
tances between edges in L. Then, we consider
three-way intersections of thickened edges in L.

Given two edges e1, e2 ∈ E, as the triangle
inequality still holds between layers, if e1 and e2
are on the same layer L, there exists a short-
est path between e1 and e2 that remains within
layer L. If, however, the edges are in different
layers, the shortest path passes through multiple
layers, perhaps even some layers that do not con-
tain either e1 or e2. To compute the length of the
path, we introduce an auxiliary data structure
called the Portal Graph.

The Portal Graph The only way to move be-
tween layers is through portals. To help with
subsequent distance computations, we precom-
pute a complete weighted graph P on the O(km)
portals. We create a graph P̃ with the vertex
set corresponding to the portals, and the initial
weight of the edge between two portals p and q is:

w0(p, q) =


0, if p = q,

d2(p, q), if ∃i s.t. p, q ∈ Li,
∞, otherwise.

Using this initial weight assignment, we run
an all-pairs shortest paths algorithm on this
weighted graph to obtain the shortest-path dis-
tance dP : P×P → R between all pairs of portals.
The portal graph P is the graph where the edge-
weights are the lengths of the shortest paths in P̃ .
Precomputation costs O(k3m3) by standard al-
gorithms [13].

Pairwise Distances (Two-way Intersec-
tions) Next, we describe how to compute dis-
tances between edges in L. Let edges ei ∈ Li
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and ej ∈ Lj . If i = j, the distance between ei
and ej in L is the Euclidean distance between ei
and ej . If i 6= j, we compute the distance be-
tween ei and ej in L by augmenting P as follows.
First, let P∗ be the subgraph of P consisting
of portals in Li and Lj and the edges between
the portals in the two layers. Add a vertex u
to P∗ where u represents ei. For each portal
p ∈ Li, add edge (u, p) to P∗ weighted as the
Euclidean distance between ei and p. Similarly,
add a vertex v representing ej and edges to all
portals in Lj . The length of the shortest path
from u to v in P∗ is the distance from ei to ej
in L. Since P∗ has at most 2k + 2 vertices and
at most k2 + 2k edges, the cost of computing a
shorted path between u and v in P∗ is O(k2).
Once we have the distance d between edges ei
and ej in L, the thickening radius where ei and ej
intersect is d/2.

Two-Simplices (Three-way Intersections)
Given a triplet of edges, we are interested in
finding the thickening radius where the edges in-
tersect. We begin with a few observations. First,
observe that a three-way intersection in L may
occur in any layer. Second, observe that for a
thickened edge e ∈ Li, when e thickens enough to
reach a portal pi ∈ Li, edge e continues to thicken
on every layer in which pi connects. In particular,
let pj ∈ Lj be a portal on layer Lj in which pi
connects. As we continue to thicken e, we observe
that a disk centered at pj starts growing.

From the observations, we can enumerate the
four configurations of how thickened objects can
intersect on a layer. In particular the configura-
tionss are: (C1) three thickened edges, (C2) two
thickened edges and a disk, (C3) one thickened
edge and two disks, (C4) three disks.

We can further use the observations to iden-
tify the thickening radius with brute force. In
particular, for each layer Li, we enumerate all
configurations and determine ri the least thicken-
ing radius yielding a non-trivial three-way overlap
over all configurations on Li. Finally, the thick-
ening radius r is min({ri, . . . , rm}).

4 Discussion

In this paper, we extend the results of [1] to the
more realistic setting that allows for bridges and
tunnels to be represented. In particular, we break
the graph into layers. We assume the layering
structure is part of the input and focus on the
problem of computing a topology-based signature
for the purposes of map comparison. Future work
includes improving the algorithm by exploring the
order-k Voronoi diagram of additively-weighted
line segments, extending the definition of the
Layered Čech Filtration to the Local Layered
Čech Filtration, and implementing the algorithm.
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