Optimization Problems in Visual Surveillance

M.Sc. Thesis Proposal
by Ahmed Abdelkader
Introduction

Camera

Target
Two Variants

1-on-1
Both Mobile

Many-to-Many
Both Static
Agenda

● Introduction
● **Problem(1) Pursuit-Evasion**
● Problem(2) Camera Assignment
● Study Plan
Agenda

● Introduction
● Problem(1) Pursuit-Evasion
 ○ Definition
 ○ Background
● Problem(2) Camera Assignment
● Study Plan
Visibility-Based Pursuit-Evasion

- Keep evader in sight!
- Omnidirectional vision
- Bounded speed
- Holonomic motion
- General obstacles
- Move in turns
- Complete information
Agenda

- Introduction
- Problem(1) Pursuit-Evasion
 - Definition
 - Background
- Problem(2) Camera Assignment
- Study Plan
Background - Pursuit-Evasion

- **Continuous - Differential Games**
 - Isaacs conditions ~ Pontryagin’s principle [1]
 Characterize the Hamiltonian of the system along optimal trajectories

 $$H(x, \nabla J, u, v) = \nabla J \cdot f(x, u, v) + L(x, u, v)$$
 $$\left(u^*_e, \theta^*_e, u^*_p, \theta^*_p\right) = \min_{u_e, \theta_e} \max_{u_p, \theta_p} H(x, \nabla J, u, v)$$
 $$H(x, \nabla J, u^*, v^*) = 0.$$

- **Discrete - Graph Search**
 - Cops and Robbers [2]

 $$\ell(c_{xy}) := 1 + \min \{ \ell(r_{x'y}) : x' \in N^+(x) \}$$
 $$\ell(r_{xy}) := \max \{ \ell(c_{xy'}) : y' \in N^+(y) \}$$

Agenda

- Introduction
- Problem(1) Pursuit-Evasion
- **Problem(2) Camera Assignment**
- Study Plan
Agenda

- Introduction
- Problem(1) Pursuit-Evasion
- Problem(2) Camera Assignment
 - Definition
 - Background
- Study Plan
Camera-Target Assignment

- Cover max. no. of targets!
- Cameras rotate freely
- Fixed field of view
- General obstacles
Agenda

- Introduction
- Problem(1) Pursuit-Evasion
- Problem(2) Camera Assignment
 - Definition
 - Background
- Study Plan
Background - Camera Assignment

- Assignment Problems [3]
 - Bipartite Matching

- Geometric Set Cover
 - Coverage by unit disks, NP-hard [4]

Background - Camera Assignment

- **Greedy Heuristics**
 - Approximation of Set Cover
 - $\Omega(\log n)$ - *unless NP has quasi-polynomial time algorithms* [5]

- **Game Theory**
 - Welfare Games [6]
 - Nash Equilibrium
 - Price of Anarchy

Agenda

● Introduction
● Problem(1) Pursuit-Evasion
● Problem(2) Camera Assignment
● Study Plan
Study Plan - Pursuit-Evasion

- Theoretical foundations
 - Escape conditions
 - Graph models

- Solution methods
 - Star regions
 - Recurrences

- Practical considerations
 - Feasible computation
 - Motion continuity
 - Online planning
Study Plan - Camera Assignment

● Theoretical foundations
 ○ Assignment models
 ○ Linear programming relaxation
 ○ Geometric set cover
 ○ Game theory

● Solution methods
 ○ Greedy heuristics
 ○ Approximation algorithms

● Practical considerations
 ○ Quality of coverage e.g. zooming
 ○ Target mobility
Thank You

Questions?

abdelkader@alexu.edu.eg