Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

Ahmed Abdelkader¹, Chandrajit Bajaj², Mohamed Ebeida³, Ahmed Mahmoud⁴, Scott Mitchell³, John Owens⁴ and Ahmad Rushdi⁴

¹University of Maryland, College Park
²University of Texas, Austin
³Sandia National Laboratories
⁴University of California, Davis
Motivation

Meshing

Partition into “simple” elements
Motivation

Meshing

Partition into “simple” elements

Tetrahedral mesh
Motivation

Finite Element Method (FEM)

\[\text{PDE} \xrightarrow{\Delta} \text{Mesh} \rightarrow \text{Algebra} \rightarrow \text{Discrete Approximation} \rightarrow \text{Interpolation} \]
Motivation

What type of element to use?
No silver bullet..

Tetrahedral mesh vs. Voronoi mesh
Motivation

Why polyhedral meshing?

- Less sensitive to stretching
 - Efficient meshing of complicated domains
- Higher node degree, even at boundaries
 - Better approximations of gradients

Why Voronoi meshing?

- Convex elements
- Positive Jacobians
- Orthogonal dual: a Delaunay mesh
Related Work

Voronoi meshing by “clipping”

Initial Voronoi mesh → Truncate cells by bounding surface → Defects
Related Work

Voronoi meshing by “mirroring”
Pair seeds naïvely across surface
Related Work

Voronoi meshing by “mirroring”
Pair seeds naively across surface → Bad surface normals
Voronoï meshing by “mirroring”

Pair seeds naîvely across surface → Bad surface normals
Related Work

Voronoi meshing

VoroCrust is a principled approach to mirroring
Preliminaries

Notation

- \mathcal{O}: bounded open set in \mathbb{R}^3; the volume to be meshed
- \mathcal{M}: boundary of \mathcal{O}; a smooth surface
- \mathcal{P}: input sample from \mathcal{M}
- $\hat{\mathcal{M}}, \hat{\mathcal{O}}$: surface and volume meshes

Fillette aux tourterelles [Luigi Pampaloni]
Preliminaries

Local features size (lfs)

At any $x \in \mathcal{M}$, $\text{lfs}(x)$ is the distance from x to the medial axis of \mathcal{M}.
\(\epsilon \)-sample

A set of points \(P \) on \(M \) such that \(\forall x \in M \ \exists p \in P \) s.t. \(\|px\| \leq \epsilon \cdot lfs(x) \).
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)

(2) Collect intersection points
VoroCrust Intuition - A 2D Example

1. Weighted samples (balls)
2. Collect intersection points
3. Compute Voronoi diagram
VoroCrust Intuition - A 2D Example

(1) Weighted samples (balls)

(2) Collect intersection points

(3) Compute Voronoi diagram

(4) Keep the separating facets
From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ-sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot lfs(p)$. Then, \mathcal{M} is a deformation retract of $\bigcup b_p$.
From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ-sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot lfs(p)$. Then, \mathcal{M} is a deformation retract of $\bigcup b_p$.

VoroCrust step (1)
From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ-sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot \text{lfs}(p)$. Then, \mathcal{M} is a deformation retract of $\bigcup b_p$.

VoroCrust step (1)

Corollary

For sufficiently small ϵ, we may set $\delta(\epsilon) = c$; we take $c = 2$.
For a ball $b \in B$ centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \ \forall b' \in B\}$.
Power distance and cell

For a ball $b \in B$ centered at c with radius r, $\pi(b, x) = \|cx\|^2 - r^2$.

$V_b = \{ x \in \mathbb{R}^d \mid \pi(b, x) \leq \pi(b', x) \forall b' \in B \}$.

Figures from [Edelsbrunner]
Weighted α-complex and α-shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = \text{Nerve}(\{V_b \cap b \mid b \in \mathcal{B}\})$ and S as the underlying space $|\mathcal{K}|$.

Homotopy-equivalence

The nerve theorem implies $S = |\mathcal{K}|$ has the same homotopy-type as $\bigcup \mathcal{B}$.

Ahmed Abdelkader (CS@UMD)

Sampling Conditions for VoroCrust
Weighted α-complex and α-shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in B\})$ and S as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]
Weighted α-complex and α-shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = \text{Nerve}(\{V_b \cap b \mid b \in B\})$ and S as the underlying space $|\mathcal{K}|$.

Homotopy-equivalence

The nerve theorem implies $S = |\mathcal{K}|$ has the same homotopy-type as $\cup B$.
Medial Axis of a Union of Balls [Amenta, Kolluri (2001)]

Let \mathcal{U} be a union of balls in \mathbb{R}^d, let V be the vertices of $\partial \mathcal{U}$ and let S be the α-shape of \mathcal{U}. The medial axis of \mathcal{U} consists of:

1. the singular faces of S and
2. the subset of $\text{Vor}(V)$ which intersects the regular components of S.
Medial Axis of a Union of Balls [Amenta, Kolluri (2001)]

Let \mathcal{U} be a union of balls in \mathbb{R}^d, let V be the vertices of $\partial \mathcal{U}$ and let S be the α-shape of \mathcal{U}. The medial axis of \mathcal{U} consists of:

1. the singular faces of S and
2. the subset of $\text{Vor}(V)$ which intersects the regular components of S.

VoroCurst steps (2-4)
Case(1): singular facet of the α-shape
Case(2): regular component of the α-shape
Isotopic surface reconstruction
Recover both surface topology and embedding

Figure from [Wikipedia]
A purely topological condition [Chazal, Cohen-Steiner (2005)]

- \mathcal{M}' is homeomorphic to \mathcal{M},
- \mathcal{M}' is included in a topological thickening \mathbb{M} of \mathcal{M},
- \mathcal{M}' separates the sides of \mathbb{M}.
Start with an \(\epsilon \)-sample \(\mathcal{P} \subset \mathcal{M} \) with weights
\[r_i = 2 \cdot lfs(p_i) \]
defining the associated balls \(B \).
VoroCrust - The Abstract Algorithm

- Start with an ϵ-sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B}.
- Collect the corners of $\bigcup \mathcal{B}$, $S^\downarrow = S^\uparrow \cup S^\downarrow$.
VoroCrust - The Abstract Algorithm

- Start with an \(\epsilon \)-sample \(P \subset M \) with weights \(r_i = 2 \cdot lfs(p_i) \) defining the associated balls \(B \).
- Collect the corners of \(\bigcup B \), \(S^\uparrow = S^\uparrow \cup S^\downarrow \).
- Compute the Voronoi diagram of \(S^\uparrow \), \(Vor(S^\uparrow) \).
VoroCrust - The Abstract Algorithm

- Start with an ϵ-sample $P \subset M$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls B.
- Collect the corners of $\bigcup B$, $S^\downarrow = S^\uparrow \cup S^\downarrow$.
- Compute the Voronoi diagram of S^\downarrow, $Vor(S^\downarrow)$.
- Produce the surface approximation \hat{M} as the Vorono facets of separating S^\uparrow from S^\downarrow.

Ahmed Abdelkader (CS@UMD)
Start with an ϵ-sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B}.

Collect the corners of $\cup \mathcal{B}$, $S^\downarrow = S^\uparrow \cup S^\downarrow$.

Compute the Voronoi diagram of S^\downarrow, $Vor(S^\downarrow)$.

Produce the surface approximation $\hat{\mathcal{M}}$ as the Vorono facets of separating S^\uparrow from S^\downarrow.

Generate additional seeds $S^\downarrow\downarrow$ from \mathcal{O}.
Start with an ϵ-sample $P \subset M$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls B.

Collect the corners of $\bigcup B$, $S^\downarrow = S^\uparrow \cup S^\downarrow$.

Compute the Voronoi diagram of S^\downarrow, $\text{Vor}(S^\downarrow)$.

Produce the surface approximation \hat{M} as the Vorono facets of separating S^\uparrow from S^\downarrow.

Generate additional seeds $S^\downarrow\downarrow$ from O.

Return the volume mesh \hat{O} as the Voronoi cells in $\text{Vor}(S^\uparrow \cup S^\downarrow\downarrow)$ with seeds in $S^\downarrow \cup S^\downarrow\downarrow$.

Theorem \hat{M} is isotopic to M. Hence, \hat{O} is isotopic to O.

Ahmed Abdelkader (CS@UMD)
Start with an ϵ-sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B}.

Collect the corners of $\bigcup \mathcal{B}$, $S^{\uparrow \downarrow} = S^{\uparrow} \cup S^{\downarrow}$.

Compute the Voronoi diagram of $S^{\uparrow \downarrow}$, $\text{Vor}(S^{\uparrow \downarrow})$.

Produce the surface approximation \hat{M} as the Vorono facets of separating S^{\uparrow} from S^{\downarrow}.

Generate additional seeds $S^{\downarrow \downarrow}$ from \mathcal{O}.

Return the volume mesh \hat{O} as the Voronoi cells in $\text{Vor}(S^{\uparrow \downarrow} \cup S^{\downarrow \downarrow})$ with seeds in $S^{\downarrow} \cup S^{\downarrow \downarrow}$.

Theorem

\hat{M} is isotopic to M. Hence, \hat{O} is isotopic to \overline{O}.
VoroCrust - Ball Intersections

\[p_1 p_2 p_3 s_{123} \]

Ahmed Abdelkader (CS@UMD)
Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.
VoroCrust - Sampling Conditions

Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions

\[\text{lfs}(q) \geq \text{lfs}(p) \implies \| p - q \| \geq \sigma \cdot \epsilon \text{lfs}(p) \]
VoroCrust - Sampling Conditions

Requirement: disk caps
Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions
\[lfs(q) \geq lfs(p) \implies \| p - q \| \geq \sigma \cdot \epsilon lfs(p) \]

Lemma
For sufficiently small \(\epsilon \), we may set \(\sigma = 3/4 \).
VoroCrust - Sampling Conditions

Requirement: disk caps
Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions
\[\text{lfs}(q) \geq \text{lfs}(p) \implies \|p - q\| \geq \sigma \cdot \epsilon \text{lfs}(p) \]

Lemma
For sufficiently small \(\epsilon \), we may set \(\sigma = 3/4 \).

More geometric lemmata
- Samples appear as vertices in \(\hat{\mathcal{M}} \).
- Bounds on angles and normal deviation of triangles in the weighted \(\alpha \)-complex \(\mathcal{K} \).
Lipschitz extension [Miller, Talmor, Teng (1999)]

For \(x \in \mathcal{O} \) let \(lfs(x) = \inf_{p \in \mathcal{M}} (lfs(p) + \|xp\|) \).

Figure from [David Mount]
Lipschitz extension [Miller, Talmor, Teng (1999)]

For $x \in \mathcal{O}$ let $lfs(x) = \inf_{p \in \mathcal{M}} (lfs(p) + \|xp\|)$.

Sampling for fat cells

- Refine bounding box till lfs is satisfied
- Surface seeds are far from reconstruction $\hat{\mathcal{M}}$

Figure from [David Mount]
Lipschitz extension [Miller, Talmor, Teng (1999)]

For \(x \in \mathcal{O} \) let \(\text{lfs}(x) = \inf_{p \in \mathcal{M}} (\text{lfs}(p) + \|xp\|) \).

Sampling for fat cells

- Refine bounding box till \(\text{lfs} \) is satisfied
- Surface seeds are far from reconstruction \(\hat{\mathcal{M}} \)

Quality for Voronoi cells: Fatness

Fix a Voronoi cell \(v \in \hat{\mathcal{O}} \).
- \(R \): radius of circumscribing sphere
- \(r \): radius of inscribed sphere
- Fatness of \(v = R/r \)

Figure from [David Mount]
Lemma
Out-radius to in-radius ratio is at most 15.
Lemma

- Out-radius to in-radius ratio is at most 15.
Lemma

- Out-radius to in-radius ratio is at most 15.
- Number of interior seeds $|S_{\downarrow\downarrow}| = O(\epsilon^{-3} \cdot \int_{\text{vol}} lfs^{-3})$.
Summary

- A new Voronoi-based algorithm for isotopic surface reconstruction
- Conforming Voronoi meshing of volumes bounded by smooth surfaces
- Lower-bound on in-radius to out-radius ratio of all Voronoi cells
- For all matters related to the VoroCrust software
 - Please contact: Mohamed S. Ebeida (msebeid@sandia.gov)

Thanks for listening