

Analysis of a Device-free Passive Tracking System in Typical Wireless Environments

by Ahmed Kosba, <u>Ahmed Abdelkader</u> and Moustafa Youssef Alexandria University Nile University

Traditional WLAN Localization

- Access points
- Client device
 - Receives signals
 - Applies algorithms
 - Provides location info

Device-free Passive Localization (DfP)

- Access points (AP)
- Monitoring points (MP)
- Stream
 - (AP, MP) pair
- Human user
 - Effects on signals
- Application server (AS)
 - Collects samples
 - Applies algorithms
 - Initiates actions
- User carries no device

Prospective Application Areas of DfP

- Intrusion detection
- Low cost surveillance
- Border protection
- Home automation

Contributions

- Our previous work in MobiCom'07 provided a proof of concept of DfP in *a highly controlled environment*.
- In this work, we present the first implementation and analysis of DfP tracking in *typical indoor environments*.
- Compared deterministic and probabilistic approaches to the DfP tracking problem.
- Identified the main factors that affect the accuracy of DfP systems in realistic indoor scenarios.
- Provided preliminary results to stimulate further work in this area.

Agenda

- Introduction
- System Operation
- Tracking Algorithms
- Performance Evaluation
- Future Work and Conclusions

System Operation

- Main idea
 - Human effects on wireless signal propagation
 - Evident through the Received Signal Strength Indicator (RSSI)

System Operation

- The system works in two phases
 - Offline phase
 - Estimates the complex relation between signal strength and the possible user locations.
 - Online phase
 - Processes received signals to estimate the current user location.

Mathematical Model

- Given M AP's and N MP's
- We get K streams where K = M * N
- Each sample is represented by a Kx1 vector "s"
 - Entries represent RSSI values for each stream

Offline Phase: Passive Radio-Map Construction

• Procedure

- The area of interest is discretized into a grid of locations.
- A person stands at each location and samples are recorded.
- Recorded data is processed to extract the required parameters.
- A radio-map stores all parameters for the algorithm being used.

	S ₁	S ₂	 Sq
L ₁	$\mu_{_{11}}$	$\mu_{\scriptscriptstyle 12}$	 $\mu_{_{1q}}$
L ₂	μ_{21}	μ_{22}	 μ_{2q}
•••			
L _p	μ_{p1}	$\mu_{ m p2}$	 μ_{pq}

Online Phase: DfP Tracking

- Goal: estimate the current location of the user
- Input: sample vector "s" + passive radio-map
- Approach
 - Deterministic
 - Probabilistic

Agenda

- Introduction
- System Operation
- Tracking Algorithms
- Performance Evaluation
- Future Work and Conclusions

Deterministic Tracking (NNSS)

- Signal Space (SS)
 - K-dimensional Euclidean Space
 - Each stream is a dimension
 - Each location is a point
- Location estimate
 - Nearest Neighbor (NN)

```
\hat{l} = \arg\min_{l} D(s, l)
```

- Requirements
 - RSSI mean for each stream

Probabilistic Tracking (MAP)

• Location estimate: maximum a posteriori

 $l = \arg\max_{l} P(l \mid s)$

• Using Baye's rule

$$\hat{l} = \arg \max_{l} P(s \mid l) \cdot \frac{P(l)}{P(s)}$$

- P(s) is constant and P(l) is assumed constant
- Finally, assuming all streams are mutually independent $\hat{l} = \arg \max_{l} \prod_{i=1}^{M} \prod_{j=1}^{N} P(s_{i,j} | l)$

i=1 i=1

- Requirements
 - $P(s_{i,j} | l)$ for all *l*, *i* and *j*
 - RSSI pdf for each stream conditioned on each location

Pdf Estimation

- Parametric estimation
 - Gaussian
- Non-parametric estimation
 - Histogram
 - Gaussian Kernel

Agenda

- Introduction
- System Operation
- Tracking Algorithms
- Performance Evaluation
- Future Work and Conclusions

Performance Evaluation

• Methods

- Cross validation
- Independent test sets

• Metrics

- Distance error
- Probability of error

Testbed

- Typical living room discretized into 6 locations
- 2 AP's and 2 MP's (IEEE 802.11b)

Cross-Validation (Ideal Case)

	Average Distance Error	Probability of Error
Gaussian Distribution	0.201 m	0.0835
Histogram	0.176 m	0.0727
Gaussian Kernel	0.175 m	0.0723
Deterministic	0.214 m	0.0874

Effect of the Number of Streams

Increasing the number of streams decreases the distance error 20

Effects of Time and User Orientation

- Results of the Gaussian Kernel Method:

	Time	Orientation	Average Distance Error
Cross-Validation	Same	Same	0.175 m
Independent Set 1	Different	Same	0.358 m (2x)
Independent Set 2	Different	Different	0.586 m (3x)
Random Location Selector	N/A	N/A	1.940 m (11x)

The worst case accuracy is 3 times better than random selection 21

Effect of the Configuration

than the localization algorithm

AP2

MP1

Effect of the Location Set

Uncovered locations cause most of the errors

Agenda

- Introduction
- System Operation
- Tracking Algorithms
- Performance Evaluation
- Future Work and Conclusions

Future Work

- Devise a robust method to select optimal configurations for a given area.
- Enable the system to adapt to changes in the monitored environment.
- Study large scale deployments of DfP systems.
- Upgrade to multi-target tracking.

Conclusions

- Probabilistic algorithms outperformed the deterministic algorithm.
- Non-parametric probabilistic technique outperformed the parametric one.
- Main factors that affect the accuracy of DfP systems
 - Number of streams
 - Time
 - User state
 - Configuration
 - Location-set

Thank You!

Ahmed Abdelkader a.abdelkader@student.alx.edu.eg