Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

Ahmed Abdelkader¹, Chandrajit Bajaj², Mohamed Ebeida³, Ahmed Mahmoud⁴, Scott Mitchell³, John Owens⁴ and Ahmad Rushdi⁴

¹University of Maryland, College Park

²University of Texas, Austin

³Sandia National Laboratories

⁴University of California, Davis

Motivation

Meshing

Partition into "simple" elements

Motivation

Meshing

Partition into "simple" elements

Tetrahedral mesh

Finite Element Method (FEM)

 $\mathsf{PDE} \xrightarrow{\Delta} \mathsf{Mesh} \to \mathsf{Algebra} \to \mathsf{Discrete} \ \mathsf{Approximation} \to \mathsf{Interpolation}$

Motivation

What type of element to use?

No silver bullet ..

Tetrahedral mesh vs. Voronoi mesh

Why polyhedral meshing?

- Less sensitive to stretching
 - Efficient meshing of complicated domains
- Higher node degree, even at boundaries
 - Better approximations of gradients

Why Voronoi meshing?

- Convex elements
- Positive Jacobians
- Orthogonal dual: a Delaunay mesh

Voronoi meshing by "clipping"

Initial Voronoi mesh \rightarrow Truncate cells by bounding surface \rightarrow Defects

Voronoi meshing by "mirroring"

Pair seeds naïvely across surface

Voronoi meshing by "mirroring"

Pair seeds naïvely across surface \rightarrow Bad surface normals

Voronoi meshing by "mirroring"

Pair seeds naïvely across surface \rightarrow Bad surface normals

Voronoi meshing

VoroCrust is a principled approach to mirroring

Preliminaries

Notation

- \mathcal{O} : bounded open set in \mathbb{R}^3 ; the volume to be meshed
- $\mathcal{M}:$ boundary of $\mathcal{O};$ a smooth surface
- $\bullet \ \mathcal{P}: \mbox{ input sample from } \mathcal{M}$
- $\hat{\mathcal{M}}, \hat{\mathcal{O}}$: surface and volume meshes

Fillette aux tourterelles [Luigi Pampaloni]

Ahmed Abdelkader (CS@UMD)

Sampling Conditions for VoroCrust

Preliminaries

Local features size (lfs)

At any $x \in \mathcal{M}$, *lfs*(x) is the distance from x to the medial axis of \mathcal{M} .

ϵ -sample

A set of points *P* on \mathcal{M} such that $\forall x \in \mathcal{M} \exists p \in P$ s.t. $||px|| \leq \epsilon \cdot lfs(x)$.

(2) Collect intersection points

(3) Compute Voronoi diagram

(2) Collect intersection points

(2) Collect intersection points

(3) Compute Voronoi diagram

From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ -sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot lfs(p)$. Then, \mathcal{M} is a deformation retract of $\cup b_p$.

From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ -sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot lfs(p)$. Then, \mathcal{M} is a deformation retract of $\cup b_p$.

From balls to surfaces [Chazal, Lieutier (2006)]

Let \mathcal{P} be an ϵ -sample of \mathcal{M} and define b_p as the ball centered at $p \in \mathcal{P}$ with radius $\delta(\epsilon) \cdot lfs(p)$. Then, \mathcal{M} is a deformation retract of $\cup b_p$.

Corollary

For sufficiently small ϵ , we may set $\delta(\epsilon) = c$; we take c = 2.

Power distance and cell

For a ball $b \in \mathcal{B}$ centered at c with radius r, $\pi(b, x) = ||cx||^2 - r^2$. $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \forall b' \in \mathcal{B}\}.$

Power distance and cell

For a ball $b \in \mathcal{B}$ centered at c with radius r, $\pi(b, x) = ||cx||^2 - r^2$. $V_b = \{x \in \mathbb{R}^d \mid \pi(b, x) \le \pi(b', x) \forall b' \in \mathcal{B}\}.$

Figures from [Edelsbrunner]

Weighted α -complex and α -shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in \mathcal{B}\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Weighted α -complex and α -shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in \mathcal{B}\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]

Weighted α -complex and α -shape [Edelsbrunner (1992-1995)]

Define $\mathcal{K} = Nerve(\{V_b \cap b \mid b \in \mathcal{B}\})$ and \mathcal{S} as the underlying space $|\mathcal{K}|$.

Figures from [Edelsbrunner]

Homotopy-equivalence

The nerve theorem implies $\mathcal{S} = |\mathcal{K}|$ has the same homotopy-type as $\cup \mathcal{B}$.

Medial Axis of a Union of Balls [Amenta, Kolluri (2001)]

Let \mathcal{U} be a union of balls in \mathbb{R}^d , let V be the vertices of $\partial \mathcal{U}$ and let S be the α -shape of \mathcal{U} . The medial axis of \mathcal{U} consists of:

- $\textcircled{0} \ \text{the singular faces of } \mathcal{S} \ \text{and} \ \end{array}$
- 2 the subset of Vor(V) which intersects the regular components of S.

Medial Axis of a Union of Balls [Amenta, Kolluri (2001)]

Let \mathcal{U} be a union of balls in \mathbb{R}^d , let V be the vertices of $\partial \mathcal{U}$ and let S be the α -shape of \mathcal{U} . The medial axis of \mathcal{U} consists of:

- $\textcircled{0} the singular faces of \mathcal{S} and$
- 2 the subset of Vor(V) which intersects the regular components of S.

VoroCurst steps (2-4)

Tools - Voronoi-based Surface Reconstruction

Case(1): singular facet of the α -shape

Tools - Voronoi-based Surface Reconstruction

Case(2): regular component of the α -shape

Isotopic surface reconstruction

Recover both surface topology and embedding

Figure from [Wikipedia]

Tools - Isotopic Surface Reconstruction

A purely topological condition [Chazal, Cohen-Steiner (2005)]

- \mathcal{M}' is homeomorphic to \mathcal{M} ,
- \mathcal{M}' is included in a topological thickening $\mathbb M$ of \mathcal{M} ,
- \mathcal{M}' separates the sides of \mathbb{M} .

VoroCrust - The Abstract Algorithm

• Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .

VoroCrust - The Abstract Algorithm

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.

VoroCrust - The Abstract Algorithm

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.
- Compute the Voronoi diagram of S^{\uparrow} , $Vor(S^{\uparrow})$.

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.
- Compute the Voronoi diagram of S^{\uparrow} , $Vor(S^{\uparrow})$.
- Produce the surface approximation as the Vorono facets of separating S[↑] from S[↓].

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.
- Compute the Voronoi diagram of S^{\uparrow} , $Vor(S^{\uparrow})$.
- Produce the surface approximation *M̂* as the Vorono facets of separating *S*[↑] from *S*[↓].
- Generate additional seeds $S^{\downarrow\downarrow}$ from O.

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.
- Compute the Voronoi diagram of S^{\uparrow} , $Vor(S^{\uparrow})$.
- Produce the surface approximation $\hat{\mathcal{M}}$ as the Vorono facets of separating S^{\uparrow} from S^{\downarrow} .
- Generate additional seeds $S^{\downarrow\downarrow}$ from O.
- Return the volume mesh Ô as the Voronoi cells in Vor(S[‡] ∪ S^{↓↓}) with seeds in S[↓] ∪ S^{↓↓}.

- Start with an ϵ -sample $\mathcal{P} \subset \mathcal{M}$ with weights $r_i = 2 \cdot lfs(p_i)$ defining the associated balls \mathcal{B} .
- Collect the corners of $\cup \mathcal{B}$, $\mathcal{S}^{\uparrow} = \mathcal{S}^{\uparrow} \cup \mathcal{S}^{\downarrow}$.
- Compute the Voronoi diagram of S^{\uparrow} , $Vor(S^{\uparrow})$.
- Produce the surface approximation *M̂* as the Vorono facets of separating *S*[↑] from *S*[↓].
- Generate additional seeds $S^{\downarrow\downarrow}$ from O.
- Return the volume mesh Ô as the Voronoi cells in Vor(S[‡] ∪ S^{↓↓}) with seeds in S[↓] ∪ S^{↓↓}.

Theorem

 $\hat{\mathcal{M}}$ is isotopic to \mathcal{M} . Hence, $\hat{\mathcal{O}}$ is isotopic to $\overline{\mathcal{O}}$.

VoroCrust - Ball Intersections

Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions

$$lfs(q) \ge lfs(p) \implies ||p-q|| \ge \sigma \cdot \epsilon lfs(p)$$

Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions

$$\textit{lfs}(q) \geq \textit{lfs}(p) \implies \|p - q\| \geq \sigma \cdot \epsilon \textit{lfs}(p)$$

Lemma

For sufficiently small ϵ , we may set $\sigma = 3/4$.

Requirement: disk caps

Each sample ball contributes exactly two caps, i.e., topological-disks, to the boundary of the union.

Sampling conditions

$$\textit{lfs}(q) \geq \textit{lfs}(p) \implies \|p - q\| \geq \sigma \cdot \epsilon \textit{lfs}(p)$$

Lemma

For sufficiently small ϵ , we may set $\sigma = 3/4$.

More geometric lemmata

- Samples appear as vertices in $\hat{\mathcal{M}}$.
- Bounds on angles and normal deviation of triangles in the weighted α-complex K.

Lipschitz extension [Miller, Talmor, Teng (1999)] For $x \in \mathcal{O}$ let $lfs(x) = \inf_{p \in \mathcal{M}} (lfs(p) + ||xp||)$.

Figure from [David Mount]

For
$$x \in \mathcal{O}$$
 let $lfs(x) = \inf_{p \in \mathcal{M}} (lfs(p) + ||xp||)$.

Sampling for fat cells

- Refine bounding box till Ifs is satisfied
- Surface seeds are far from reconstruction $\hat{\mathcal{M}}$

Figure from [David Mount]

For
$$x \in \mathcal{O}$$
 let $lfs(x) = \inf_{p \in \mathcal{M}} (lfs(p) + ||xp||)$.

Sampling for fat cells

- Refine bounding box till *lfs* is satisfied
- Surface seeds are far from reconstruction $\hat{\mathcal{M}}$

Quality for Voronoi cells: Fatness

Fix a Voronoi cell $v \in \hat{\mathcal{O}}$.

- R: radius of circumscribing sphere
- r: radius of inscribed sphere
- Fatness of v = R/r

Figure from [David Mount]

Lemma

• Out-radius to in-radius ratio is at most 15.

Lemma

- Out-radius to in-radius ratio is at most 15.
- Number of interior seeds $|S^{\downarrow\downarrow}| = O(\epsilon^{-3} \cdot \int_{\text{vol}} lfs^{-3}).$

Summary

- A new Voronoi-based algorithm for isotopic surface reconstruction
- Conforming Voronoi meshing of volumes bounded by smooth surfaces
- Lower-bound on in-radius to out-radius ratio of all Voronoi cells
- For all matters related to the VoroCrust software
 - Please contact: Mohamed S. Ebeida (msebeid@sandia.gov)

Thanks for listening