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Introduction Motivation

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let P ⊂ Rd be a convex polytope.

If P has n vertices, then the number of faces is O(nbd/2c).

If P has n facets, then the number of vertices is O(nbd/2c).
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Moment curve: t 7→ (t, t2, . . . , td)
Figure from [George Papazafeiropoulos]
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Introduction Motivation

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let P ⊂ Rd be a convex polytope.

If P has n vertices, then the number of faces is O(nbd/2c).

If P has n facets, then the number of vertices is O(nbd/2c).

Workarounds

Settle for an approximation

Explicit: find an approximating polytope

Implicit: approximate membership testing
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Introduction Scope

Polytope Membership Queries

.. implementing a membership oracle

Polytope membership queries

Given a polytope K in Rd , preprocess K to answer membership
queries:

Given a query point q ∈ Rd , is q ∈ K?

Assumptions

Dimension d is a constant

K is given as the intersection of n halfspaces

Dual: Halfspace emptiness queries [Matoušek’92, Erickson’98]

d ≤ 3 ⇒ Query time: O(log n) with O(n) storage

d ≥ 4 ⇒ (roughly) O(n1−1/bd/2c) time with O(n) storage

Restriction ⇒ Ω̃(n1−1/d) time if storage is Õ(n)

out
in
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Introduction Scope

Approximate Polytope Membership Queries

How about an approximate membership oracle?

ε-APM queries

Specify ε > 0 at preprocessing time

Assume the polytope scaled to unit diameter

If the query point’s distance from K :

0 ⇒ Inside
> ε⇒ Outside
Otherwise: Either answer is acceptable

Goal

Query time: O(log 1
ε ) ← Logarithmic

Storage: O(1/εO(d)) ← Efficient?

out
in

ε

?
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Introduction Prelimenaries

Canonical Form

Easier to work with fat bodies

In O(n), find an invertible affine transform T s.t. T (K ) is in canonical form.

K

O

1
2

γ
2

.. and absolute rather than relative errors

If q is a point at distance greater than ε · diam(K ) from K , then T (q) is at
distance greater than ε/d from T (K ).
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Introduction Related work

Time-efficient Solution [Bentley et al. (1982)]

Create a grid with cells of diameter ε

For each column, store the topmost and
bottommost cells intersecting K

Query processing:

Locate the column that contains q
Compare q with the two extreme values

Time-efficient:

O(1/εd−1) columns

Query time: O(log 1
ε ) ← optimal

Storage: O(1/εd−1) ← high!

ε
K
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Introduction Related work

Space-efficient Solution [Arya et al. (2011, 2012)]

Q ← unit hypercube; t ← Õ(1/ε(d−1)/8)

Find an ε-approximation of Q ∩ P

If ≤ t facets suffice, Q stores them

Otherwise, subdivide Q and recurse

Query processing:

Locate the cell that contains q
Test q against up to t facets

Storage-efficient:

Query time: Õ(1/ε(d−1)/8) ← high!

Storage: O(1/ε(d−1)/2) ← optimal

t = 2
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Query time: Õ(1/ε(d−1)/8) ← high!

Storage: O(1/ε(d−1)/2) ← optimal

t = 2

Ahmed Abdelkader (CS@UMD) SWAT 2018 7 / 23



Introduction Related work

Space-efficient Solution [Arya et al. (2011, 2012)]

Q ← unit hypercube; t ← Õ(1/ε(d−1)/8)
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Introduction Related work

Digression?

Polytope approximation

Let K ⊂ Rd be a convex body (polytope) of unit diameter. Find P s.t.

The Hausdorff distance between K and P is at most ε > 0,

P is a convex polytope having few faces.

Ahmed Abdelkader (CS@UMD) SWAT 2018 8 / 23



Introduction Related work

Combinatorial Complexity of Approximating Polytopes

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with O(1/ε(d−1)/2) vertices (or facets).

K

State-of-the-art [Arya et al. 2016]

Constructon of P with O(1/ε̂(d−1)/2) faces, where ε̂ = ε/ log(1/ε).
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Introduction Related work

State-of-the-art in ε-APM [Arya et al. (2017)]

Create a hierarchy of eroded bodies

For each erosion, cover the boundary
with a ring of ellipsoids

Query processing:

Shoot a ray from a central point to q
Trace the ray through the rings
Follow parent-child links

Asymptotically optimal

Query time: O(log 1
ε ) ← optimal

Storage: O(1/ε(d−1)/2) ← optimal

Lower-bound realized by Sd−1

Ray shooting vs. point location
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Introduction Prelimenaries

Representational Technicality

A convenient alternative to K ⊕ B(δ)

Assuming K is represented as K = ∩iHi where each Hi is of the form

Hi = {x ∈ Rd | 〈x , vi 〉 ≤ ai}, where c1δ ≤ ‖vi‖ ≤ c2,

we work with Kδ = ∩iHi,δ, where Hi,δ = {x ∈ Rd | 〈x , vi 〉 ≤ ai + δ}.

K

Ahmed Abdelkader (CS@UMD) SWAT 2018 11 / 23



Introduction Prelimenaries

Representational Technicality

A convenient alternative to K ⊕ B(δ)

Assuming K is represented as K = ∩iHi where each Hi is of the form

Hi = {x ∈ Rd | 〈x , vi 〉 ≤ ai}, where c1δ ≤ ‖vi‖ ≤ c2,

we work with Kδ = ∩iHi,δ, where Hi,δ = {x ∈ Rd | 〈x , vi 〉 ≤ ai + δ}.

K

H

Ahmed Abdelkader (CS@UMD) SWAT 2018 11 / 23



Introduction Prelimenaries

Representational Technicality

A convenient alternative to K ⊕ B(δ)

Assuming K is represented as K = ∩iHi where each Hi is of the form

Hi = {x ∈ Rd | 〈x , vi 〉 ≤ ai}, where c1δ ≤ ‖vi‖ ≤ c2,

we work with Kδ = ∩iHi,δ, where Hi,δ = {x ∈ Rd | 〈x , vi 〉 ≤ ai + δ}.

K

δ
H

Hδ

Ahmed Abdelkader (CS@UMD) SWAT 2018 11 / 23



Approximate Polytope Membership Queries Intuition

APM by Quadtree Search

Quadtree-based approach

Preprocessing: Build a quadtree, subdividing
each node that cannot be resolved as being
inside or outside

Stop at diameter ε

Query: Find the leaf node containing q and
return its label

Analysis

Query time: O(log 1
ε ) (Quadtree descent)

Storage: O(1/εd−1) (Number of leaves)

What does it take to beat O(1/εd−1)?
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Approximate Polytope Membership Queries Macbeath Regions

Macbeath Regions

Want cells that conform to K ’s shape

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

MK (x) = x + (K − x) ∩ (x − K )

Intersection of K and its reflection about x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

May use ellipsoids instead

Eλ(x) ⊆ Mλ(x) ⊆ Eλ
√
d(x)

K

x
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Approximate Polytope Membership Queries Macbeath Regions

Properties of Macbeath Regions

Properties

Mλ(x) is convex and symmetric about x

Expansion-Containment: [Ewald et al (1970)]
If Mλ(x) intersects Mλ(y), with λ < 1, then

Mλ(y) ⊆ Mcλ(x), where c = 3+λ
1−λ .

Good approximation primitives

Macbeath regions act like metric balls

But, with respect to which metric?

K

x

2x− K

MK(x)

M
1/2
K (x)
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Approximate Polytope Membership Queries Macbeath Regions

Macbeath Regions and the Hilbert Geometry

From Hilbert geometry [Hilbert (1895)]

Hilbert Metric: Given x , y ∈ K , define

fK (x , y) =
1

2
ln

(
‖x ′ − y‖
‖x ′ − x‖

‖x − y ′‖
‖y − y ′‖

)
Hilbert Ball: BH(x , δ) = {y ∈ K : fK (x , y) ≤ δ}
Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

For all x ∈ K and 0 ≤ λ < 1:

BH(x , r1(λ)) ⊆ Mλ(x) ⊆ BH(x , r2(λ))
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Approximate Polytope Membership Queries Delone Sets

More from Metric Spaces

K

Where to put the Macbeath regions?

Point set layouts in a metric space X
ε-packing: If the balls of radius ε/2 centered
at every point of X are disjoint

ε-covering: If every point of X is within
distance ε of some point of X

(εp, εc)-Delone Set: If X is an εp-packing
and an εc -covering

ε-Net: If X is an (ε, ε)-Delone set

We seek economical Delone sets for K , that fit
within an expansion of K by δ ∈ {1, 12 ,

1
4 , . . . , ε}
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Approximate Polytope Membership Queries Delone Sets

Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids

Let Kδ be an expansion of K by δ > 0

Let Xδ ⊂ K be a maximal set of points such
that Eλ0(x) are disjoint for all x ∈ Xδ

Lemma

K ⊆
⋃

x∈Xδ
E

1
2 (x) ⊆ Kδ

Macbeath-Based Delone Set

Xδ is essentially a ( 1
2 , 2λ0)-Delone set for K

λ0 is a small constant 1/(4
√
d + 1)

K
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Approximate Polytope Membership Queries Varying the Scale

Expansion-Containment over δ

Lemma

For a convex body K ⊂ Rd and δ ≥ 0, for all x ∈ K
Mδ(x) ⊆ M2δ(x) ⊆ M2

δ (x).

First inclusion follows from Kδ ⊂ K2δ

Recall Kδ = ∩iHi,δ where

Hi,δ = {x ∈ Rd | 〈x , vi 〉 ≤ ai + δ}
Put the origin at x , so Mδ(x) = Kδ ∩ −Kδ
Define the slab Σi,δ = Hi,δ ∩ −Hi,δ

We may write Mδ(x) = ∩iΣi,δ

Define 2Hi,δ as {x ∈ Rd | 〈x , vi 〉 ≤ 2(ai + δ)}
Observe Σi,2δ ⊆ 2Σi,δ = 2Hi,δ ∩ −2Hi,δ

But, ∩i2Σi,δ = 2Mδ(x) is the same as M2
δ (x)

Hence, M2δ(x) ⊆ M2
δ (x) �

2Σi,δ

x

M 2
δ (x)
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Approximate Polytope Membership Queries Data Structure for APM

APM Data Structure

Preprocessing

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi

Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1
whose 1

2
-scaled Macbeath ellipsoids overlap
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Approximate Polytope Membership Queries Data Structure for APM

Analysis

Query time

Out-degree: O(1) (exp-containment + packing)

Query time per level: O(1)

Number of levels: O(log 1
ε ) (ε to O(1))

Total query time: O(log 1/ε)

Storage

#M-regions to cover Kδi : O(1/δ
(d−1)/2
i ) (ECC)

Storage for bottom level: O(1/ε(d−1)/2)

Leaf level dominates (geometric progression)

Total storage: O(1/ε(d−1)/2)

KK

x
y

K

Economical Cap Cover

[Barany and Larman (1989),
Arya, de Fonseca, Mount (2016)]
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Approximate Polytope Membership Queries Data Structure for APM

Summary

Delone sets for convex bodies

Intuitive and space-efficient cover

O(1/δ(d−1)/2) ellipsoids for δ-approximation

Simple DAG hierarchy for time-efficient look-ups

Asymptotically optimal

Thanks for listening
Questions?

akader@cs.umd.edu
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Applications Motvation (continued)

Proximity Search

Approximate Nearest-Neighbor Searching (ANN)

Given a set of n points P ⊂ Rd , preprocess P into a data structure to such
that, given a query point q ∈ Rd one can efficiently find a p ∈ P where

‖p − q‖ ≤ ‖nn(q)− q‖,

where nn(q) is the nearest-neighbor of q in P.

q
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Applications Motvation (continued)

ANN Searching and Polytope Approximation

Lifting and Voronoi Diagrams

Lift the points of P to Ψ, take the upper
envelope of the tangent hyperplanes, and
project the skeleton back onto the plane. The
result is the Voronoi diagram of P.

Intuition: Improved representations of
polytopes lead to improvements for ANN
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