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ALEXANDRIA UNIVERSITY

Abstract
FACULTY OF ENGINEERING

ENGINEERING MATHEMATICS AND PHYSICS DEPARTMENT

Master of Science

by Ahmed Abdelkader Abdelrazek

Visual Surveillance is concerned with the utilization of modern digital cameras to achieve

common surveillance goals. Thanks to the wide availability of low cost and highly efficient

sensors, there has been a proliferation of deployments of visual security systems as seen

in banks, airports and train stations. High end visual sensors also play a crucial role in

autonomous robots like unmanned aerial vehicles. In this thesis, we study two variants of the

visual surveillance problem.

In the first problem, surveillance video streamed from a top-view camera is processed to

control the orientation of multiple pan-tilt-zoom cameras in order to cover as many targets as

possible at high resolutions. The problem of covering a set of static targets with a set of cam-

eras is a planar variant of the classical combinatorial set cover problem and has been shown

to be computationally intractable. We develop two new heuristics, compare them to existing

solutions and show their superiority by extensive simulations. Moreover, to demonstrate the

applicability of the proposed methods, we build and evaluate a real surveillance system for

indoors pedestrian tracking.

In the second problem, we study a variant of the classical pursuit-evasion game, in which

an agent moving amongst obstacles is to be maintained within sight by a pursuing robot.

We design an efficient algorithm that decides if the evader can take any moving strategy to

hide from the pursuer and win the game. For situations where the evader cannot win, we

compute a pursuit strategy that keeps the evader within sight. Finally, if it is determined that

the evader wins, we compute its optimal escape trajectory and the corresponding optimal

pursuit trajectory. We analyze the algorithm, present several optimizations and show results

for different environments.



Acknowledgements

All praise be to Allah, the lord of the worlds, the most gracious, the most merciful.

I would like to express my sincere gratitude to my advisors. I am very thankful to Dr. Hazem

El-Alfy for introducing me to many exciting research problems and working by my side

over the past couple of years. I cannot thank enough Prof. Dr. Mina Abd-el-malek for

welcoming me into the department and actually introducing me to Dr. Hazem, which is

how this thesis work started. I also thank Dr. Amr Abdelrazek for his honest advices and

continuous encouragement.

I am most indebted to my friends, professors, colleagues and students who supported me in

many ways. I have to thank Moamen Mokhtar for helping me complete crucial parts of this

work. I also thank Mohamed Fadl, Ahmad Mamdouh, Ahmed Zakaria and Usama Elnily.

Finally, I would like to express unparalleled gratitude to Mohammed Karmous for his good

company all along this journey.

Last but not least; I would like to thank my family.

iv



Contents

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1
1.1 Coverage Maximization in Multi-Camera Surveillance . . . . . . . . . . . . 1

1.1.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Visibility-based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6
2.1 Coverage by Directional Sensors . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Hardness and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Linear Programming Relaxation . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Centralized Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Scalable Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pursuit-Evasion Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Classical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Decidability and Differential Games . . . . . . . . . . . . . . . . . . 10
2.2.3 Static Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Cops and Robbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Coverage Maximization in Multi-Camera Networks 12
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 A Continuous Coverage Function . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Coverage by Angular Sweeping . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



Contents

4 Camera Experiments 23
4.1 Simulated Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Computer Vision Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4 Blob Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.5 Blob Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.6 Background Generation . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.7 Closed Loop Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Hardware Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Latency Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2.3 Master Camera Only . . . . . . . . . . . . . . . . . . . . . 31
4.3.2.4 Master/Slave Network . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Prototype System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Autonomous Surveillance System . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Visibility Induction for Discretized Pursuit-Evasion 47
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 The Visibility Induction Algorithm . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Practicalities and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Memory Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.3 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.4 More Memory Savings . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Extensions and Applications of Visibility Induction 58
6.1 Extensions to Guaranteed Tracking . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Optimal Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Tolerating Blind Interruptions . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



Contents

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusion and Future Work 65
7.1 Coverage Maximization in Multi-Camera Surveillance . . . . . . . . . . . . 65
7.2 Visibility-based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 67

vii



List of Figures

3.1 Angular offset θc as a function of the panning angle d. . . . . . . . . . . . . . 15
3.2 Composition of the objective function for four targets. . . . . . . . . . . . . . 16
3.3 Sweeping always finds maximal groupings (dashed) unlike discrete orienta-

tions (solid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Sample test maps with assignment and coverage, showing walls (black),

cameras (red), covered (green) and non-covered (blue) targets. . . . . . . . . 18
3.5 Varying the number of static targets without walls. . . . . . . . . . . . . . . . 19
3.6 Varying the number of static targets with walls. . . . . . . . . . . . . . . . . 19
3.7 Runtime varying the number of static targets without walls. . . . . . . . . . . 20
3.8 Runtime varying the number of static targets with walls. . . . . . . . . . . . 20
3.9 Varying speed of targets without walls. . . . . . . . . . . . . . . . . . . . . . 22
3.10 Varying speed of targets with walls. . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Master view in the 3D simulator showing camera to target assignments.
Green and pink crosses indicate true and estimated target locations, respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Full view of the 3D simulator, with frames from both master and slave cam-
eras. The lines connecting cameras to targets indicate if the target is covered
(red) or not (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 2D simulator with a sample map, showing walls (black), cameras (red), cov-
ered (green) and non-covered (blue) targets. . . . . . . . . . . . . . . . . . . 25

4.4 Processing stages of sampled frames. . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Video processing steps needed to track moving targets. . . . . . . . . . . . . 28
4.6 Latency tests of one camera as in Tables 4.2 and 4.3. . . . . . . . . . . . . . 32
4.7 Latency tests of two cameras working simultaneously as in Tables 4.4 and 4.5. 33
4.8 Connection diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Physical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.10 Example frame from an indoors toy tracking experiment. . . . . . . . . . . . 36
4.11 First attempt at pedestrian tracking. . . . . . . . . . . . . . . . . . . . . . . . 37
4.12 With the master camera at a low height, only a small area could be covered. . 37
4.13 Master camera at height 6.5m. . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.14 Below the master camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.15 Slave camera (wired). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.16 Slave camera (wireless). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



List of Figures

4.17 Example frame from an indoors human tracking experiment. . . . . . . . . . 42
4.18 Main setup in Administration Building (master camera). . . . . . . . . . . . 43
4.19 Main setup in Administration Building (slave camera). . . . . . . . . . . . . 44
4.20 Example frame from the indoors experiment in Administration Building. . . . 45

5.1 Decision map (pursuer) - 50x50 grid. . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Decision map (pursuer) - 100x100 grid. . . . . . . . . . . . . . . . . . . . . 54
5.3 Decision map (pursuer) - 200x200 grid. . . . . . . . . . . . . . . . . . . . . 54
5.4 Decision map (pursuer) - 400x400 grid. . . . . . . . . . . . . . . . . . . . . 54
5.5 Decision map (pursuer) around a corner. . . . . . . . . . . . . . . . . . . . . 55
5.6 Decision map (pursuer) for polygonal obstacles. . . . . . . . . . . . . . . . . 55
5.7 Decision map (evader) for a circular obstacle. . . . . . . . . . . . . . . . . . 55
5.8 Decision map (evader) with restricted visibility. . . . . . . . . . . . . . . . . 55
5.9 Decision map (evader), 4-connected neighborhood. . . . . . . . . . . . . . . 56
5.10 Decision map (evader), 8-connected neighborhood. . . . . . . . . . . . . . . 56
5.11 Average runtimes fit a quadratic model as predicted by Lemma 5.5. . . . . . . 57

6.1 Example of a winning evader (blue; top). . . . . . . . . . . . . . . . . . . . . 63
6.2 Example of a winning pursuer (red; top). . . . . . . . . . . . . . . . . . . . . 63
6.3 A winning evader on a rectangular grid with non-polygonal obstacles. . . . . 63
6.4 A winning evader in a complex maze. . . . . . . . . . . . . . . . . . . . . . 64
6.5 A winning evader on a rectangular grid. . . . . . . . . . . . . . . . . . . . . 64
6.6 Example of a pursuer regaining visibility around an infinite corner. . . . . . . 64

ix



List of Tables

3.1 Coverage rate for varying numbers of static targets with walls. . . . . . . . . 21

4.1 Cameras Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Latency results for one camera without real-time tracking. . . . . . . . . . . 31
4.3 Latency results for one camera with real-time tracking. . . . . . . . . . . . . 31
4.4 Latency results for two cameras without real-time tracking. . . . . . . . . . . 32
4.5 Latency results for two cameras with real-time tracking. . . . . . . . . . . . . 33
4.6 Coverage evaluation in real experiments . . . . . . . . . . . . . . . . . . . . 39

5.1 Average runtime for Algorithm 1 vs. grid size . . . . . . . . . . . . . . . . . 56

x



Abbreviations

CNF Conjunctive-Normal Form

FOV Field of View

FPS Frames Per Second

NP Nondeterministic Polynomial

PDE Partial-Differential-Equation

PTZ Pan-Tilt-Zoom

SAT Boolean Satisfiability Problem

SCP Set Cover Problem

UAV Unmanned Aerial Vehicle

xi



Chapter 1

Introduction

Visual Surveillance is concerned with the utilization of modern digital cameras to achieve

common surveillance goals like monitoring, intrusion detection and target tracking. The

obtained visual signals are readily available for higher level functions like face, object and

action recognition which makes it particularly appealing for a wide range of application

domains. Thanks to the availability of low cost and highly efficient sensors, there has been

a proliferation of deployments of visual security systems as seen in banks, airports and train

stations. High end visual sensors also play a crucial role in autonomous robots such as

unmanned aerial vehicles (UAVs).

The design and tuning of surveillance systems is a very active area with a number of interest-

ing research problems. Such systems are required to efficiently utilize the available resources

to achieve certain surveillance quality metrics by sampling and extracting information from

noisy input signals. Due to their critical nature, these system have to operate in the presence

of hostile entities which make it even harder to maintain the required quality of monitoring.

In this thesis, we study two variants of the visual surveillance problem.

1.1 Coverage Maximization in Multi-Camera Surveillance

Video surveillance systems have witnessed great developments and wide adoption in the

past few years to answer the ever increasing demands in security and public safety [1]. Ad-

vances in cheap network cameras, digital and communications capabilities rapidly increased

the number of cameras in use. This made the task of following monitors by human opera-

tors not only outdated but also practically infeasible. For that reason, several methods have
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been developed to automate the detection and reporting of scenes, events or subjects of in-

terest. Traditionally, hundreds of hours of surveillance video from static cameras are stored

to backup systems and examined later if needed. Covering a large environment obviously

requires the use and coordination of several cameras. With the increased numbers of cam-

eras in use, interest has recently shifted to control individual pan-tilt-zoom (PTZ) cameras to

focus on specific events or subjects.

Monitoring several targets moving in an environment with multiple PTZ cameras has many

conflicting objectives which make it a challenging task [2]. Among these objectives are:

• Maximizing the number of covered targets.

• Obtaining a high resolution view of each target.

• Obtaining an unobstructed view of targets in the presence of obstacles.

• Efficient recomputation of camera to target assignments as targets move about.

• Obtaining a smooth video per camera without abrupt jumps.

• Coping with camera hardware restrictions such as pan and zoom speeds.

• Selecting appropriate processing configurations, whether centralized or distributed.

Many attempts at the problem of monitoring multiple targets with multiple cameras have

been suggested to date, with each one looking at the problem from a different angle. We can

fairly claim that this problem is still far from being satisfactorily solved.

1.1.1 Problem Overview

We consider the problem of controlling multiple cameras to track multiple targets moving

among obstacles [3]. We are mainly concerned with small scale networks. Hierarchical

methods can be used to handle large camera networks. Our end goal is to develop a method

that can be applied in real time to an actual surveillance system. We assume a top-view wide-

angle camera (master camera) returns ground coordinates of moving targets. We are not

concerned with the details of any particular tracking method in the present work as much as

we are concerned with strategies to pan cameras in order to maximize the number of covered
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targets. The returned target locations are then used to automatically control the orientation

and, eventually, the zoom of a set of high resolution PTZ cameras (slave cameras) in order

to follow (track) those targets.

We have studied many approaches presented in the literature to the problem of maximizing

the number of covered targets with a set of cameras (or sensors). Obtaining an optimal

solution is computationally intractable and, for that reason, heuristics have been suggested

to increase efficiency at the expense of optimality. In addition, the dynamic nature of the

problem requires a solution that can be cleverly updated as targets move, which turns out

to be much harder than just maximizing the coverage at any given time instance with fixed

target locations.

1.1.2 Summary of Contributions

We compare several heuristics found in the literature, suggest two new ones and verify their

superior performance by extensive simulations. In addition to the common objective of max-

imizing the number of targets covered by cameras, our new heuristics present, to the best of

the authors’ knowledge, a first attempt at continuous panning as opposed to selecting from a

discrete set of orientations like similar existing methods.

1.2 Visibility-based Pursuit-Evasion

We consider the problem of target tracking, that is planning the motion of a mobile robot

(pursuer) as it tracks a target (evader) moving amongst obstacles. We use the term target

tracking to mean following that target or, more precisely, maintaining its visibility. This ter-

minology is common within the robotic planning community [4] as opposed to the broader

notion of tracking, known in the computer vision literature, which refers to the identification

of paths of different targets. Several applications of that problem are suggested in the liter-

ature [4–6]. Those cover surveillance and security in sensitive or restricted areas, providing

home care by watching over children or elderly people and monitoring the performance of

human workers.

The problem we study belongs to the more general visibility-based pursuit-evasion problems

[7]. In those problems, the task of a pursuer is to compute a path which guarantees finding an
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evader that might be hiding in an environment. Obviously, the evader might sneak between

different hiding places making a single pursuer unable to solve the problem. The natural

extension becomes that of finding the minimum number of pursuers needed to eliminate

any hiding places for one or more evaders under different constraints of knowledge of the

environment and information about other players’ locations [8–11].

Once the evader is found, the related problem that arises is that of maintaining its visibility

which is known as target tracking. An early attempt at that problem is presented in [12]

for fully predictable targets (optimal tracking paths found offline) and partially predictable

targets (best next step found online). Recently, there has been interest in a variant of that

problem in which a pursuer, tracking an unpredictable evader, loses immediately if its view

of the evader is obstructed by an obstacle [5, 6]. The problem of deciding which player wins

for any pair of initial positions has been shown to be NP-complete [13].

1.2.1 Problem Overview

In this thesis, we are interested in the latter problem of deciding which player wins the

pursuit-evasion game described above. This is a two-player game, with one pursuer and

one evader modeled as points that can move in any planar direction, i.e., holonomic robots.

Each player knows exactly both the position and velocity of its opponent. We consider two-

dimensional environments containing obstacles that obstruct the view of the players. Both

players have bounded speeds and can maneuver to avoid obstacles. Players are equipped

with sensors that can see in all directions.

The pursuit-evasion game proceeds as follows. Initially, the pursuer and the evader are at

positions from which they can see each other. It is common in the literature to define two

players to be visible to one another if the line segment that joins them does not intersect any

obstacle. The goal of the game is for the pursuer to maintain visibility of the evader at all

times. The game ends immediately, if at any time, the pursuer loses sight of the evader. In

that case, we say that the pursuer loses and the evader wins.
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1.2.2 Summary of Contributions

The main contribution of this part of the thesis is the development of an algorithm that en-

hances recent results in AI planning and visibility-based pursuit-evasion to tackle the com-

putationally prohibitive task of deciding the outcome of the pursuit-evasion game. This is a

significant improvement over earlier depth-limited or heuristic-based approaches. The com-

puted results are also used to find optimal player trajectories and optimize various objectives.

The basic model [14] is formally studied to facilitate the derivation of several suggested op-

timizations. This, to our knowledge, provides first evidence of the feasibility of optimal

decisions at such high grid-resolutions under varying speed ratios, different visibility con-

straints and regardless of obstacle geometries. Furthermore, we present several extensions

and applications to the presented solution, beyond deciding the result of the game, namely

trajectory planning. Finally, we present our own variant of the problem, where the pursuer

is allowed to lose sight of the evader for a limited duration before regaining visibility, and

show how the developed techniques extend to this interesting case as well.
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Chapter 2

Related Work

In this chapter, we survey the literature for relevant work in our area. We highlight both

classical results and recent progress. By demonstrating the wide variety of approaches and

different kinds of results achieved in the problems we study, the richness of this area becomes

clear. We pay more attention to closely related results and briefly mention other interesting

works.

2.1 Coverage by Directional Sensors

In the area of combinatorial optimization, several attempts have been made at the problem of

maximizing the number of covered targets using the minimum number of directional sensors.

Relevant literature is found in [15–17]. The optimal solution is computationally expensive

and hence, several sub-optimal heuristics are suggested. An overview of the more generic

assignment problem is presented in [18].

When moving to the practical area of camera management, many challenges appear. The

first step is to set-up and calibrate the cameras [19]. Then, comes the task of controlling the

cameras. It is worth noting that one of the first attempts that uses one wide-view camera

and one high-resolution camera is a decade old [20]. Depending on the type of application,

different restrictions apply. In classroom videos [21], the location of the targets are known

which simplifies the problem of camera control. In multimedia and entertainment areas,

selecting the best pose of targets might be the challenge [22].

Different combinatorial approaches have also been suggested. A self updating bipartite

matching approach with clustering of neighboring targets is presented in [3]. Probabilis-

tic approaches can be found in [23, 24]. A centralized approach is suggested in [25], a 3D

real system is presented in [26] and a large scale system can be found in [27]. Good surveys
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with comparisons of several methods are found in [24] and, for game theoretic approaches,

in [28].

2.1.1 Hardness and Lower Bounds

Several attempts [16, 17, 29] have been made to show the NP-hardness of maximizing the

number of covered points by a set of directional sensors and other closely similar problems

e.g., energy efficient target coverage. Earlier attempts presented reductions from the Boolean

Satisfiability Problem (SAT). Namely, the satisfiability of boolean formulae in Conjunctive

Normal Form (CNF) with up to 3 literals per clause (3SAT). However, these proofs failed to

introduce rigorous geometric constructions that apply to realistic camera models. A rigorous

reduction that uses Planar 3SAT [30] finally appeared in [31]. A lower bound of 0.5 was

shown to hold for approximation ratio of the greedy heuristics presented in [31] and [32].

This means that the coverage computed by these methods is at least half the optimal coverage

for any input configuration.

2.1.2 Linear Programming Relaxation

One of the earliest attempts to attack the inherent hardness in combinatorial optimization was

the linear programming model presented by Lovász for fractional set covers [33]. The frac-

tional solution can be rounded back to an integer solution to give a bounded approximation

ratio of the original combinatorial problem. Even more interestingly, it has been shown that

a naive greedy algorithm achieves the same approximation ratio [34].

2.1.3 Centralized Methods

The first efficient heuristic was introduced in [17] and was called the Centralized Greedy

Algorithm (CGA). The algorithm repeatedly selects the camera that covers the largest num-

ber of uncovered targets until all cameras are assigned. Later in [15], the algorithm was

slightly modified to give higher priority to cameras having fewer options in hope of leaving

out fewer targets when the algorithm terminates. As the modified weight function divides
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the original weight by the number of visible targets, it was called the Centralized Force-

Directed Algorithm (CFA). Both methods were compared against optimal solutions of the

integer programming formulation and shown to yield very good coverage in reasonable time.

2.1.4 Scalable Methods

When moving to larger camera networks, the simple greedy methods presented in 2.1.3 are

no longer suitable and would take considerable time to terminate. Instead, it is assumed that

each sensor is allowed to communicate with its neighbors to reach an agreement on how

each camera should be assigned. While global coverage would suffer, this results in a more

computationally scalable scheme. One such scheme is the Distributed Greedy Algorithm

in [17], which assigns a priority for each node in order to guarantee unique tie breaking

for any target that could possibly be covered by more than one camera. Another method is

the Modified Single-Linkage Algorithm in [15] which starts by clustering the network into

separate clusters then computes camera assignment within each cluster.

2.2 Pursuit-Evasion Games

A large amount of literature has been devoted to pursuit-evasion games. In this section, we

review closely related work, with a focus on attempts at deciding the outcome of the game.

In the field of robotics, we survey recent work in the problem where one pursuer maintains

the visibility of one evader, in an environment with obstacles. In artificial intelligence, we

review the related problem of cops and robbers.

In the area of robotics motion planning, the main approach used is to decompose the environ-

ment into noncritical regions with critical curve boundaries, across which critical changes in

occlusion and collision occur, then use a combinatorial motion planning method. Murrieta-

Cid et al. [6] model the pursuit-evasion game as a motion planning problem of a rod of

variable length, creating a partitioning of the environment that depends on the geometry of

obstacles. Later in [13], they present a convex partitioning that is modeled as a mutual vis-

ibility graph. Their method alternates between an evader assumed to take the shortest step

to escape, countered by a pursuer that computes a prevention-from-escape step, which pro-

duces a sequence of locally optimal paths. This leads to an interesting result: to decide
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which player wins, every feasible ordering of local paths has to be checked, concluding it is

an NP-complete problem.

In the robotics motion planning area, two approaches are used. Using the terminology in [7],

these are combinatorial approaches that find exact solutions through a continuous space and

sampling-based approaches that divide the space (probabilistically or deterministically) into

discrete regions and find paths through these regions. The simplest form of deterministically

dividing the space (a.k.a cell decomposition) is with a grid of fixed resolution. The main

advantage of this approach is its simple implementation in contrast to combinatorial methods,

many of which are impractical to implement. However, cell decomposition methods are

resolution complete (unlike combinatorial methods), which means that they find a solution

when one exists only if the resolution of the sampling grid is fine enough. Another common

drawback with grid methods is that their complexity depends on the grid size [35].

Within the AI planning community, the related problem of cops and robbers consists of one

or more players (cops) trying to find and catch one or more evaders (robbers). The players

perform alternating moves. This makes the game naturally discrete, often modeled as a graph

with vertices representing the game’s states. The mathematical foundations for solving these

problems are surveyed in [36]. A polynomial time optimal algorithm that determines whether

the cops or the robbers win, and in how many steps, was given in [37]. Unfortunately,

methods for computing optimal strategies have always been impractical to implement.

Grid discretization is often used in Artificial Intelligence to solve problems in AI planning

[38]. In AI, the focus is on solving the problem of finding and/or catching the evader us-

ing algorithms that search the discretized state space along with heuristics to speed up the

process. The problem of deciding if a solution exists is only approached theoretically and

is often considered intractable. In contrast, our approach presents a grid-based solution that

can be applied in practice to a robotics path planning problem. It enriches the literature by

linking to existing research in that area, modeling realistic constraints of bounded speeds,

different player speeds and limited sensor range.

2.2.1 Classical Results

Two problems of special appeal are studied in [39] and [40] which were first posed by Isaacs

in his famous book on Differential Games [41]. In [39], Fitzgerald presents a solution to the
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Princess and Monster Problem, while a solution to the Angel Problem is presented in [40].

In [42], Gal considers search games in which the searcher moves along a continuous trajec-

tory until he captures the hider in either a network or a two dimensional region. Both mobile

and immobile hiders are considered. The strategy of an immobile hider is a probability dis-

tribution of the hiding point, while the strategy of a mobile hider is a continuous path inside

the region.

Such classical results continue to find applications to real-world critical problem like: biol-

ogy [43], finding terrorists [44] and scheduling patrols for fare inspection in transit systems

[45], to name only a few recent applications.

2.2.2 Decidability and Differential Games

Bhattacharya et al. address the problem of maintaining the visibility of an escaping evader

and show that it is completely decidable around one corner with infinite edges [46]. The

authors then extend their work in [5] to deal with more general environments with convex

obstacles. They split the environment into decidable and non-decidable regions and approx-

imate bounds on these regions. They also provide a sufficient condition for escape of the

evader. Recently, they used differential games theory to analyze that problem under com-

plete information, suggesting a formulation in which the pursuer maximizes the time for

which it can track the evader while the evader minimizes it [47, 48]. Computing equilibrium

strategies gives necessary and sufficient conditions for tracking. They present results around

a point obstacle, a corner and a hexagonal obstacle.

2.2.3 Static Games

In contrast to feedback strategy games, which require solutions to Hamilton-Jacobi-Issacs

partial differential equations (PDEs) in the joint configuration space, like the one described

in 2.2.2, the authors in [49] study a static version of the game which can be solved directly

in the state space by a proposed PDE-based technique. In the static setting, both players

choose their controls at the beginning and run in open-loop with the same objectives of

maximizing vs minimizing the total visibility time. The advantage of this restricted version

is significant savings in computational cost, at the expense of more conservative information
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pattern compared to the original close-loop version. Furthermore, the authors describe how

to generalize their algorithm to games with multiple evaders and other applications to target

tracking.

2.2.4 Cops and Robbers

Recently, a polynomial time algorithm that decides which player wins and in how many

steps has been developed [37]. Mathematical results from graph theory are used to present

bounds on the time complexity of the problem that can be generalized, in theory, to the case

of more players. A realization of such algorithms in real world problems is still not practical.

In contrast, the grid-based solution we present can be applied in practice to a robotics path

planning problem.

Moldenhauer and Sturtevant [50] compute optimal move policies offline in 2.5 hours per en-

vironment using an enhanced form of the algorithm in [37]. For that reason, several heuristics

have been used in order to compute near optimal approximations in practical time. In [51],

different optimal strategies are studied on small maps while in [50], larger maps are used to

evaluate less optimal strategies against optimal ones. One of the first practical implemen-

tations of the cops and robbers game is presented in [38] under the name of moving-target

search. Since then, that problem has been extensively studied using a variety of heuristics

such as incremental heuristic search [52] and Cover heuristic [53], to name a few recent

references.
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Chapter 3

Coverage Maximization in Multi-Camera Networks

We study the problem of orchestrating a network of multiple cameras to track multiple mobile

targets in an environment populated with obstacles of arbitrary shapes [3]. We are primarily

interested in small scale networks consisting of a relatively small number of cameras. Several

hierarchical methods have been presented to handle larger networks. Our primary objective

is to devise an efficient algorithm that can be applied in real time to a real surveillance system.

We assume a top-view wide-angle camera (master camera) covers the whole area with all

moving targets. Frames captured by this master camera are used to estimate target locations.

The system uses these estimated locations to automatically control the orientation of a set

of high resolution PTZ cameras (slave cameras) to provide high quality coverage of these

targets. Our problem reduces to assigning an orientation for each camera in the network, in

order to cover the maximum possible number of targets.

3.1 Problem Definition

Traditionally, each camera is assumed to choose from a limited set of discrete orientations

e.g., 8 different angles. The combinatorial nature of the discrete camera orientation assign-

ment problem makes it difficult to define a continuous objective function as far as target

coverage is concerned. This situation leaves us with either the computationally prohibitive,

but exact, integer programming formulation or trying different suboptimal heuristics that al-

low for computationally efficient and evidently practical solutions as in [17]. The problem,

however, could be attacked by linear programming relaxation but such a formulation is, to

the best of our knowledge, not yet presented in the literature. Taking visibility constraints

into consideration, to account for the possible presence of walls and obstacles, as is the case

in this study, would make it even harder to model.

12



The assignment problem at hand has been believed to be NP-hard for quite some time. The

authors in [16, 17, 29] present several arguments to this point which all start by first mapping

the problem to a set structure similar to the Maximum Coverage Problem. This essentially

rids the problem of its geometric nature and no formal reduction was presented. A rigorous

hardness proof, which presents a formal reduction from a variant of the Planar 3SAT prob-

lem, later appeared in [31]. This implies that, unless P = NP , seeking an optimal solution

incurs a computational cost that is exponential in the size of the problem e.g., for m cameras

each having 8 possible orientations this amounts to an O(8m) cost per assignment.

The problem does bear great similarity to the well known Set Cover Problem (SCP), with the

additional difficulty of multiple orientations per camera. A linear programming relaxation of

SCP was first considered by Lovász [33] which could yield a logarithmic factor approximate

solution through randomized rounding [54]. It was later showed that the greedy strategy of

repeatedly selecting the set covering the largest number of uncovered elements, or the set

with the maximum weight in the weighted version of the problem, performs equally well

[55]. This should justify why the greedy algorithms suggested in [15, 17] are very effective.

In this chapter, we develop two novel heuristic methods for the camera orientation assign-

ment problem. Both methods are based on the greedy heuristic for the set cover problem as in

[15, 17]. The first method defines a relaxed notion of coverage and uses it as a weight func-

tion to choose from the available sets at each step. The second method reuses the sweeping

concept from computational geometry to expose maximal sets at each step.

We use the following notation below: We let C be the set of cameras in the network and T

be the set of targets to be covered. We also set M = |C| and N = |T |.

3.2 A Continuous Coverage Function

Taking hint from Lovász’s relaxation, we seek a relaxed coverage function where covered

and non-covered targets are not strictly mapped to 1 and 0, respectively, as one would expect.

Such a function might be easier to handle while still preserving the coverage maximization

objective. The following technical lemma provides useful hints towards the development of

such flexible objective functions to our problem.
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Lemma 3.1. Fix a positive real wc,t for each camera c and target t, such that wmin

wmax
> N−1

N
.

Any weight function of the form

fc(t) =




wc,t, c covers t,

0, otherwise,
(3.1)

describes at least one optimal solution maximizing
∑

c∈C
∑

t∈T fc(t).

Proof. Let n and n′ be the sizes of two sets of targets the system could possibly cover, with

n, n′ ∈ {0, 1, 2, ..., N}. For n > n′, any coverage maximization objective function should

always assign a larger total weight to the larger set. Now, assume all targets in the larger set

were assigned the smallest possible weight, i.e., wmin while all targets in the smaller set were

assigned the largest possible weight, i.e., wmax. We must have n wmin > n′ wmax or wmin

wmax
>

n′
n

. This is trivially satisfied by the usual binary coverage function with wmin = wmax = 1.

However, we desire to find the lower bound for this ratio which is clearly determined by the

largest value of the right hand side of the inequality n′
n

. Maximizing the numerator simplifies

this to n−1
n

, which is strictly increasing in n. Setting n to the maximum possible value, N ,

yields the largest ratio and forces wmin

wmax
> N−1

N
. When n = n′, the two sets do not necessarily

get assigned the same weight. Hence, the set maximizing the objective function above always

achieves maximum coverage.

Such a characterization of weight functions reveals the undesirable discontinuity over cov-

ered and non-covered targets. Notice that non-covered targets still had to receive zero weight

while any covered target receives a positive weight. This corresponds to the discrete tran-

sition from the covered state to the non-covered state as the camera pans so that the target

becomes outside its FOV. We suggest a workaround exploiting the geometric structure of the

problem through what we call Angular Relaxation (AR).

It is usually preferred to have subjects at the center of the FOV rather than near the sides.

This leads to a natural weight function we derive from the angular offset θ computed in the

reference frame defined by the camera and its current direction d. Motivated by Lemma 3.1,

we start with the following expression

fc(t) =

(
N − 1

N

)θc(t)/θmax

(3.2)
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where θc(t) is the offset of target t with respect to camera c and θmax is the maximum offset,

i.e., half the FOV. For covered targets, θc(t) ∈ [0, θmax) and we get fc(t) ∈ (N−1
N
, 1]. This

means subjects at the center are assigned weights of 1 which decays exponentially to the

sides of the field of view, and attains a value of N−1
N

right outside the FOV. Subjects further

outside the FOV get smaller weights approaching 0. However, to achieve near zero weights

for targets right outside the FOV we relax the bounding ratio for targets inside the FOV and

use 1
e

as the base instead of N−1
N

.

As the camera pans, θc(t) becomes a function of d. In particular, a given target receives

an additional offset defined by the triangular wave 2π| d
2π
− b d

2π
− 0.5c|. We approximate

θc(d, t) by its Fourier series using only the first two terms, π
2

(
1− cos (θc(t)− d)

)
, as shown

in Figure 3.1 for a target located at 0◦.
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FIGURE 3.1: Angular offset θc as a function of the panning angle d.

With that, we reach the following form:

fc(d, t) = e
−
π

2

(1− cos θc(d, t)

θmax

)

(3.3)
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Furthermore, we weight the whole set of targets covered by having any one camera assigned

to a given direction by:

F (c, d) =
1

|Tc|
∑

t∈Tc
fc(d, t) (3.4)

where Tc is the set of all targets that could possibly be covered by c as in [15]. Figure 3.2

shows an example with four targets at angular offsets [1, 1.3, 1.8, 4]. Notice how each indi-

vidual target contributes a peak of height 1 at the offset where it is located. The distribution

of targets defines the shape of the objective function which peaks at the hottest region with a

value approximating the anticipated coverage, before getting normalized by 1
|Tc| .
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FIGURE 3.2: Composition of the objective function for four targets.

Our heuristic is a direct application of the greedy algorithm for weighted set cover [56] using

Equation 3.4. While the algorithm was not developed for our case it still serves as a good

start and we consider more tailored formulations as future work e.g., [57]. The algorithm

repeatedly selects the pair (c∗, d∗) maximizing F (c, d), till all cameras are assigned. Gradient

ascent initialized at the target yielding the highest value of the objective function can be used

to find the direction d∗ for each camera. As the number of iterations required to compute
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d∗ is limited, i.e., a small constant, maximizing the relaxed coverage achievable by a single

camera takes O(N2). Hence, each iteration costs O(MN2) to compute the best orientation

for each camera in O(N2), and we repeat for all remaining cameras. With M cameras to

assign, the algorithm terminates after M iterations at a total cost of O(M2N2).

3.3 Coverage by Angular Sweeping

Taking hint from the algorithms suggested in [15] and [17], where panning was restricted to

just 8 orientations, we make the following observation.

Observation 3.2. Any set of targets covered by a given camera can always be covered by

panning the camera till one or more of the targets lie exactly on either side of the FOV.

To greedily maximize its coverage, a camera can iterate over the targets it could possibly

cover and compute the coverage achieved by panning to have the target at hand at either the

right or left sides of the FOV as in Figure 3.3. We also note that, using only one side of the

FOV to perform the sweep is enough.

FIGURE 3.3: Sweeping always finds maximal groupings (dashed)
unlike discrete orientations (solid).

As the FOV rotates, all possible groupings of targets will be encountered. After the panning

angle yielding the highest coverage is found, it may be arbitrarily shifted to center the FOV

onto the targets to be covered. Greedily choosing the camera achieving the highest coverage

and proceeding till all cameras are assigned amounts to an O(M2N2) algorithm with O(N)

panning angles and an O(N) cost to compute the coverage. This method easily presents an
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(A) (B) (C)

FIGURE 3.4: Sample test maps with assignment and coverage, showing walls (black),
cameras (red), covered (green) and non-covered (blue) targets.

upper bound for similar greedy heuristics with discrete orientations, regardless of how many

they are e.g., 8 [15] or higher, while at the same time being more efficient.

3.4 Experimental Evaluation

We study the performance of our new heuristics, Angular Relaxation (AR) and Angular

Sweep (AS), compared to the Centralized Greedy Algorithm (CGA) [17] and Centralized

Force Algorithm (CFA) [15], all against optimal solutions obtained by brute-force search

over the camera orientation space (OPT).

As all earlier methods we compare against use a discrete number of panning angles, that

number is indicated in the label of each graph. We present results for different scenarios

with and without walls to simulate different indoors and outdoors environments. We use the

coverage metric as the number of covered subjects divided by the total number of subjects

in any given frame or iteration. We do not bound the FOV by maximum/minimum ranges as

we are interested in small scale setups and study centralized algorithms. We use manually

designed maps with different camera setups and random initial target locations as in Figures

3.4A to 3.4C.

Figure 3.5 shows the superior performance of AS. AR performed much better in the presence

of walls as in Figure 3.6. Figure 3.7 and 3.8 show runtimes for different numbers of static

targets, performed on an Intel i7 Quad Core with 4 GB of RAM. Our methods are more

efficient than the CFA-32 and higher, with the AR performing faster in the presence of walls.
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FIGURE 3.5: Varying the number of static targets without walls.
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FIGURE 3.6: Varying the number of static targets with walls.
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FIGURE 3.7: Runtime varying the number of static targets without walls.

10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of static targets

A
v
e
r
a
g
e
 
r
u
n
t
i
m
e
 
p
e
r
 
r
e
a
s
s
i
g
n
m
e
n
t
 
(
m
s
)

 

 

AS

AR

OPT−8

CFA−8

CFA−32

CFA−64

FIGURE 3.8: Runtime varying the number of static targets with walls.

20



The table below shows the coverage results of Figure 3.6. By examining the coverage rate

achieved by each method, one easily realizes the clear advantage of our AS.

N 10 20 30 40 50
CGA-8 63.61 56.26 53.40 51.78 50.85
CFA-8 63.71 56.37 53.63 51.79 50.87
OPT-8 64.21 56.89 54.12 52.18 51.31

AR 69.87 63.27 60.42 58.66 57.70
CFA-32 71.78 65.47 62.89 61.14 60.07
CFA-512 73.02 67.45 64.80 62.90 61.82

CFA-1024 73.11 67.47 64.89 62.97 61.90
CFA-5120 73.12 67.55 64.91 63.03 61.92

AS 73.14 67.57 64.92 63.03 61.93

TABLE 3.1: Coverage rate for varying numbers of static targets with walls.

Finally, we simulate dynamic scnerios by allowing targets to move. For each map, we did

1000 iterations with camera assignments being recomputed every 10 frames. We did not pan

cameras until the next assignment and assume that panning is performed instantaneously. We

assume all targets move at the same speed for every step they take. Targets repeatedly select

a random destination point and move towards it in straight lines. Figures 3.9 and 3.10 show

the average coverage rate for each method over all test maps. Again, AS proves to be the

best available solution.
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FIGURE 3.9: Varying speed of targets without walls.
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FIGURE 3.10: Varying speed of targets with walls.
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Chapter 4

Camera Experiments

In this chapter, we give an overview of the associated experimental study performed during

this thesis work to test our proposed methods in different environments. The experimental

work proceeded in phases corresponding to the Alex-Eng-REP-21grant funding and purchase

cycles.

First of all, I would like to acknowledge our past collaborators who made significant contri-

butions towards completing this experimental work. Namely, I must begin by acknowledging

Moamen Mokhtar who joined our team as an intern in Summer 2011, and became responsi-

ble for implementing crucial parts of our software tools. Moamen have always been ready

to help and continued to provide useful comments even after leaving the team. In Summer

2012, we were joined by Ibrahim Bassiouni, who took over the responsibilities of Moamen

and helped maintain and enhance our tools to perform the final stages of the experiments.

Other members who joined this effort are: Ahmed Emara, Mohamed Fahmy, Ahmed Gad

and Mohamed Aref. Finally, I would like to thank our colleagues, students and friends who

volunteered as actors in the human tracking experiments.

4.1 Simulated Environments

We implemented and used two simulators. The first is a full-fledged 3D simulator with

animation and human models based on the jMonkeyEngine game engine [58]. We developed

the second simulator, which employs a simpler 2D model, but enables thousands of runs in

a few seconds. Both simulators perform the basic requirement of targets moving among

opaque obstacles. Screen shots are shown in Figures 4.1 to 4.3 below.

1Alex-Eng-REP-2 is the Alexandria University, Faculty of Engineering, Research Enhancement Program,
Cycle 2, March 2010. The grant is offered by the Scientific Publication and Research Development Fund
(SPRDF) for enhancing the research conducted by faculty members.
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FIGURE 4.1: Master view in the 3D simulator showing camera to target assignments. Green
and pink crosses indicate true and estimated target locations, respectively.

FIGURE 4.2: Full view of the 3D simulator, with frames from both master and slave cameras.
The lines connecting cameras to targets indicate if the target is covered (red) or not (blue).
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FIGURE 4.3: 2D simulator with a sample map, showing walls (black),
cameras (red), covered (green) and non-covered (blue) targets.

4.2 Computer Vision Methods

Moving from simulators to real world experiments requires the use of a computer vision

system to analyze video, detect moving objects and track them. A recent good survey of

these methods is detailed in [59]. Though our research has not focused on enhancing video

analyzing techniques, video tracking is applied to the stream of frames being sampled from

the master camera. We assume a constant sampling frequency. Each frame goes through a

processing chain of five stages in order to detect moving objects and estimate their locations,

as summarized in Figure 4.4. A brief description of each stage is presented below.
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FIGURE 4.4: Processing stages of sampled frames.

4.2.1 Background Subtraction

The first step in object detection is to compute the difference between the input frame and

the background image. An input frame is represented as a two dimensional matrix of pixels.

Differences in pixel values indicate pixels that are likely to be part of a moving object. Figure

4.5B shows an input frame after applying background subtraction, with potentially moving

pixels shown in white. With such pixels being distinguished from the background, they

constitute the foreground image of moving objects which we are interested in processing.
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4.2.2 Thresholding

Fuzziness, bad illumination, and other factors may introduce noise to the input video stream,

which results in erroneously detecting background pixels as part of a moving object. Conse-

quently, a threshold is applied to discard pixels with relatively small difference values which

are most likely due to noise. A pixel exceeding the threshold is considered part of the fore-

ground and is colored in white. Otherwise, the pixel is completely ignored and colored in

black. Figure 4.5C shows the thresholded image.

4.2.3 Dilation

The input to this stage are blobs of white pixels representing moving objects. However, a

single moving object might appear as multiple disconnected objects within the area where

the real object is located in the frame. Dilation [60] is basically a morphological operator

that diffuses a pixel value to its neighboring pixels, so close by disconnected object will be

linked to form a single blob as required. Figure 4.5D shows the results of blob dilation to the

thresholded frame.

4.2.4 Blob Detection

Now, foreground objects can be located in the frame. Blob detection is the process of labeling

each pixel with a number identifying which object it belongs to. Pixels labeled with the same

number are considered a single entity with a unique ID and a red border is drawn around it.

Figure 4.5E shows the final result with the labeled blobs.

4.2.5 Blob Correlation

After assigning a label to each foreground blob, it is necessary to correlate the blobs in the

current frame to the blobs in previous frames. A basic correlation algorithm is employed

which simply calculates the difference in position of each pair of blobs in two successive

frames. Blob pairs with the smallest offset are most likely the same blob after moving in the

new frame and are given the same label as the matched blob.
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(A) Generated background.

(B) Background sub-

traction.

(C) Thresholding (D) Dilation

(E) Final result with labeled blobs.

FIGURE 4.5: Video processing steps needed to track moving targets.
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4.2.6 Background Generation

As described above, the tracking algorithm assumes a static background for use in back-

ground subtraction. A static background may not be available, i.e., when the system first

goes online, so it is required to generate such a background. A sequence of frames at the be-

ginning are taken. The estimated background is constructed using the most frequent values

at each pixel.

4.2.7 Closed Loop Testing

In order to test the video tracking implementation of the method described above, before

going through the hassle of setting up a real camera network, we used our 3D simulator

to experiment with four moving subjects and obstacles. Figure 4.1 depicts the simulated

environment with the objects being tracked. Green crosses indicate the true location of the

object while pink crosses mark the estimated object locations.

4.3 Hardware Calibration

The next step in moving to real world experimentation is to understand the limitations of our

hardware to be able to design our camera management schemes accordingly.

4.3.1 Hardware Specifications

We used two models of cameras in the test. PZ7132 was used as the master camera, because

it offers a wide field of view, while PZ7122 was used as the slave cameras. Table 4.1 shows

the specifications of each model. The camera network we used consists of the following:

• One Linksys wireless router model WAG120N.

• One VivoTeK PTZ camera model PZ7132 WLAN.

• Four VivoTeK PTZ camera model PZ7122 WLAN

• One personal laptop works as application server.
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Specifications Camera Model
PZ7132 (Master Camera) PZ7122 (Slave Cameras)

Pan Range 350◦ 300◦

(-175◦ , +175◦) ◦ (-150◦ , +150◦)
One Pan Move 19.4◦ 16.6◦

Pan Speed 350◦ in 41 seconds 300◦ in 38 seconds
1.3 seconds per 10◦

Tilt Range 125◦ 135◦

(-35◦, +90◦) (-45◦ , +90◦)
One Tilt Move 11.6◦ 15◦

Tilt Speed 125◦ in 17.1 seconds 135◦ in 17.6 seconds
1.3 seconds per 10◦

Zoom 2.6x Optical zoom 10x Optical zoom
Zoom speed 1.1 seconds per one zoom move
Complete zoom in 10.1 seconds 17.4 seconds

TABLE 4.1: Cameras Specifications

The plan was to make use of wireless connection abilities in the camera models. However,

that did not work as the access point could not handle the load of all five wireless cameras,

especially the remote slave cameras. Therefore, we resorted to using Ethernet cables instead.

The access point has four Ethernet ports, so all slave cameras could be wired to the access

point. Still, the master camera and application server connected to the access point wirelessly.

4.3.2 Latency Measurements

This section presents results of the experiments we conducted to measure camera latencies

which is defined as the difference in time between the scene in front of a camera changing,

and that change appearing on an appropriate monitor [61].

4.3.2.1 Equipment

The following equipment were used to perform the test.

• One Linksys wireless router (WAG120N).

• One VivoTeK PTZ camera (PZ7132).
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• One VivoTeK PTZ camera (PZ7122).

• One personal laptop as the application server.

4.3.2.2 Methodology

Testing was performed by running the mini camera network for 10 minutes then calculated

the average latency in milliseconds for 3 different sampling frequencies, measured in Frames

Per Second (FPS). The process was repeated twice to study the performance with and without

real-time video tracking. Captured frames from the master camera are 320×240 pixels while

frames from the slave camera are 352 × 288 pixels. Note that samples from slave cameras

are 1.32 times the size of master camera samples.

4.3.2.3 Master Camera Only

Tables 4.2 and 4.3 show the results of testing a single master camera at two different distances

from the access point. The results are summarized in Figure 4.6. We notice a considerable

increase in latency after increasing the distance from the access point. The added latency due

to real-time video tracking was negligible for this single camera scenario.

Camera Distance FPS

20 10 5

Master Camera 1 meter 152 232 273

8 meters 263 277 321

TABLE 4.2: Latency results for one camera without real-time tracking.

Camera Distance FPS

20 10 5

Master Camera 1 meter 201 234 314

8 meters 322 291 361

TABLE 4.3: Latency results for one camera with real-time tracking.
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FIGURE 4.6: Latency tests of one camera as in Tables 4.2 and 4.3.

4.3.2.4 Master/Slave Network

Next, we measure latency for two cameras connected simultaneously, with each camera

working on a dedicated thread. Again, we study two cases with different distances between

the cameras and the access point, as summarized in Tables 4.4 and 4.5. Figure 4.7 shows

a bar chart with latency values. Note that both cameras were unable to serve 20 frames per

second at a distance of 8 meters from the access point while running the tracking code. How-

ever, lower frame rates seemed to work fine. This limitation placed a hard constraint on the

design of our physical setup.

Camera Distance FPS

20 10 5

Master Camera 1 meter 197 214 313

8 meters 660 281 276

Slave Camera 1 meter 303 281 323

8 meters 828 447 401

TABLE 4.4: Latency results for two cameras without real-time tracking.
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Camera Distance FPS

20 10 5

Master Camera 1 meter 197 331 393

8 meters connection lost 281 276

Slave Camera 1 meter 303 281 323

8 meters connection lost 447 401

TABLE 4.5: Latency results for two cameras with real-time tracking.

FIGURE 4.7: Latency tests of two cameras working simultaneously as in Tables 4.4 and 4.5.

4.3.3 Conclusion

The presented results showed that both the distance and number of running cameras have

a great impact on the latency of captured frames. When two wireless cameras are working

at a distance from the access point, latency increased considerably. The access point could

not handle the load from the two cameras and connections got lost. Higher frame rate gave

better results when the two cameras were operating near the access point, while lower frame
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rate gave better results when operating at a distance. However, with one camera only, higher

frame rate always gave better results due to the light load on the access point.

We summarize here the key specs that affected our decisions. The Vivotek PZ7131 model has

a 2.6x optical zoom only but an angle of view 73◦ in the horizontal direction and 55◦ in the

vertical direction. This makes the PZ7131 suitable for capturing wide top-view frames. We

used the PZ7112 model, which allows up to 10x zoom, as slave cameras. Both cameras have

a pan step of 10◦. It takes 1.3 seconds to perform a pan command and 1.1 seconds to perform

a zoom command. Additional constraints exist on the range of the wireless signal, estimated

at 8m, and the number of wireless cameras that can work simultaneously on the same access

point. These limitations are taken into consideration when controlling the cameras. More

information can be found in the data sheets [62].

4.4 Toy Example

We started our first real world experiment with electric wires still unavailable. The experi-

ment was installed in the 7th floor of the Electrical Engineering Building. The experiment

setup diagrams, photos from the setup and typical frames are shown in Figures 4.8 to 4.10.

The center frame in Figure 4.10 is for the top-view from the master camera with the four

slaves (not visible) installed at the four corners of the scene. Targets being tracked are sur-

rounded by red boxes while yellow lines indicate the direction of each camera. The views

from the slaves are shown as the small frames at the corresponding corners of the main view.

We used toy vehicles initially to test the system. Tracking humans with this setup was not

successful due to the low height at which the master camera is installed, at 4.3m, and the

small area it was able to cover at that height. We performed a basic video tracking test

nonetheless as shown in Figures 4.11 and 4.12.

4.5 Prototype System

As soon as we received the first shipment of electric wiring and outlets, we moved our setup

to the main hall in the Preparatory Building. This hall has the advantage of having higher

ceilings, allowing the master camera to be installed at 6.5m, which provides a wider top-view

of 8× 5.5m2.
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(A) Connections of the master
camera and laptop to the ac-

cess point.

(B) Connection of slave cameras to the
access point.

FIGURE 4.8: Connection diagrams.

(A) Master camera at height 4.3m. (B) Top-view frame showing the setup.

FIGURE 4.9: Physical setup

The main setup of the experiment is shown in Figures 4.13 to 4.16. Figure 4.17 shows a

screenshot of the system state for one experiment with the deployment described above.

The main problems that we faced in this setup are the lack of sufficient network cable (wire-

less connections congest easily) and slow processing power. In addition, strong sunlight

coming from the building’s main gate contributed noise to the tracking results.
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FIGURE 4.10: Example frame from an indoors toy tracking experiment.
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FIGURE 4.11: First attempt at pedestrian tracking.

FIGURE 4.12: With the master camera at a low height, only a small area could be covered.
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FIGURE 4.13: Master camera at height 6.5m.
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FIGURE 4.14: Below the master camera.

4.6 Autonomous Surveillance System

Upon completing the full equipment set, we moved to the main hall of the Administration

Building. With an 8-port switch, a powerful mobile workstation and additional Ethernet and

electric cables. We were able to install and test a full working prototype for an autonomous

surveillance system.

We installed the top-view master camera hanging from the second upper floor balcony to

offer a 14× 6m2 view of the ground floor from a height of 12m. The system setup is shown

in Figure 4.18 and 4.19 with a typical frame in Figure 4.20. The average coverage is shown

in Table 4.6 for a test footage of over 8 minutes.

# targets 1 2 3 4 5 6
% coverage 100 99.1 98.9 97.6 96.9 95.2

TABLE 4.6: Coverage evaluation in real experiments
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FIGURE 4.15: Slave camera (wired).
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FIGURE 4.16: Slave camera (wireless).
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FIGURE 4.17: Example frame from an indoors human tracking experiment.
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FIGURE 4.18: Main setup in Administration Building (master camera).
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FIGURE 4.19: Main setup in Administration Building (slave camera).
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FIGURE 4.20: Example frame from the indoors experiment in Administration Building.
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4.7 Conclusion

The multi-camera tracking system works as follows. The cameras are first calibrated and the

slaves locations are identified in the master top-view. A lot of work on calibration has been

made, such as [19, 63]. The master camera is initialized by capturing an empty scene for

a few seconds to compute the background. More sophisticated techniques for background

subtraction has been suggested in the computer vision community and can be incorporated

in our system. However, we are more concerned with camera coordination schemes in the

present work. A detailed survey of visual tracking can be found in [59]. After the background

has been computed, the system runs autonomously, tracking all persons that appear in the

scene and controlling the cameras according to the employed objective function. We use a

variable minimum blob size and shadow removal techniques in the top tracking procedure.

We designed and implemented a real-time surveillance system that continuously tracks tar-

gets as they move into a surveyed scene. We use Vivotek pan-tilt-zoom network cameras

with up to 10x zoom capabilities [62]. A top-view wide-angle low-resolution master camera,

i.e., Vivotek PZ7131, is installed above the scene to provide a good view of the area, while

four high zoom slave cameras, i.e., Vivotek PZ7112, are placed at the four corners of the

surveyed environment to follow the human targets. The system is portable and can be easily

installed in different environments. We experimented in the main hall of two buildings plac-

ing makeshift obstacles to block the view of targets. Volunteers acted as pedestrian targets

moving in and out of the scene. The first set of experiments was performed with a master

camera placed at a height of 6.5m covering a rectangle approximately 8× 5.5m2. With this

first setup, we tested both coverage and zoom quality for up to 4 targets. In the second setup,

the master camera was placed at a height of 12m to cover a larger area of approximately

14×6m2. Maximizing target coverage is the primary objective of this study, where coverage

is defined as the number of targets captured by at least on slave camera. We showed the

average coverage achieved for up to 6 persons.

46



Chapter 5

Visibility Induction for Discretized Pursuit-Evasion

In this chapter, we move to the second variant of the visual surveillance problem we have

addressed in this thesis. We study a variant of the classical pursuit-evasion game, in which an

agent moving amongst obstacles is to be maintained within sight by a pursuing robot. This

problem belongs to the more general visibility-based pursuit-evasion problems [7] where a

pursuer needs to compute a path which guarantees finding an evader that might be hiding in

an environment.

5.1 Problem Definition

Both players, the pursuer and the evader, are modeled as points that can move in any planar

direction (holonomic robots). Each player knows exactly both the position and the velocity

of the other player. We consider two-dimensional environments containing obstacles that ob-

struct the view of the players. Obstacles have known arbitrary geometries and locations. The

assumption of complete information is used here to derive the outcome of the game, since

if some player loses with complete information, it will always lose under other conditions.

Both players have bounded speeds, move at different speeds and can maneuver to avoid ob-

stacles. We will denote the maximum speed of the pursuer by vp, that of the evader by ve
and their ratio by r = ve/vp. Players are equipped with sensors that can “see” in all direc-

tions (ommnidirectional) and as far as the environment boundaries or obstacles, whichever is

closer. We will see later that we can model minimum and maximum ranges for sensors with

a simple variation in our algorithm.

Deciding the game requires the construction of a binary function in two variables for the

initial positions of both players. In order to study the progress of the game, we introduce

a third parameter for the time index which is a discrete version of time in the continuous

case. We call this function Bad(p, e, i). When Bad evaluates to 1, it means there exists a
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strategy for an evader starting at e to go out of sight of a pursuer at p by the ith time index. It

is clear that Bad(p, e, 0) corresponds directly to visibility constraints and is straight forward

to compute. We seek an algorithm to determine the value of Bad(p, e), with the time index

dropped to indicate the end result of the game as time tends to infinity. In logical contexts,

Bad is used as a predicate.

5.2 The Visibility Induction Algorithm

Fix a pursuer and evader at grid cells p and e and let i be the time index. If Bad(p, e, 0) = 1,

then the evader is not initially visible to the pursuer and the game ends trivially with the

pursuer losing. Now, consider the case where the evader manages to escape at step i + 1.

To do so, the evader must move to a neighboring cell e′ where no corresponding move exists

for the pursuer to maintain visibility. In other words, all neighbors p′ of the pursuer either

cannot see the evader at e′ or, otherwise, were shown unable to keep an evader at e′ in sight

up to step i, i.e., Bad(p′, e′, i) = 1. This means that when Bad(p, e, i + 1) is updated to 1,

the outcome of the game has been decided for the configuration in question as a losing one,

i.e. there is a strategy for the evader to escape the sight of the pursuer at some step ≥ i, but

not any sooner. We useN (c) for the set of neighboring cells a player at c can move to. With

that, we have the following recurrence:

Bad(p, e, 0) =




0 e is visible to p

1 otherwise

Bad(p, e, i+ 1) = 1 ∀(p, e) ∃e′ ∈ N (e) s.t.

∀p′ ∈ N (p)Bad(p′, e′, i) = 1

(5.1)

Equation (5.1) computesBad(p, e, i+1) inductively by evaluating the necessary escape con-

ditions as of the ith step. For any given non-trivial initial configuration, the very first appli-

cation of the inductive step would only yield a change for cases where the evader starts right

next to an obstacle and is able to hide behind it immediately. That is because theBad(p, e, 0)

is only 1 for initially obstructed cells. After many iterations of the induction over all cells,

more pairs farther and farther from obstacles get marked as bad. The expansion of the bad

region only stops at cells which the pursuer in question is able to track and the function
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stabilizes with Bad(p, e) = 1 if and only if the evader can win. This bears a discrete resem-

blance to integrating the adjoint equations backward in time from the termination situations

as presented in [48].

Algorithm 1 performs backward visibility induction as defined in (5.1) to matrix M which

is initialized with the visibility constraints. To determine mutual visibility between cells,

we use Bresenham’s line algorithm [64] to draw a line connecting every two cells and see

if it passes through any obstacle. This approach works for any geometry and is easy to

implement. More sophisticated algorithms could be used but are hardly justified. Restrictions

on visibility can be easily incorporated by modifying the initialization part at line 5. For

example, for a limited sensing range Rmax, we add or D(p, e) > Rmax, where D is the

distance. If the pursuer is not to come any closer than a minimum distance to the evader, a

lower bound Rmin can be added as well.

Algorithm 1: Decides the game for a given map.
Input : A map of the environment.
Output: The Bad function encoded as a bit matrix.
Data: Two N ×N binary matrices M and M ′.

1 begin
2 Discretize the map into a uniform grid of N cells.

// Visibility initialization
3 Initialize M and M ′ to 0.
4 foreach (p, e) ∈ grid× grid do
5 if e not visible to p then M [p, e] = 1
6 end

// Induction loop
7 while M ′ 6=M do
8 M ′ =M
9 foreach (p, e) ∈ grid× grid do

10 if ∃e′ ∈ N (e) s.t.∀p′ ∈ N (p)M ′[p′, e′] = 1 then M [p, e] = 1
11 end
12 end
13 return M
14 end

5.2.1 Correctness

We start by showing that the algorithm always terminates. At the end of each iteration, either

M ′ = M and the loop exits or more cells get marked as bad, which stops when all cells are
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marked, leaving M ′ =M . Next, we use this induction:

1. By line 6, M contains the correct decision at step 0 as enforced by the visibility con-

straints computed in line 5.

2. After the ith iteration of the loop at line 9, M [p, e] = 1 iff the evader has an escape

strategy e′ where the pursuer has no corresponding strategy p′ with M [p′, e′] = 0.

5.2.2 Complexity Analysis

The algorithm usesO(N2) storage for the output and temporary matrices M and M ′. Initial-

izing the matrices takes O(N2
√
N) time if naive line drawing is used for each pair, which is

linear in the length of the line. The inner loop at line 9 processes O(N2) pairs each costing

O(κ2) where κ = max(|N (p)|, |N (e)|). Per the preceding discussion, at the ith iteration, the

algorithm decides the game for all escape paths of length (i + 1). Let L be the length of the

longest minimal escape trajectory for the given environment. Obviously, the induction loop

at line 7 is executed O(L) times. We can see that L depends on the largest open area in the

environment and also the speed ratio r, with equal speeds being the worst case, where the

distance between the players may not change, as the game ends earlier otherwise. A worst

case scenario is an equally fast evader starting very close to the pursuer. For such an evader

to win, it would need to move along with the pursuer to the closest obstacle where it can

break visibility. We conclude that L = O(N) and would typically be smaller in practice.

With that, the visibility induction algorithm is O(κ2N3).

Theorem 5.1. (Visibility Induction) Algorithm 1 decides the discretized game for a general

environment in O(κ2N3).

Proof. By the discussion above in 5.2.1 and 5.2.2, the proof follows.

5.3 Practicalities and Optimizations

We present several enhancements to the visibility induction algorithm and the speedups they

yield. Our time measurements are performed using test maps of 100 × 100 cells for speed

ratios [1, 4
5
, 2
3
, 1
2
, 1
3
, 1
5
]. All run times are averaged over 10 runs.
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5.3.1 Memory Savings

As binary matrices, both M and M ′ need only 1 bit per entry. It is also obvious we need

only store bits for valid states, which reduces N to the number of free cells. This allows N

to exceed 60, 000 using less than 1 GB of memory, which enables processing at resolutions

around 250× 250 cells.

5.3.2 Parallelization

Observe that the loop at line 9 reads from matrix M and writes to M ′. This means that

M ′ updates are embarrassingly parallel. In our C++ implementation, we used the cross-

platform OpenMP library to exploit this property. By adding a single line of code, we were

able to harness the multiprocessing capabilities commonly available today. This allowed a

36% average speedup.

5.3.3 Caching

It is evident most of the computations are dedicated to evaluating the escape conditions as

presented in (5.1). It is crucial to skip any unnecessary evaluations that yield no updates.

Lemma 5.2. Bad(p, e, i) =⇒ Bad(p, e, j) ∀ j > i

Proof. For Bad(p, e, i+ δ), δ ≥ 1, in (5.1), put e′ = e.

Corollary 5.3. ¬Bad(p, e, i) =⇒ ¬Bad(p, e, j) ∀ j < i

Lemma 5.2 allows skipping pairs that have already been decided by a simple addition to the

condition in line 10.

As Lemma 5.4 suggests, we need only re-evaluate the conditions for those players who wit-

nessed a change at the previous iteration. This can be applied independently to pursuers and

evaders leading to a 45% average speedup. When applied to both we reached 50%. This

comes at an additional O(N) storage, which is negligible compared to the M matrix.
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Lemma 5.4. (Coupled Neighborhoods)

¬Bad(p, e, i) ∧Bad(p, e, i+ 1) =⇒
∃(p∗, e∗) ∈ N (p)×N (e) s.t.

¬Bad(p∗, e∗, i− 1) ∧Bad(p∗, e∗, i)

Proof.

¬Bad(p, e, i) =⇒ ¬Bad(p, e, i− 1) (by C.3)

=⇒ ∀e′ ∈ N (e) ∃p∗ ∈ N (p) s.t.

¬Bad(p∗, e′, i− 1)

=⇒ ¬Bad(p∗, e∗, i− 1)

(5.2)

Bad(p, e, i+ 1) =⇒ ∃e∗ ∈ N (e) s.t. ∀p′ ∈ N (p)

Bad(p′, e∗, i)

=⇒ Bad(p∗, e∗, i)

(5.3)

By (5.2) and (5.3), the existence of (p∗, e∗) is established.

Strict application of Lemma 5.4 results in re-evaluating the conditions only for pairs who

witness related changes. Keeping track of that comes at a higher storage cost of O(N2),

which is equivalent to the M matrix. Adding the level-2 cache resulted in a 52% average

speedup. With that, we reach a new complexity result. Note that caching under paralleliza-

tion is particularly tricky and requires careful update and invalidation mechanisms.

Lemma 5.5. Level-2 caching makes the induction loop O(κ4N2).

Proof. By only processing a pair (p, e) having a related update in both N (p) and N (e), no

pair gets processed more than |N (p)| × |N (e)| = O(κ2) times. As the total number of pairs

is O(N2) and processing a single pair takes O(κ2), this amounts to O(κ4N2).

5.3.4 More Memory Savings

It is possible to do without the auxiliary M ′ matrix. Instead of copying values before the

inner loop and doing all checks on old values, we can use the M matrix for both checks and
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updates. If some entry M [p, e] is not updated, the behavior would be the same. On the other

hand, if M [p, e] got updated, the algorithm would use a newer value instead of waiting for

the next iteration which results in a minor speedup as a side-effect.

Applying all the enhancements discussed in this section led to a 64% average speedup on our

test sample. We notice that for the medium sized square grids we consider, initialization of

matrices is above quadratic by a small factor which is dominated by the number of iterations

L. Furthermore, as κ is typically limited (players have bounded speeds) and can be consid-

ered constant for a given realization, it may be ignored in comparison to N as the algorithm

approaches O(N2).

For the typical case of a limited sensing region of size R, the algorithm need only consider

that many evaders. This effectively replaces one N in all the above expressions and allows

processing at much higher resolutions.

5.4 Experimental Results

We implemented our algorithms in C++ and performed experiments on an Intel Core i7 CPU

running at 2.67GHz with 4GB of RAM. We experiment with manually created environments

containing obstacles of various forms. Initial players positions are randomly selected sat-

isfying certain visibility constraints and the evader’s paths are automatically generated as

discussed in the above section on tracking strategies. We discretized the maps of the used

environments with regular grids of sizes ranging from 50×50 to 400×400 cells and used 4-

connected and 8-connected neighborhoods. In contrast to the diamond shape of 4-connected

neighborhoods, 8-connected neighborhoods are have a square shape. With such fine granu-

larities, we anticipate moving to real world environments.

The effect of varying the grid size on the resolution of decision maps is shown in Figures 5.1

to 5.4 for speed ratios [1, 1
2
, 1
3
, 1
5
]. The boundaries of the nested convex regions are such that

if the two players fall inside a region, the pursuer can track the evader indefinitely, while if

one player is inside and the other outside, the evader can escape. The darker the gray shade,

the smaller the speed ratio. Obstacles are in black and the player mentioned in each figure is

the black dot roughly centered inside all nested regions.
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FIGURE 5.1: Decision map (pur-
suer) - 50x50 grid.

FIGURE 5.2: Decision map (pur-
suer) - 100x100 grid.

FIGURE 5.3: Decision map (pur-
suer) - 200x200 grid.

FIGURE 5.4: Decision map (pur-
suer) - 400x400 grid.
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FIGURE 5.5: Decision map (pur-
suer) around a corner.

FIGURE 5.6: Decision map (pur-
suer) for polygonal obstacles.

FIGURE 5.7: Decision map (evader)
for a circular obstacle.

FIGURE 5.8: Decision map (evader)
with restricted visibility.

Our approach works independently of obstacle shapes and layouts as shown in figures 5.5 to

5.7. Modeling visibility constraints (e.g., limited sensor range) affects the decision regions

as in Figure 5.8. All previous results are computed for 4-connected neighborhoods. Figures

5.9 and 5.10 contrast 4-connected to 8-connected neighborhood maps for a speed ratio of 1
2
.

As we vary the grid size, runtime is affected as shown in table 5.1. It fits a quadratic model

in N (for a fixed neighborhood size) per the discussion following Lemma 5.5 and seen in
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FIGURE 5.9: Decision map
(evader), 4-connected neighbor-

hood.

FIGURE 5.10: Decision map
(evader), 8-connected neighbor-

hood.

Figure 5.11.

TABLE 5.1: Average runtime for Algorithm 1 vs. grid size

Grid size Runtime (hh:mm:ss)
50× 50 00:00:01
60× 60 00:00:02
75× 75 00:00:06
100× 100 00:00:23
120× 120 00:00:52
150× 150 00:02:27
200× 200 00:09:24
300× 300 01:06:18
400× 400 06:47:57
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FIGURE 5.11: Average runtimes fit a quadratic model as predicted by Lemma 5.5.
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Chapter 6

Extensions and Applications of Visibility Induction

In this chapter, we build upon the efficient solution we introduced for the discretized pursuit-

evasion game model. Recall that the output of the visibility induction algorithm was a matrix

encoding of the Bad function, which returns win-lose decisions for game configurations

defined by the locations of both players.

We start by taking theBad function a step further and using it for trajectory planning, beyond

simply answering decision queries. Further objectives can also be defined as needed and an

optimal trajectory can then be chosen. In particular, we are interested in optimal escape

trajectories for a winning evader minimizing the visibility time. Other objectives relating

to the distance between players, the distance traveled or speed of maneuvering can also be

used. Next, we prove the optimality of the evader trajectories computed using an extension

of the Bad matrix as being the fastest way for such an evader to break line of sight visibility

and win the game. Finally, we present our own variant of the visibility-based pursuit-evasion

game where the pursuer is allowed to lose sight of the evader for no more than a limited

number of steps, as a relaxation to the original problem. We develop an algorithm to decide

the relaxed game and show how all techniques previously developed for the original game

still apply to this new one.

6.1 Extensions to Guaranteed Tracking

The computedBad function can be used directly in basic trajectory planning for the winning

player. A valid trajectory must maintain the winning state by only moving via cells with

guaranteed win regardless of the strategy followed by the opponent. A higher level plan may

then choose any of the valid neighbors, which are guaranteed to exist for the winner. To unify
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the notation used below, we define:

Lose(a, b) =(Pursuer(a) ∧Bad(a, b)) ∨
(Evader(a) ∧ ¬Bad(b, a))

(6.1)

Algorithm 2 first discards invalid neighbors a winner must not move to, then chooses one of

the remaining neighbors. Typically, a distance function is used for tie breaking. For example,

a pursuer would generally prefer to move closer to the evader and keep it away from bad cells.

Algorithm 2: Generic trajectory planning for winners.
Input: Bad(., .), current state (player, opponent).

1 begin
2 N ∗ = {}
3 foreach n ∈ N (player) do
4 if ¬Lose(n, n′) ∀n′ ∈ N (opponent) then
5 N ∗ = N ∗ ∪ n
6 end
7 end
8 Move to any neighbor in N ∗.
9 end

6.2 Optimal Trajectory Planning

If the pursuer can keep the evader in sight, there is not much the evader can do as far as we

are concerned. On the other hand, if the evader can win the game, it is particularly important

to minimize the time taken to break the line of sight to the pursuer. The losing pursuer must

also maximize that time by not making suboptimal moves that allow the evader to escape

faster. We seek an extension of the Bad function to help with this task, namely by returning

the time left before visibility can be broken. We call the enhanced Bad function J(p, e) as

it gives the time left for visibility, which corresponds to the value of the game as in [48].

Equation 6.2 shows the modified initialization and recurrence.

To compute these optimal trajectories, we modify Algorithm 1 to store the time index i, at

which the game got decided, into M [p, e]. In lines 5 and 10, we use 0 and i, respectively,

instead of just 1, and only make the assignment once for the smallest i. The matrices are
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initialized to∞ to indicate the absence of an escape strategy for the evader and the condition

in line 10 is modified accordingly.

J(p, e, 0) =




∞ e is visible to p

0 otherwise

J(p, e, i+ 1) = min

(
J(p, e, i), 1 + min

e′∈N (e)
max
p′∈N (p)

J(p′, e′, i)

)
(6.2)

Theorem 6.1. (Time-Optimal Trajectories) J(p, e) gives the time left before visibility is bro-

ken, assuming both players move optimally.

Proof. Trivially, J(p, e, i) = 0 ∀i ⇔ e is not initially visible to p and the game ends im-

mediately in 0 turns. Otherwise, if J(p, e, i) = ∞ ⇔ ∀e′∃p′J(p′, e′, i − 1) = ∞ and the

evader has no escape strategy of length ≤ i turns. Finally, J(p, e, i) =∞∧ J(p, e, i + 1) =

k < ∞ ⇔ ∃e′∃p′J(p′, e′, i) = k − 1. Both players at p and e scan their neighbors to min-

imize (evader) and maximize (pursuer) the value of J . As the evader moves first, it follows

the strategy e′ achieving the minimum value over all corresponding strategies of the pursuer

at p. Consequently, the pursuer has to follow the strategy p′ achieving the maximum corre-

sponding value. By the induction hypothesis, if J(p′, e′, i) is optimal, both players are able to

correctly identify the minimum and maximum strategies and the optimality of J(p, e, i + 1)

follows.

At each step, the players will be moving to neighbors p′ and e′, maximizing J(p′, e) and

minimizing J(p, e′), respectively. The obtained J(p, e) can be processed further to have

these neighbors precomputed into separate functions Sp and Se, encoding the trajectories

for each player. However, as storing the time index i increases the required storage, the

algorithm can be modified to compute Sp and Se directly. This allows reducing the storage

by describing the neighbor relative to the current position of the player. The neighborhoods

can be indexed unambiguously which allows the precomputed S functions to store just as

many bits as necessary per entry, which is as small as dlog2 κe.
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6.3 Tolerating Blind Interruptions

It might be desirable to relax the hard requirement of maintaining visibility at all times, pos-

sibly by tolerating limited durations where line of sight visibility is interrupted. This would

be particularly helpful for situations where the pursuer is able to quickly regain visibility as

the evader maneuvers around a corner. This could also help an evader guarantee a stronger

win.

We still assume that each player knows the location of the opponent, even when line of sight

visibility is broken. One can imagine that the evader is fitted with a location tracking device

that reports its location to the pursuer. By tolerating relatively short interruptions to visibility,

of length d, the evader would not have enough time to disable or get rid of the device and is

forced to proceed with the game.

Building upon the visibility maintaining recurrence 5.1, we define a new recurrence for re-

gaining visibility 6.3 and rename Bad to Badd. Notice how we exchange quantifiers, with

the pursuer being the interesting player searching for the right move to regain visibility while

the evader is running out of hiding options. In addition, we use zeros where the original

recurrence 5.1 uses ones, as we test for non-bad neighbors and unmark cells previously con-

sidered bad.

Badd(p, e, i+ 1) = 0 ∀(p, e)∃p′ ∈ N (p) s.t.

∀e′ ∈ N (e)Badd(p
′, e′, i) = 0

(6.3)

All we need is a simple modification to initialization step in Algorithm 1. After marking

cells corresponding to initially invisible players as bad, we unmark those who are able regain

visibility within d steps. This is very similar to the main induction loop, but works backwards

from non-bad to bad cells per the new recurrence 6.3. With all such cells initialized as non-

bad, the algorithm can now proceed with the induction to decide if the pursuer can keep the

evader in sight with interruptions not exceeding d steps, using the same recurrence in 5.1.

Algorithm 3 differs from Algorithm 1 in the added induction loop at Line 7, which corre-

sponds to attempts of regaining visibility. The loop need only be executed d times as any

pursuer is only allowed up to d blind steps before it loses the relaxed game. As d is typically
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Algorithm 3: Decides the game for a given map with interruptions of length ≤ d.
Input : A map of the environment, Maximum tolerable interruption d.
Output: The Badd function encoded as a bit matrix.
Data: Two N ×N binary matrices M and M ′.

1 begin
2 Discretize the map into a uniform grid of N cells.

// Visibility initialization
3 Initialize M and M ′ to 0.
4 foreach (p, e) ∈ grid× grid do
5 if e not visible to p then M [p, e] = 1
6 end

// Induction loop: Regaining Visibility
7 while M ′ 6=M ∧ d > 0 do
8 M ′ =M
9 foreach (p, e) ∈ grid× grid do

10 if ∃p′ ∈ N (p) s.t.∀e′ ∈ N (e)M ′[p′, e′] = 0 then M [p, e] = 0
11 end
12 Decrement d
13 end

// Induction loop: Pursuit-Evasion
14 while M ′ 6=M do
15 M ′ =M
16 foreach (p, e) ∈ grid× grid do
17 if ∃e′ ∈ N (e) s.t.∀p′ ∈ N (p)M ′[p′, e′] = 1 then M [p, e] = 1
18 end
19 end
20 return M
21 end

small, i.e., d� N , the main induction loop which is common between the two algorithm still

dominates the runtime. The complexity analysis presented for the original visibility induc-

tion algorithm in 5.2.2 applies here as well. We conclude that Algorithm 3 is also O(κ2N3).

Note that it might be the case that multiple interruptions occur during the course of the game,

but as long as each interruption spans no more than d steps, the evader does not win. It is also

possible that the pursuer manages to regain visibility after the first interruption, but fails to do

so on the second and ends up losing. Interestingly, the same trajectory planning algorithms

presented above still applies after this change. The modified algorithm is described above in

Algorithm 3.
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6.4 Experimental Results

We show a selection of tracking scenarios in Figures 6.1 to 6.5. Figure 6.1 shows an environ-

ment with non-polygonal obstacles as an example of the flexibility of our proposed method.

In Figure 6.2, we modified the objective function of the purser to maximize the distance to

the evader as long as it can see it. We can see that even though it initially moved away, it was

guaranteed to keep the evader in sight and the computed trajectory achieved that.

FIGURE 6.1: Example of a winning
evader (blue; top).

FIGURE 6.2: Example of a winning
pursuer (red; top).

FIGURE 6.3: A winning evader on a rectangular grid with non-polygonal obstacles.

Finally, we show examples of regaining visibility around an infinite corner in Figures 6.6A

and 6.6B. For these two sample cases, the evader was not even initially visible to the pursuer.
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FIGURE 6.4: A winning evader in a complex maze.

FIGURE 6.5: A winning
evader on a rectangular

grid.

(A) (B)

FIGURE 6.6: Example of a pursuer regaining visibility around an infinite corner.

The pursuer correctly maneuvers around the corner and proceeds with the pursuit, minimiz-

ing the distance to the pursuer as a secondary objective.
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Chapter 7

Conclusion and Future Work

7.1 Coverage Maximization in Multi-Camera Surveillance

We have addressed the problem of covering as many targets as possible, moving through

obstacles, using a set of PTZ cameras (or directional sensors). Since an optimal solution to

this problem is computationally expensive, we have compared several suboptimal heuristics

and designed two new ones. Experimental results have shown that our heuristics supersede

earlier approaches in terms of coverage rates. Moreover, our angular heuristics not only

increase coverage but also have the advantage of providing continuous panning actions for

cameras. This makes it more smooth in real world experimentation with PTZ cameras.

Future Work

In the future, we plan developing heuristics that would provide a more stable system by

reducing the sum of the angles that the cameras have to pan to cover the targets. In real

surveillance systems, we seek to obtain better views of targets (orientation facing camera,

illumination) and to trigger camera panning by scene events (rather than by mere people

motion). Plug-in applications (such as face/plate recognition) can benefit from the zoom-

in view from the slave cameras, however these require a better iris focus specially at high

zooms.
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7.2 Visibility-based Pursuit-Evasion

We addressed the problem of maintaining an unobstructed view of an evader moving amongst

obstacles by a pursuer. In particular, we developed an algorithm that decides the outcome

of the game for any pair of initial positions of the players. By employing discretization to

both a space and time, the solution becomes feasible in polynomial time, is independent

of the geometry of the environment and does not require the use of heuristics. We give a

detailed analysis for the correctness of the algorithm, derive its space and time complexities

and present and verify several approaches to reduce its time and memory demands. We

extended our algorithm to compute tracking or escape trajectories for both players in real

time and verified their optimality. We tested our method on different tracking scenarios and

environments.

Future Work

To model the real world more accurately, we consider hexagonal mesh discretization, with

several interesting properties, and study decision errors for a given resolution. We already

implemented limited range sensors and an extension to a limited field of view is systematic.

Other constraints on players’ motion can be considered such as restricted areas where the

pursuer is not allowed to go into. Efficiently updating the computed strategies to adapt to

changes in the environments is also an interesting direction for real world scenarios. Finally,

we envision efficient ways to extend this approach to the case of more players.
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صخلملا

فادهأ قيقحتل ةثيدحلا ةيمقرلا تاريماكلا نم ةدافتسلال ىلثملا لبسلاب ةيرصبلا ةبقارملا مظن ةسارد              صتخت
ىنبت ىف عساو راشتنا كانه راص ،ةءافكلا ةيلاعو ةفلكتلا ةضفخنم ةثيدحلا تاريماكلا رفاوت لضفبو .ةبولطملا                ةبقارملا

يف امساح ارود ةقد رثكلأا تاريماكلا بعلت كلذك .راطقلا تاطحمو كونبلاو تاراطملا يف ىري امك ةمظنلأا                 هذه
ةبقارملا ةلكشم نم نيفلتخم نيعون ةساردب موقن ،ةحورطلأا هذه يف .رايط نودب تارئاطلا لثم ةكرحلا ةيتاذ                 تاتوبورلا

.ةيرصبلا

لجأ نم ةيؤرلا لاجم رييغتو نارودلا ىلع ةرداقلا ةبقارملا تاريماك يف مكحتلل ىلثملا لبسلا سردن ،لولأا ءزجلا                  يف
نيسحتلا ملع ىف ةيكيسلاكلا ةيطغتلا ةلكشمل ايسدنه اريظن ةلكشملا هذه ربتعت .ةيلاع ةقدب فادهلأا نم ددع ربكأ                  ةيطغت

مث ،ةيبيرقتلا لئادبلا نم نينثا ريوطتب موقن .ةيباسح ةقيرطب اهل ىلاثم لح ىلع لوصحلا ةبوعص تابثإ مت دقو                   ،يقفاوتلا
ةبقارم ماظن مييقتو ءانـبب موقن ،كلذ ىلع ةولاعو .ةاكاحملا قيرط نع اهقوفت راهظإو ةلكشملل ةفورعملا لولحلاب                 اهنراقن

.ةحرتقملا قرطلا مادختساب ةيلكلا ينابم نم ددع لخادب ةاشملا عبتتل يقيقحلا

توبورلا ىف مكحتلاب قلعتي ىذلاو ،تايرابملا ملع يف ةيكيسلاكلا ةدراطملا ةبعل روص دحأ سردن ،يناثلا ءزجلا                 يف
نأ هنكمي براهلا ناك اذإ ددحت ةلاعف ةيمزراوخ ميمصتب موقن .هتيؤر لاجم ىف براهلا ليمعلا ىلع ظفاحي ىكل                   دراطملا

بورهلا راسم باسحب موقن ،لعفلاب بورهلا هنكمي هنأ دجو اذإو .دراطملا نم ءابتخلاا نم هنكمت ةيجيتارتسا يأ                  ذختي
مث ،تاقيبطتلاو تانيسحتلا نم ديدعلا جاتنتساو ةيمزراوخلا ليلحتب موقن امك .يلاثملا دراطملا راسمل ةفاضلإاب               يلاثملا

.ةاكاحملا طئارخ نم ددعل ةيمزراوخلا ذيفنت جئاتن ضرعتسن

بابلا ضرعتسي مث .ةحرتقملا تامهاسملا صيخلتو ةلاسرلا يف حرتقملا ثحبلا عفاودو ةمدقم ىلع لولأا بابلا                يوتحي
ةلكشم لكل لبق نم اهحارتقا مت يتلا لولحلل ةفاضلإاب ةساردلل نيتحورطملا نيتلكشملا نم لكل ةيملعلا ةيفلخلا                 يناثلا
ىلع لولأا لحلا دمتعي .نيلح حارتقا متي ثيح ثلاثلا بابلا يف ىلولأا ةلكشملا ةسارد أدبت .ةهيبشلا تلاكشملا                  ضعبو

نمضتيو .اريماك لكل ةيؤرلا لاجم رايتخا يف ةءافك رثكأ ةقيرط يناثلا لحلا مدقي امنيب ةيطغتلل ةلصتم ةديدج ةلاد                   فيرعت
يتلا ةيلمعلا براجتلا عبارلا بابلا صخليو .ةاكاحملا قيرط نع ةفورعملا لولحلا نم ددعب ةديدجلا لولحلا ةنراقم                 بابلا

فادهلأا بقعتل ةبولطملا ةيفاضلإا بيلاسلأا حرش متيو يقيقح ةبقارم ماظن ىلع ةحرتقملا ةيطغتلا قرط قيبطتل                تيرجأ
حرتقملا لحلا ليلحتو ريوطتب مقن ثيح سماخلا بابلا يف ةيناثلا ةلكشملا ةساردل لقتنن .ةمدختسملا تاريماكلا                تافصاومو

ةلثمأ ضرع متي امك ةيراركت ةقلاع لكش ىلع فدهلا بوره ةيناكما فيصوتل ةيقطنم ةلاد فيرعت ىلع دمتعي                  يذلاو
باسح لثم حرتقملا لحلا نم ةقتشملا تاقيبطتلا نم اددع سداسلا بابلا مدقي مث .ةاكاحملا طئارخ نم ددع ىلع                   هقيبطت
بابلا متتخيو .هبوره دعب ةيؤرلا لاجم يف فدهلا ةداعتسا ةيناكمإ ىلإ ةفاضلإاب يلاثملا بورهلا نمزو ةكرحلا                 راسم

.ثحبلا عيضاوم ةسارد لامكتسلا ةيلبقتسملا تاهاجتلاا نم اددع حرطيو ةمدقملا جئاتنلاو تامهاسملل  صخلمب  عباسلا


