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Introduction

Overview

Nearest-Neighbor Searching

Given n point sites P, preprocess P to answer nearest-neighbor queries:

Given a query point q, which site in P is closest?

Scope

Fixed dimension: P ⊂ Rd , where d is constant

ε-approximate: Return any p′, where dist(q, p′) ≤ (1 + ε)dist(q,P)

Performance Goals

Query time: O(log(n/ε))

Storage: O(n/εO(d))

Ahmed Abdelkader (CS@UMD) SODA 2019 2 / 18



Introduction

Overview

Nearest-Neighbor Searching

Given n point sites P, preprocess P to answer nearest-neighbor queries:

Given a query point q, which site in P is closest?

Scope

Fixed dimension: P ⊂ Rd , where d is constant

ε-approximate: Return any p′, where dist(q, p′) ≤ (1 + ε)dist(q,P)

Performance Goals

Query time: O(log(n/ε))

Storage: O(n/εO(d)) ←− Focus: Minimize ε-dependencies
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Introduction

Background

ε-ANN queries in logarithmic time O(log(n/ε))

Euclidean metric:

[Har-Peled 2001]: Õ(n/εd) storage by Approx. Voronoi Diagrams (AVD)

[Arya et al., 2017b]: O(n/εd/2) storage by lifting + Macbeath regions

Non-Euclidean distances:

[Har-Peled and Kumar, 2015]: O(n/εO(d2)) storage by min. diagrams

Various heuristic approaches, e.g., [Cayton, 2008], [Nielsen et al., 2009]

Question: ε-ANN for non-Euclidean distances with just O(n/εd/2) storage?
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Introduction

Main Results

Main Result

A general approach for answering ε-ANN queries with:

Query time: O(log n
ε )

Storage: O((n/εd/2) log 1
ε )

Demonstrated on the following distance functions (defined later):

Minkowski distance

Minkowski distance & multiplicative weights

Mahalanobis distance∗

Scaling distance functions∗

Bregman divergences∗

∗ Additional admissibility conditions are needed
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Introduction

Distance Functions - Scaling Distances

Minkowski Distance: ‖q − p‖k = (
∑d

i=1 |pi − qi |k)
1
k .

Our results apply for any real constant k > 1

Multiplicative Weights: Each p has weight wp > 0 and
distp(q) = wp‖q − p‖k
Mahalanobis Distance: Each p has a positive-definite matrix Mp and

distp(q) =
√

(p − q)ᵀMp(p − q)

Scaling Distance Functions: Each p has a closed convex body Kp

containing the origin and distp(q) is the smallest r such that
q ∈ p + r · Kp

Scaling distance functions generalize all the others

∗ Metric balls Kp are smooth and fat

∗∗ Triangle inequality may not hold
p

Kp

q

distp(q) =
3
2
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Introduction

Distance Functions - Bregman Divergences

F

p̂

p q

DF (q, p)

q̂

Bregman Divergence: Given an open convex domain X ⊆ Rd , a strictly
convex and differentiable real-valued function F on X , and q, p ∈ X ,
the Bregman divergence of q from p is

DF (q, p) = F (q)− (F (p) +∇F (p) · (q − p)).

where ∇F denotes the gradient of F and “·” is the standard dot product.

∗ DF is typically asymmetric
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Introduction

Distance Functions - Bregman Divergences

Worst-case bounds on ε-ANN for Bregman require additional assumptions.

DF is µ-asymmetric if for all p, q ∈ X , DF (q, p) ≤ µDF (p, q)

DF is µ-similar if for all p, q ∈ X , ‖q − p‖2 ≤ DF (q, p) ≤ µ‖q − p‖2

Prior results:

[Abdullah et al., 2012]: Answer ε-ANN queries for decomposable
Bregman divergences in spaces of constant dimension, with dependence
on the defectiveness µ.

[Abdullah and Venkatasubramanian, 2015]: cell probe lower bounds in
terms of asymmetry

Our results hold under an intermediate condition, τ -admissibility, which
states that the growth rate is polynomial w.r.t. Euclidean
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Introduction

Preliminaries - Minimization Diagrams

We apply a reduction from ε-ANN to approximate vertical ray shooting
by [Har-Peled and Kumar, 2015]

Minimization Diagram

Given a convex domain X ⊆ Rd and a set of functions F = {f1, . . . , fm},
where fi : X → R+, let Fmin(x) = min1≤i≤m fi (x)

Approximate Vertical Ray Shooting (ε-AVR)

Set fi to the distance function to the ith site.
ε-ANN is equivalent to computing any index i
such that fi (q) ≤ (1 + ε)Fmin(q)

f1 f2

Fmin

q

X

f3
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Preliminaries - Minimization Diagrams

We apply a reduction from ε-ANN to approximate vertical ray shooting
by [Har-Peled and Kumar, 2015]

Minimization Diagram

Given a convex domain X ⊆ Rd and a set of functions F = {f1, . . . , fm},
where fi : X → R+, let Fmin(x) = min1≤i≤m fi (x)

Answering ε-AVR Queries [Arya et al., 2017a]

Query time: O

(
log

1

ε

)
and Storage: O

(
1

εd/2

)
When all fi are concave and for all x ∈ X

fi (x) ∈ [0, 1] and ‖∇fi (x)‖ ≤ 1

f1 f2

Fmin

q

X

f3
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Introduction

Preliminaries - Linearization (Lifting Transformation)

(a) (b)

p q

p̂

q̂

Consider ε-ANN in the squared Euclidean distance. The minimization
diagram is the non-convex lower envelope of paraboloids (left figure)

These paraboloids share a common quadratic term
∑

i x
2
i

Subtract off this common term to linearize these paraboloids (right figure)
∗ Also called the lifting transformation

The minimization diagram maps to the lower envelope of linear functions,
which is convex

Approximate ray-shooting in convex bodies can be applied [Arya et al., 2017a]
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Introduction

The Struggles and Hopes of Lifting

Unfortunately, linearization only works in this restricted context

But, [Arya et al., 2017a] do not require a piecewise linear envelope!
Only that it bounds a convex region

f1
f3

f2

Fmin

ε

q

1

0

X
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Introduction

Convexification

Intuition: Subtract off a function with such a small second derivative
(generally Hessian) that all the distance functions become concave.

=+

(a) (b) (c)

f1

f2
f3

f̃1 f̃3

f̃2φ

The minimization diagram of concave functions bounds a convex set!
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Introduction

Convexification - The Details

Distance functions: F = {f1, . . . , fm}
Restricted domain: Euclidean ball B with center p and radius r

Smoothness: Λ+ is an upper bound on the largest eigenvalue of ∇2fi (x)
for any i and any x ∈ B

Convexifying function:

φ(x) =
Λ+

2
(r2 − ‖x − p‖2) =

Λ+

2

r2 −
d∑

j=1

(xj − pj)
2


Convexified distance functions:Ûfi (x) = fi (x) + φ(x), for 1 ≤ i ≤ m, andÛFmin(x) = min

1≤i≤m
Ûfi (x) = Fmin(x) + φ(x).
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Introduction

Convexification - Approximation

Convexification has been widely applied in the context of non-linear
optimization, e.g., [Androulakis et al., 1995], [Bertsekas, 1979]

How to make it approximation-preserving?

Smooth, centered, fat: Approximation errors grow with the eigenvalues
of the Hessians of the distance functions

Encapsulated as a property of distance functions, τ -admissibility

E.g., Metric balls of scaling distance functions must be smooth,
well-centered, and fat

Separation and locality: Error distortion increases with variation of
distance values within the ball B.
We use a quadtree subdivision of space to establish separation properties
and apply convexification to each leaf cell of the subdivision
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Introduction

Answering ε-ANN Queries

For τ -admissible Bregman divergences

Apply a quadtree subdivision so that for each leaf cell w either:

w ≥ τ diam(B)w

Bw

w
B

≥ τ diam(Bw)/ε

NN is a single point within w : trivial

Inner cluster: NN lies in a ball Bw and dist(Bw ,w) = Ω(τ diam(Bw )/ε)
- Any site within Bw can be used

Outer cluster: NN is at distance Ω(τdiam(w)) from w
- Apply convexification to the distance functions of these sites.
- Answer query by approximate vertical ray-shooting ε-AVR.
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Introduction

Concluding Remarks

We have shown that best-known bounds on ε-ANN searching for the
Euclidean metric can be almost∗ generalized to a variety of
non-Euclidean distances: Minkowski metrics, multiplicatively weighted
sites, Mahalanobis, convex scaling distances, Bregman divergences

Our results arise from an application of convexification, which transforms
the minimization diagram of smooth functions into convex form

Open Questions:

Generalizations to non-smooth non-Euclidean distance functions? Target:
O(n/εd) storage
Is convexification applicable to other problems? (e.g., computing the
diameter of a point set in different metrics)
∗Eliminating the pesky O(log 1

ε
) slop factor?
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the minimization diagram of smooth functions into convex form

Open Questions:

Generalizations to non-smooth non-Euclidean distance functions? Target:
O(n/εd) storage
Is convexification applicable to other problems? (e.g., computing the
diameter of a point set in different metrics)
∗Eliminating the pesky O(log 1

ε
) slop factor?

Thank you!
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