Economical Delone Sets for Approximating Convex Bodies

Ahmed Abdelkader and David Mount

Department of Computer Science
University of Maryland, College Park
Scandinavian Symposium and Workshops on Algorithm Theory Malmö, Sweden
June 18th, 2018

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let $P \subset \mathbb{R}^{d}$ be a convex polytope.

- If P has n vertices, then the number of faces is $O\left(n^{\lfloor d / 2\rfloor}\right)$.
- If P has n facets, then the number of vertices is $O\left(n^{\lfloor d / 2\rfloor}\right)$.

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let $P \subset \mathbb{R}^{d}$ be a convex polytope.

- If P has n vertices, then the number of faces is $O\left(n^{\lfloor d / 2\rfloor}\right)$.
- If P has n facets, then the number of vertices is $O\left(n^{\lfloor d / 2\rfloor}\right)$.

Workarounds
Settle for an approximation

- Explicit: find an approximating polytope
- Implicit: approximate membership testing

Polytope Membership Queries

.. implementing a membership oracle
Polytope membership queries
Given a polytope K in \mathbb{R}^{d}, preprocess K to answer membership queries:

Given a query point $q \in \mathbb{R}^{d}$, is $q \in K$?

Assumptions

- Dimension d is a constant
- K is given as the intersection of n halfspaces

Dual: Halfspace emptiness queries [Matoušek'92, Erickson'98]

- $d \leq 3 \Rightarrow$ Query time: $O(\log n)$ with $O(n)$ storage
- $d \geq 4 \Rightarrow$ (roughly) $O\left(n^{1-1 /\lfloor d / 2\rfloor}\right)$ time with $O(n)$ storage
- Restriction $\Rightarrow \tilde{\Omega}\left(n^{1-1 / d}\right)$ time if storage is $\tilde{O}(n)$

Approximate Polytope Membership Queries

How about an approximate membership oracle?

ε-APM queries

- Specify $\varepsilon>0$ at preprocessing time
- Assume the polytope scaled to unit diameter
- If the query point's distance from K :
- $0 \Rightarrow$ Inside
- $>\varepsilon \Rightarrow$ Outside
- Otherwise: Either answer is acceptable

Goal

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
Storage: $O\left(1 / \varepsilon^{O(d)}\right)$
\leftarrow Logarithmic
\leftarrow Efficient?

Canonical Form

Easier to work with fat bodies
In $O(n)$, find an invertible affine transform T s.t. $T(K)$ is in canonical form.

> .. and absolute rather than relative errors
> If q is a point at distance greater than $\varepsilon \cdot \operatorname{diam}(K)$ from K, then $T(q)$ is at distance greater than ε / d from $T(K)$.

Canonical Form

Easier to work with fat bodies
In $O(n)$, find an invertible affine transform T s.t. $T(K)$ is in canonical form.

.. and absolute rather than relative errors
If q is a point at distance greater than $\varepsilon \cdot \operatorname{diam}(K)$ from K, then $T(q)$ is at distance greater than ε / d from $T(K)$.

Time-efficient Solution [Bentley et al. (1982)]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting K
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time-efficient:

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$
\leftarrow high!

Time-efficient Solution [Bentley et al. (1982)]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting K
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time-efficient:

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$
\leftarrow high!

Time-efficient Solution [Bentley et al. (1982)]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting K
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time-efficient:

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$
\leftarrow high!

Time-efficient Solution [Bentley et al. (1982)]

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting K
- Query processing:
- Locate the column that contains q
- Compare q with the two extreme values

Time-efficient:

- $O\left(1 / \varepsilon^{d-1}\right)$ columns
- Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal
- Storage: $O\left(1 / \varepsilon^{d-1}\right)$
\leftarrow high!

Space-efficient Solution [Arya et al. (2011, 2012)]

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Find an ε-approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
- Locate the cell that contains q
- Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right) \leftarrow$ high!
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow$ optimal
$t=2$

Space-efficient Solution [Arya et al. $(2011,2012)$]

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Find an ε-approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
- Locate the cell that contains q
- Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right) \leftarrow$ high!
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Space-efficient Solution [Arya et al. (2011, 2012)]

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Find an ε-approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
- Locate the cell that contains q
- Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right) \leftarrow$ high!
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow$ optimal

Space-efficient Solution [Arya et al. (2011, 2012)]

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right)$
- Find an ε-approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
- Locate the cell that contains q
- Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}\left(1 / \varepsilon^{(d-1) / 8}\right) \leftarrow$ high!
- Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow$ optimal

Digression?

Polytope approximation
Let $K \subset \mathbb{R}^{d}$ be a convex body (polytope) of unit diameter. Find P s.t.

- The Hausdorff distance between K and P is at most $\varepsilon>0$,
- P is a convex polytope having few faces.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)
Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

> State-of-the-art [Arya et al. 2016]
> Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O\left(1 / \varepsilon^{(d-1) / 2}\right)$ vertices (or facets).

State-of-the-art [Arya et al. 2016]
Constructon of P with $O\left(1 / \hat{\varepsilon}^{(d-1) / 2}\right)$ faces, where $\hat{\varepsilon}=\varepsilon / \log (1 / \varepsilon)$.

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

```
Asymptotically optimal
Query time: O(log}\frac{1}{\varepsilon}
\leftarrow \text { optimal}
Storage: O(1/\varepsilon(d-1)/2) }\leftarrow\mathrm{ optimal
```


- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

```
Asymptotically optimal
Query time: O(\operatorname{log}\frac{1}{\varepsilon})
\leftarrow \text { optimal}
Storage: O(1/\varepsilon(d-1)/2) }\leftarrow\mathrm{ optimal
```


- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

> Asymptotically optimal
> Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
> \leftarrow optimal
> Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right) \quad \leftarrow$ optimal

- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

Asymptotically optimal

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal

Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
\leftarrow optimal

- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

Asymptotically optimal

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal

Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
\leftarrow optimal

- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

State-of-the-art in ε-APM [Arya et al. (2017)]

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
- Shoot a ray from a central point to q
- Trace the ray through the rings
- Follow parent-child links

Asymptotically optimal

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$
\leftarrow optimal

Storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
\leftarrow optimal

- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$
Assuming K is represented as $K=\cap_{i} H_{i}$ where each H_{i} is of the form

$$
H_{i}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}\right\}, \text { where } c_{1} \delta \leq\left\|v_{i}\right\| \leq c_{2},
$$

we work with $K_{\delta}=\cap_{i} H_{i, \delta}$, where $H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}$.

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$
Assuming K is represented as $K=\cap_{i} H_{i}$ where each H_{i} is of the form

$$
H_{i}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}\right\}, \text { where } c_{1} \delta \leq\left\|v_{i}\right\| \leq c_{2},
$$

we work with $K_{\delta}=\cap_{i} H_{i, \delta}$, where $H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}$.

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$
Assuming K is represented as $K=\cap_{i} H_{i}$ where each H_{i} is of the form

$$
H_{i}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}\right\}, \text { where } c_{1} \delta \leq\left\|v_{i}\right\| \leq c_{2},
$$

we work with $K_{\delta}=\cap_{i} H_{i, \delta}$, where $H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}$.

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent) Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)
 Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)
Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)
What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent) Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)
 Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)
 Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)
 Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)

What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)

Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)
What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

APM by Quadtree Search

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Analysis

Query time: $O\left(\log \frac{1}{\varepsilon}\right)$ (Quadtree descent)

Storage: $O\left(1 / \varepsilon^{d-1}\right)$ (Number of leaves)
What does it take to beat $O\left(1 / \varepsilon^{d-1}\right)$?

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]

Given convex body $K, x \in K$, and $\lambda>0$:

- Intersection of K and its reflection about x
- $M_{k}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]
Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]
Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]

Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]

Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear
John ellipsoid [John (1948)]
May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Macbeath Regions

Want cells that conform to K 's shape

Macbeath Region [Macbeath (1952)]
Given convex body $K, x \in K$, and $\lambda>0$:

- $M_{K}(x)=x+(K-x) \cap(x-K)$
- Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear
John ellipsoid [John (1948)]

May use ellipsoids instead

$$
E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda \sqrt{d}}(x)
$$

Properties of Macbeath Regions

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda<1$, then

Good approximation primitives

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties of Macbeath Regions

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda<1$, then

$$
M^{\lambda}(y) \subseteq M^{c \lambda}(x), \text { where } c=\frac{3+\lambda}{1-\lambda} .
$$

Good approximation primitives

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties of Macbeath Regions

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda<1$, then $M^{\lambda}(y) \subseteq M^{c \lambda}(x)$, where $c=\frac{3+\lambda}{1-\lambda}$.

Good approximation primitives

- Macbeath regions act like metric balls

- But, with respect to which metric?

Properties of Macbeath Regions

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda<1$, then

$$
M^{\lambda}(y) \subseteq M^{c \lambda}(x), \text { where } c=\frac{3+\lambda}{1-\lambda} .
$$

Good approximation primitives

- Macbeath regions act like metric balls

- But, with respect to which metric?

Properties of Macbeath Regions

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda<1$, then

$$
M^{\lambda}(y) \subseteq M^{c \lambda}(x), \text { where } c=\frac{3+\lambda}{1-\lambda} .
$$

Good approximation primitives

- Macbeath regions act like metric balls

- But, with respect to which metric?

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

- Hilbert Metric: Given $x, y \in K$, define

$$
f_{K}(x, y)=\frac{1}{2} \ln \left(\frac{\left\|x^{\prime}-y\right\|}{\left\|x^{\prime}-x\right\|} \frac{\left\|x-y^{\prime}\right\|}{\left\|y-y^{\prime}\right\|}\right)
$$

- Hilbert Ball: $B_{H}(x, \delta)=\left\{y \in K: f_{K}(x, y) \leq \delta\right\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

For all $x \in K$ and $0 \leq \lambda<1$:

$$
B_{H}\left(x, r_{1}(\lambda)\right) \subseteq M^{\lambda}(x) \subseteq B_{H}\left(x, r_{2}(\lambda)\right)
$$

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

- Hilbert Metric: Given $x, y \in K$, define

$$
f_{K}(x, y)=\frac{1}{2} \ln \left(\frac{\left\|x^{\prime}-y\right\|}{\left\|x^{\prime}-x\right\|} \frac{\left\|x-y^{\prime}\right\|}{\left\|y-y^{\prime}\right\|}\right)
$$

- Hilbert Ball: $B_{H}(x, \delta)=\left\{y \in K: f_{K}(x, y) \leq \delta\right\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

For all $x \in K$ and $0 \leq \lambda<1$:

$$
B_{H}\left(x, r_{1}(\lambda)\right) \subseteq M^{\lambda}(x) \subseteq B_{H}\left(x, r_{2}(\lambda)\right)
$$

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

- Hilbert Metric: Given $x, y \in K$, define

$$
f_{K}(x, y)=\frac{1}{2} \ln \left(\frac{\left\|x^{\prime}-y\right\|}{\left\|x^{\prime}-x\right\|} \frac{\left\|x-y^{\prime}\right\|}{\left\|y-y^{\prime}\right\|}\right)
$$

- Hilbert Ball: $B_{H}(x, \delta)=\left\{y \in K: f_{K}(x, y) \leq \delta\right\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

 For all $x \in K$ and $0 \leq \lambda<1$:$$
B_{H}\left(x, r_{1}(\lambda)\right) \subseteq M^{\lambda}(x) \subseteq B_{H}\left(x, r_{2}(\lambda)\right)
$$

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

- Hilbert Metric: Given $x, y \in K$, define

$$
f_{K}(x, y)=\frac{1}{2} \ln \left(\frac{\left\|x^{\prime}-y\right\|}{\left\|x^{\prime}-x\right\|} \frac{\left\|x-y^{\prime}\right\|}{\left\|y-y^{\prime}\right\|}\right)
$$

- Hilbert Ball: $B_{H}(x, \delta)=\left\{y \in K: f_{K}(x, y) \leq \delta\right\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

 For all $x \in K$ and $0 \leq \lambda<1$:$$
B_{H}\left(x, r_{1}(\lambda)\right) \subseteq M^{\lambda}(x) \subseteq B_{H}\left(x, r_{2}(\lambda)\right)
$$

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

- Hilbert Metric: Given $x, y \in K$, define

$$
f_{K}(x, y)=\frac{1}{2} \ln \left(\frac{\left\|x^{\prime}-y\right\|}{\left\|x^{\prime}-x\right\|} \frac{\left\|x-y^{\prime}\right\|}{\left\|y-y^{\prime}\right\|}\right)
$$

- Hilbert Ball: $B_{H}(x, \delta)=\left\{y \in K: f_{K}(x, y) \leq \delta\right\}$
- Locally-sensitive to the shape of the convex body
.. to Macbeath regions [Vernicos and Walsh (2016)]
For all $x \in K$ and $0 \leq \lambda<1$:

$$
B_{H}\left(x, r_{1}(\lambda)\right) \subseteq M^{\lambda}(x) \subseteq B_{H}\left(x, r_{2}(\lambda)\right)
$$

More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$

More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$

More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$

More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit

 within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$
More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit

 within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$
More from Metric Spaces

Where to put the Macbeath regions?
Point set layouts in a metric space \mathbb{X}

- ε-packing: If the balls of radius $\varepsilon / 2$ centered at every point of X are disjoint
- ε-covering: If every point of \mathbb{X} is within distance ε of some point of X
- $\left(\varepsilon_{p}, \varepsilon_{c}\right)$-Delone Set: If X is an ε_{p}-packing and an ε_{c}-covering
- ε-Net: If X is an $(\varepsilon, \varepsilon)$-Delone set

We seek economical Delone sets for K, that fit within an expansion of K by $\delta \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon\right\}$

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set
X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
λ_{0} is a small constant $1 /(4 \sqrt{d}+1)$

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set

X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
λ_{0} is a small constant $1 /(4 \sqrt{d}+1)$

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set

X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
(Ellipses not drawn to scale)

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set

X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
λ_{0} is a small constant $1 /(4 \sqrt{d}+1)$

(Ellipses not drawn to scale)

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set
X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
(Ellipses not drawn to scale)
λ_{0} is a small constant $1 /(4 \sqrt{d}+1)$

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta>0$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_{0}}(x)$ are disjoint for all $x \in X_{\delta}$

Lemma

$$
K \subseteq U_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}
$$

Macbeath-Based Delone Set
X_{δ} is essentially a $\left(\frac{1}{2}, 2 \lambda_{0}\right)$-Delone set for K
λ_{0} is a small constant $1 /(4 \sqrt{d}+1)$

(Ellipses not drawn to scale)

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$

- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^{d}$ and $\delta \geq 0$, for all $x \in K$

$$
M_{\delta}(x) \subseteq M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)
$$

- First inclusion follows from $K_{\delta} \subset K_{2 \delta}$
- Recall $K_{\delta}=\cap_{i} H_{i, \delta}$ where

$$
H_{i, \delta}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq a_{i}+\delta\right\}
$$

- Put the origin at x, so $M_{\delta}(x)=K_{\delta} \cap-K_{\delta}$
- Define the slab $\Sigma_{i, \delta}=H_{i, \delta} \cap-H_{i, \delta}$
- We may write $M_{\delta}(x)=\cap_{i} \Sigma_{i, \delta}$
- Define $2 H_{i, \delta}$ as $\left\{x \in \mathbb{R}^{d} \mid\left\langle x, v_{i}\right\rangle \leq 2\left(a_{i}+\delta\right)\right\}$
- Observe $\Sigma_{i, 2 \delta} \subseteq 2 \Sigma_{i, \delta}=2 H_{i, \delta} \cap-2 H_{i, \delta}$
- But, $\cap_{i} 2 \Sigma_{i, \delta}=2 M_{\delta}(x)$ is the same as $M_{\delta}^{2}(x)$
- Hence, $M_{2 \delta}(x) \subseteq M_{\delta}^{2}(x)$

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:

- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$.
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:

- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$.
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:

- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

level 4

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:

- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:

- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

APM Data Structure

Preprocessing

- Input: K and $\varepsilon>0$
- For $i=0,1, \ldots$
- $\delta_{i} \leftarrow 2^{i} \varepsilon$
- $X_{i} \leftarrow$ Macbeath Delone set for $K_{\delta_{i}}$
- Create a node at level i for each $x \in X_{i}$
- Create child links to nodes at level $i-1$ whose $\frac{1}{2}$-scaled Macbeath ellipsoids overlap
- Stop when $\left|E_{\ell}\right|=1$ (at $\left.\delta_{\ell}=O(1)\right)$

Query Processing

- Descend the DAG from root (level ℓ) until:
- $q \notin \frac{1}{2}$-scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Analysis

Query time

- Out-degree: $O(1)$ (exp-containment + packing)
- Query time per level: $O(1)$
- Number of levels: $O\left(\log \frac{1}{\varepsilon}\right)(\varepsilon$ to $O(1))$
- Total query time: $O(\log 1 / \varepsilon)$

Economical Cap Cover

Analysis

Query time

- Out-degree: $O(1)$ (exp-containment + packing)
- Query time per level: $O(1)$
- Number of levels: $O\left(\log \frac{1}{\varepsilon}\right)(\varepsilon$ to $O(1))$
- Total query time: $O(\log 1 / \varepsilon)$

Storage

- \#M-regions to cover $K_{\delta_{i}}: O\left(1 / \delta_{i}^{(d-1) / 2}\right)$ (ECC)
- Storage for bottom level: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$
- Leaf level dominates (geometric progression)
- Total storage: $O\left(1 / \varepsilon^{(d-1) / 2}\right)$

Economical Cap Cover

Summary

Delone sets for convex bodies

- Intuitive and space-efficient cover
- $O\left(1 / \delta^{(d-1) / 2}\right)$ ellipsoids for δ-approximation
- Simple DAG hierarchy for time-efficient look-ups
- Asymptotically optimal

Thanks for listening

Questions?
akader@cs.umd.edu

Proximity Search

Approximate Nearest-Neighbor Searching (ANN)

Given a set of n points $P \subset \mathbb{R}^{d}$, preprocess P into a data structure to such that, given a query point $q \in \mathbb{R}^{d}$ one can efficiently find a $p \in P$ where

$$
\|p-q\| \leq\|n n(q)-q\|
$$

where $n n(q)$ is the nearest-neighbor of q in P.

ANN Searching and Polytope Approximation

Lifting and Voronoi Diagrams

Lift the points of P to Ψ, take the upper envelope of the tangent hyperplanes, and project the skeleton back onto the plane. The result is the Voronoi diagram of P.

Intuition: Improved representations of polytopes lead to improvements for ANN

