Economical Delone Sets for Approximating Convex Bodies

Ahmed Abdelkader and David Mount

Department of Computer Science University of Maryland, College Park

Scandinavian Symposium and Workshops on Algorithm Theory Malmö, Sweden June 18th, 2018

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let $P \subset \mathbb{R}^d$ be a convex polytope.

- If P has n vertices, then the number of faces is $O(n^{\lfloor d/2 \rfloor})$.
- If P has n facets, then the number of vertices is $O(n^{\lfloor d/2 \rfloor})$.

./figs/images/mom1.png

./figs/images/mom2.png

Moment curve:
$$t \mapsto (t, t^2, \ldots, t^d)$$

Curse of dimensionality

Upper-Bound Theorem [McMullen, 1970], also [Seidel, 1995]

Let $P \subset \mathbb{R}^d$ be a convex polytope.

- If P has n vertices, then the number of faces is $O(n^{\lfloor d/2 \rfloor})$.
- If *P* has *n* facets, then the number of vertices is $O(n^{\lfloor d/2 \rfloor})$.

Workarounds

Settle for an approximation

- Explicit: find an approximating polytope
- Implicit: approximate membership testing

Polytope Membership Queries

.. implementing a membership oracle

Polytope membership queries

Given a polytope K in \mathbb{R}^d , preprocess K to answer membership queries:

Given a query point $q \in \mathbb{R}^d$, is $q \in K$?

Assumptions

- Dimension *d* is a constant
- K is given as the intersection of n halfspaces

Dual: Halfspace emptiness queries [Matoušek'92, Erickson'98]

- $d \leq 3 \Rightarrow$ Query time: $O(\log n)$ with O(n) storage
- $d \ge 4 \Rightarrow$ (roughly) $O(n^{1-1/\lfloor d/2 \rfloor})$ time with O(n) storage
- Restriction $\Rightarrow \tilde{\Omega}(n^{1-1/d})$ time if storage is $\tilde{O}(n)$

Scope

Approximate Polytope Membership Queries

How about an *approximate* membership oracle?

ε -APM queries

- Specify $\varepsilon > 0$ at preprocessing time
- Assume the polytope scaled to unit diameter
- If the query point's distance from K:
 - 0 \Rightarrow Inside
 - $> \varepsilon \Rightarrow \mathsf{Outside}$
 - Otherwise: Either answer is acceptable

Goal

Query time: $O(\log \frac{1}{\varepsilon})$ Storage: $O(1/\varepsilon^{O(d)})$ ← Logarithmic← Efficient?

Canonical Form

Easier to work with fat bodies

In O(n), find an invertible affine transform T s.t. T(K) is in canonical form.

.. and absolute rather than relative errors

If q is a point at distance greater than $\varepsilon \cdot diam(K)$ from K, then T(q) is at distance greater than ε/d from T(K).

Canonical Form

Easier to work with fat bodies

In O(n), find an invertible affine transform T s.t. T(K) is in canonical form.

.. and absolute rather than relative errors

If q is a point at distance greater than $\varepsilon \cdot diam(K)$ from K, then T(q) is at distance greater than ε/d from T(K).

• Create a grid with cells of diameter ε

- For each column, store the topmost and bottommost cells intersecting *K*
- Query processing:
 - Locate the column that contains q
 - Compare *q* with the two extreme values

Time-efficient:

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\epsilon})$
- Storage: $O(1/\varepsilon^{d-1})$

 \leftarrow optimal

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting *K*
- Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time-efficient:

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\epsilon})$
- Storage: $O(1/\varepsilon^{d-1})$

 \leftarrow optimal

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting *K*
- Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time-efficient:

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\epsilon})$
- Storage: $O(1/\varepsilon^{d-1})$

 \leftarrow optimal

- Create a grid with cells of diameter ε
- For each column, store the topmost and bottommost cells intersecting *K*
- Query processing:
 - Locate the column that contains q
 - Compare q with the two extreme values

Time-efficient:

- $O(1/\varepsilon^{d-1})$ columns
- Query time: $O(\log \frac{1}{\epsilon})$
- Storage: $O(1/\varepsilon^{d-1})$

 \leftarrow optimal

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}(1/\varepsilon^{(d-1)/8})$
- Find an ε -approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
 - Locate the cell that contains q
 - Test q against up to t facets

Storage-efficient:

• Query time:
$$\widetilde{O}(1/arepsilon^{(d-1)/8}) ~\leftarrow \mathsf{high}$$

• Storage: $O(1/\varepsilon^{(d-1)/2})$

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}(1/\varepsilon^{(d-1)/8})$
- Find an ε -approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
 - Locate the cell that contains q
 - Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}(1/\varepsilon^{(d-1)/8}) \leftarrow \text{high!}$
- Storage: $O(1/\varepsilon^{(d-1)/2}) \leftarrow \text{optimal}$

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}(1/\varepsilon^{(d-1)/8})$
- Find an ε -approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
 - Locate the cell that contains q
 - Test q against up to t facets

Storage-efficient:

- Query time: $\widetilde{O}(1/\varepsilon^{(d-1)/8}) \leftarrow \text{high!}$
- Storage: $O(1/\varepsilon^{(d-1)/2}) \leftarrow \text{optimal}$

- $Q \leftarrow$ unit hypercube; $t \leftarrow \widetilde{O}(1/\varepsilon^{(d-1)/8})$
- Find an ε -approximation of $Q \cap P$
- If $\leq t$ facets suffice, Q stores them
- Otherwise, subdivide Q and recurse
- Query processing:
 - Locate the cell that contains q
 - Test q against up to t facets

Storage-efficient:

• Query time:
$$\widetilde{O}(1/\varepsilon^{(d-1)/8}) \leftarrow \mathsf{high!}$$

• Storage: $O(1/\varepsilon^{(d-1)/2})$

 \leftarrow optimal

Digression?

Polytope approximation

Let $K \subset \mathbb{R}^d$ be a convex body (polytope) of unit diameter. Find P s.t.

- The Hausdorff distance between K and P is at most $\varepsilon > 0$,
- *P* is a convex polytope having few faces.

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

Dudley (1974) or Bronshteyn-Ivanov (1976)

Easy construction of P with $O(1/\varepsilon^{(d-1)/2})$ vertices (or facets).

State-of-the-art [Arya et al. 2016]

• Create a hierarchy of eroded bodies

- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

- $\leftarrow \mathsf{optimal} \\ \leftarrow \mathsf{optimal}$
- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

- $\begin{array}{l} \leftarrow \mathsf{optimal} \\ \leftarrow \mathsf{optimal} \end{array}$
- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

- $\leftarrow \mathsf{optimal} \\ \leftarrow \mathsf{optimal}$
- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

- $\leftarrow \mathsf{optimal} \\ \leftarrow \mathsf{optimal}$
- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

- $\begin{array}{l} \leftarrow \mathsf{optimal} \\ \leftarrow \mathsf{optimal} \end{array}$
- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

- Create a hierarchy of eroded bodies
- For each erosion, cover the boundary with a ring of ellipsoids
- Query processing:
 - Shoot a ray from a central point to q
 - Trace the ray through the rings
 - Follow parent-child links

Asymptotically optimal

Query time: $O(\log \frac{1}{\varepsilon})$ \leftarrow optimalStorage: $O(1/\varepsilon^{(d-1)/2})$ \leftarrow optimal

- Lower-bound realized by \mathbb{S}^{d-1}
- Ray shooting vs. point location

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$

Assuming K is represented as $K = \bigcap_i H_i$ where each H_i is of the form

 $H_i = \{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq a_i\}$, where $c_1 \delta \leq ||v_i|| \leq c_2$,

we work with $K_{\delta} = \bigcap_{i} H_{i,\delta}$, where $H_{i,\delta} = \{x \in \mathbb{R}^{d} \mid \langle x, v_i \rangle \leq a_i + \delta\}$.

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$

Assuming K is represented as $K = \bigcap_i H_i$ where each H_i is of the form

 $H_i = \{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq a_i\}$, where $c_1 \delta \leq ||v_i|| \leq c_2$,

we work with $K_{\delta} = \bigcap_{i} H_{i,\delta}$, where $H_{i,\delta} = \{x \in \mathbb{R}^{d} \mid \langle x, v_i \rangle \leq a_i + \delta\}$.

Representational Technicality

A convenient alternative to $K \oplus B(\delta)$

Assuming K is represented as $K = \bigcap_i H_i$ where each H_i is of the form

 $H_i = \{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le a_i\}$, where $c_1 \delta \le ||v_i|| \le c_2$,

we work with $K_{\delta} = \bigcap_{i} H_{i,\delta}$, where $H_{i,\delta} = \{x \in \mathbb{R}^{d} \mid \langle x, v_i \rangle \leq a_i + \delta\}$.

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

What does it take to beat $O(1/\varepsilon^{d-1})$?

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

What does it take to beat $O(1/\varepsilon^{d-1})$?

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

Quadtree-based approach

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing *q* and return its label

Analysis

Query time: $O(\log \frac{1}{\varepsilon})$ (Quadtree descent) Storage: $O(1/\varepsilon^{d-1})$ (Number of leaves)

What does it take to beat $O(1/\varepsilon^{d-1})$?

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)] Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{\mathcal{K}}^{\lambda}(x)$: Scaling of $M_{\mathcal{K}}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)] Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]Given convex body $K, x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)] Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)] Given convex body $K, x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)] Given convex body $K, x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Want cells that conform to K's shape

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K(x) = x + (K x) \cap (x K)$
 - Intersection of K and its reflection about x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Will omit K when clear

John ellipsoid [John (1948)]

$$E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$$

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda < 1$, then $M^{\lambda}(y) \subseteq M^{c\lambda}(x)$, where $c = \frac{3+\lambda}{1-\lambda}$.

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda < 1$, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x)$, where $c = \frac{3+\lambda}{1-\lambda}$.

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda < 1$, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x)$, where $c = \frac{3+\lambda}{1-\lambda}$.

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda < 1$, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x)$, where $c = \frac{3+\lambda}{1-\lambda}$.

- Macbeath regions act like metric balls
- But, with respect to which metric?

Properties

- $M^{\lambda}(x)$ is convex and symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If $M^{\lambda}(x)$ intersects $M^{\lambda}(y)$, with $\lambda < 1$, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x)$, where $c = \frac{3+\lambda}{1-\lambda}$.

- Macbeath regions act like metric balls
- But, with respect to which metric?

From Hilbert geometry [Hilbert (1895)]

• Hilbert Metric: Given $x, y \in K$, define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

• Hilbert Ball:
$$B_H(x,\delta) = \{y \in K : f_K(x,y) \le \delta\}$$

• Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

$$B_H(x, r_1(\lambda)) \subseteq M^{\lambda}(x) \subseteq B_H(x, r_2(\lambda))$$

From Hilbert geometry [Hilbert (1895)]

• Hilbert Metric: Given $x, y \in K$, define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

- Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

$$B_H(x, r_1(\lambda)) \subseteq M^{\lambda}(x) \subseteq B_H(x, r_2(\lambda))$$

From Hilbert geometry [Hilbert (1895)]

• Hilbert Metric: Given $x, y \in K$, define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

- Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

$$B_H(x, r_1(\lambda)) \subseteq M^{\lambda}(x) \subseteq B_H(x, r_2(\lambda))$$

From Hilbert geometry [Hilbert (1895)]

• Hilbert Metric: Given $x, y \in K$, define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

- Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$
- Locally-sensitive to the shape of the convex body

. to Macbeath regions [Vernicos and Walsh (2016)]

$$B_H(x, r_1(\lambda)) \subseteq M^{\lambda}(x) \subseteq B_H(x, r_2(\lambda))$$

From Hilbert geometry [Hilbert (1895)]

• Hilbert Metric: Given $x, y \in K$, define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

- Hilbert Ball: $B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$
- Locally-sensitive to the shape of the convex body

.. to Macbeath regions [Vernicos and Walsh (2016)]

$$B_H(x, r_1(\lambda)) \subseteq M^{\lambda}(x) \subseteq B_H(x, r_2(\lambda))$$

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε -covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Where to put the Macbeath regions?

Point set layouts in a metric space $\ensuremath{\mathbb{X}}$

- ε-packing: If the balls of radius ε/2 centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -Net: If X is an $(\varepsilon, \varepsilon)$ -Delone set

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

- X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K
- λ_0 is a small constant $1/(4\sqrt{d}+1)$

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

- X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K
- λ_0 is a small constant $1/(4\sqrt{d}+1)$

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

 λ_0 is a small constant $1/(4\sqrt{d}+1)$

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

 λ_0 is a small constant $1/(4\sqrt{d}+1)$

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

 λ_0 is a small constant $1/(4\sqrt{d}+1)$

Delone sets from Macbeath ellipsoids

- Let K_{δ} be an expansion of K by $\delta > 0$
- Let X_δ ⊂ K be a maximal set of points such that E^{λ₀}(x) are disjoint for all x ∈ X_δ

Lemma

$$K \subseteq \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x) \subseteq K_{\delta}$$

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

 λ_0 is a small constant $1/(4\sqrt{d}+1)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

 $H_{i,\delta} = \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le a_i + \delta \}$

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\bigcap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_i H_{i,\delta}$ where

 $H_{i,\delta} = \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le a_i + \delta \}$

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_\delta(x)$ is the same as $M^2_\delta(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Expansion-Containment over δ

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_i H_{i,\delta}$ where

 $H_{i,\delta} = \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le a_i + \delta \}$

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_\delta(x)$ is the same as $M^2_\delta(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

SWAT 2018

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

 $H_{i,\delta} = \{ x \in \mathbb{R}^d \mid \langle x, v_i \rangle \le a_i + \delta \}$

• Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$

• Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$

- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_i H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_\delta(x)$ is the same as $M^2_\delta(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\bigcap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_i H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_\delta(x)$ is the same as $M^2_\delta(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_i H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_\delta(x)$ is the same as $M^2_\delta(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\cap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Lemma

For a convex body $K \subset \mathbb{R}^d$ and $\delta \ge 0$, for all $x \in K$ $M_{\delta}(x) \subseteq M_{2\delta}(x) \subseteq M_{\delta}^2(x)$.

- First inclusion follows from $K_{\delta} \subset K_{2\delta}$
- Recall $K_{\delta} = \bigcap_{i} H_{i,\delta}$ where

- Put the origin at x, so $M_{\delta}(x) = K_{\delta} \cap -K_{\delta}$
- Define the slab $\Sigma_{i,\delta} = H_{i,\delta} \cap -H_{i,\delta}$
- We may write $M_{\delta}(x) = \cap_i \Sigma_{i,\delta}$
- Define $2H_{i,\delta}$ as $\{x \in \mathbb{R}^d \mid \langle x, v_i \rangle \leq 2(a_i + \delta)\}$
- Observe $\Sigma_{i,2\delta} \subseteq 2\Sigma_{i,\delta} = 2H_{i,\delta} \cap -2H_{i,\delta}$
- But, $\bigcap_i 2\Sigma_{i,\delta} = 2M_{\delta}(x)$ is the same as $M_{\delta}^2(x)$
- Hence, $M_{2\delta}(x) \subseteq M_{\delta}^2(x)$

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing

- $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
- Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing

- Input: K and $\varepsilon > 0$
- For *i* = 0, 1, . . .
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose ¹/₂-scaled Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Data Structure for APM

Analysis

Query time

- Out-degree: O(1) (exp-containment + packing)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$ (ε to O(1))
- Total query time: $O(\log 1/\varepsilon)$

Storage

- #M-regions to cover K_{δ_i} : $O(1/\delta_i^{(d-1)/2})$ (ECC)
- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Leaf level dominates (geometric progression)
- Total storage: $O(1/\varepsilon^{(d-1)/2})$

Economical Cap Cover

[Barany and Larman (1989), Arya, de Fonseca, Mount (2016)]

Data Structure for APM

Analysis

Query time

- Out-degree: O(1) (exp-containment + packing)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$ (ε to O(1))
- Total query time: $O(\log 1/\varepsilon)$

Storage

- #M-regions to cover K_{δ_i} : $O(1/\delta_i^{(d-1)/2})$ (ECC)
- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Leaf level dominates (geometric progression)
- Total storage: $O(1/\varepsilon^{(d-1)/2})$

Economical Cap Cover

[Barany and Larman (1989), Arya, de Fonseca, Mount (2016)]

Data Structure for APM

Summary

Delone sets for convex bodies

- Intuitive and space-efficient cover
- $O(1/\delta^{(d-1)/2})$ ellipsoids for δ -approximation
- Simple DAG hierarchy for time-efficient look-ups
 - Asymptotically optimal

Thanks for listening

Questions? akader@cs.umd.edu

Proximity Search

Approximate Nearest-Neighbor Searching (ANN)

Given a set of *n* points $P \subset \mathbb{R}^d$, preprocess *P* into a data structure to such that, given a query point $q \in \mathbb{R}^d$ one can efficiently find a $p \in P$ where

 $\|p-q\|\leq \|nn(q)-q\|,$

where nn(q) is the *nearest-neighbor* of q in P.

ANN Searching and Polytope Approximation

Lifting and Voronoi Diagrams

Lift the points of P to Ψ , take the upper envelope of the tangent hyperplanes, and project the skeleton back onto the plane. The result is the Voronoi diagram of P.

Intuition: Improved representations of polytopes lead to improvements for ANN

