Introduction to Computational Topology

Ahmed Abdelkader

Guest Lecture

CMSC 754 – Spring 2020
May 7th, 2020
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]
Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity – a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Figures from Wikipedia [1, 2]
More Graph Theory

Complete graph K_5, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]
More Graph Theory

Complete graph K_5, complete bipartite graph $K_{3,3}$, and the Petersen graph.

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]
More Graph Theory

Complete graph K_5, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]
More Graph Theory

Complete graph K_5, complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph is planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is t-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]
Surfaces

Topological Invariants

Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.

- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!

- Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
Surfaces

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.

- The genus corresponds to the number of holes or handles.

- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
Surfaces

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
Surfaces

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!

- Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
Surfaces

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not tear or pinch the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a topologist cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Figures from Wikipedia [6, 7, 8, 9]
How do you compute the genus *without looking*?
Convex Polytopes

Euler’s Polyhedron Formula

- **Alternating sum** of the number of vertices (V), edges (E), and facets (F)
 \[\chi = V - E + F \]

- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]
Convex Polytopes

Euler’s Polyhedron Formula

- **Alternating sum** of the number of vertices (V), edges (E), and facets (F)
 \[\chi = V - E + F \]

- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.

- Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]
Convex Polytopes

Euler’s Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F)
 \[\chi = V - E + F \]
- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]
What about non-convex surfaces?
Wireframes

Rendering all triangles

Wireframe, edges only
Simplicial Complexes

A 3-simplex
Four 2-simplices
Six 1-simplices
Four 0-simplices

Definitions

- A **p-simplex** is the convex hull of \((p + 1)\) affinely-independent points.
 - We write this as \(\sigma = [v_0, \ldots, v_p] = \text{conv}\{v_0, \ldots, v_p\}\) and say \(\dim \sigma = p\).
- A **simplicial complex** \(K\) is a set of simplices closed under intersection, and its dimension \(\dim K\) is the maximum dimension of its simplices.
 - If \(\sigma_1, \sigma_2 \in K\), then \(\sigma_1 \cap \sigma_2 \in K\). The \((-1)\)-simplex \(\emptyset\) is always in \(K\).
Simplicial Complexes

Definitions

- A **p-simplex** is the convex hull of $(p + 1)$ affinely-independent points.
- We write this as $\sigma = [v_0, \ldots, v_p] = \text{conv}\{v_0, \ldots, v_p\}$ and say $\text{dim} \ \sigma = p$.
- A **simplicial complex** K is a set of simplices closed under intersection, and its dimension $\text{dim} \ K$ is the maximum dimension of its simplices.
- If $\sigma_1, \sigma_2 \in K$, then $\sigma_1 \cap \sigma_2 \in K$. The (-1)-simplex \emptyset is always in K.
Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A \(p \)-simplex is the convex hull of \((p + 1)\) affinely-independent points.
- We write this as \(\sigma = [v_0, \ldots, v_p] = \text{conv}\{v_0, \ldots, v_p\} \) and say \(\dim \sigma = p \).
- A simplicial complex \(K \) is a set of simplices closed under intersection, and its dimension \(\dim K \) is the maximum dimension of its simplices.
- If \(\sigma_1, \sigma_2 \in K \), then \(\sigma_1 \cap \sigma_2 \in K \). The \((-1)\)-simplex \(\emptyset \) is always in \(K \).
Simplicial Complexes

Definitions

- A \(p \)-simplex is the convex hull of \((p + 1)\) affinely-independent points.
- We write this as \(\sigma = [v_0, \ldots, v_p] = \text{conv}\{v_0, \ldots, v_p\} \) and say \(\dim \sigma = p \).
- A simplicial complex \(K \) is a set of simplices closed under intersection, and its dimension \(\dim K \) is the maximum dimension of its simplices.
- If \(\sigma_1, \sigma_2 \in K \), then \(\sigma_1 \cap \sigma_2 \in K \). The \((-1)\)-simplex \(\emptyset \) is always in \(K \).
Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k + 1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\dim \tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ.
- The interior of σ is defined as $|\sigma| = \sigma - \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.
Simplicial Complexes

Definitions

- A face τ is a k-simplex connecting $(k + 1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.

- A (co)face τ of a simplex σ is proper if $\dim \tau \neq \dim \sigma$.

- The boundary $\partial \sigma$ is the collection of proper faces of σ.

- The interior of σ is defined as $|\sigma| = \sigma - \partial \sigma$.

- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.
Simplicial Complexes

A 3-simplex

Four 2-simplices

Six 1-simplices

Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k + 1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\dim \tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ.
- The interior of σ is defined as $|\sigma| = \sigma - \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.
Simplicial Complexes

A 3-simplex
Four 2-simplices
Six 1-simplices
Four 0-simplices

Definitions

- A face τ is a k-simplex connecting $(k + 1)$ of the vertices of σ. We write this as $\tau \leq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\dim \tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ.
- The interior of σ is defined as $|\sigma| = \sigma - \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.
Simplicial Complexes

Definitions

- A face τ is a k-simplex connecting $(k + 1)$ of the vertices of σ. We write this as $\tau \preceq \sigma$, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if $\dim \tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ.
- The interior of σ is defined as $|\sigma| = \sigma - \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.
How to represent a *mapping* between two surfaces?
Continuous Deformations

A continuous deformation of a cow model into a ball

Figure from Wikipedia [15]
Continuous Maps

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the \((\varepsilon, \delta)\)-definition of the limit.
- For general topologies, we use neighborhoods instead of \((\varepsilon, \delta)\) intervals.

Figures from Wikipedia [16, 17]
Continuous Maps

Continuity at $x = 2$ by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ)-definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Figures from Wikipedia [16, 17]
Continuous Maps

Continuity at $x = 2$ by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ)-definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Figures from Wikipedia [16, 17]
Definition

Two topological spaces X and Y are said to be homeomorphic whenever there exists a continuous map $f : X \to Y$ with a continuous inverse $f^{-1} : Y \to X$. Such a function f is called a homeomorphism.

Figure from Wikipedia [15]
But, we will be using the triangulations rather than the surfaces ...
A triangulation of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.

A topological space is triangulable if it admits a triangulation.
Triangulations

Definition

- A \textit{triangulation} of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.
- A topological space is \textit{triangulable} if it admits a triangulation.
Continuous Maps between Simplicial Complexes

- Fix a simplicial complex K.
- The *star* of σ is the collection its cofaces:
 \[\text{St}_K(\sigma) = \{ \tau \in K \mid \sigma \leq \tau \} \]

- The *star neighborhood* of σ is the union of the interior of its cofaces:
 \[N_K(\sigma) = \bigcup_{\tau \in \text{St}_K(\sigma)} |\tau| \]
Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:
 \[\text{St}_K(\sigma) = \{ \tau \in K \mid \sigma \preceq \tau \} . \]
- The star neighborhood of σ is the union of the interior of its cofaces:
 \[\text{N}_K(\sigma) = \bigcup_{\tau \in \text{St}_K(\sigma)} \text{int}(\tau) . \]
Continuous Maps between Simplicial Complexes

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The *star* of σ is the collection its cofaces:

$$\text{St}_K(\sigma) = \{ \tau \in K \mid \sigma \preceq \tau \}.$$

- The *star neighborhood* of σ is the union of the interior of its cofaces:

$$\text{N}_K(\sigma) = \bigcup_{\tau \in \text{St}_K(\sigma)} |\tau|.$$
Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$
 $$\hat{f}(N_{\hat{X}}(v)) \subseteq N_{\hat{Y}}(u)$$
 for some vertex $u = \phi(v) \in \hat{Y}$.
- The map $\phi : \operatorname{Vert} \hat{X} \to \operatorname{Vert} \hat{Y}$ extends to a simplicial map that maps
every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear
map $\hat{f}_\Delta : \hat{X} \to \hat{Y}$ that approximates the original function f.
Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$
 \[\hat{f}(N_{\hat{X}}(v)) \subseteq N_{\hat{Y}}(u) \] for some vertex $u = \phi(v) \in \hat{Y}$.
- The map $\phi : \text{Vert } \hat{X} \to \text{Vert } \hat{Y}$ extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_\Delta : \hat{X} \to \hat{Y}$ that approximates the original function f.
Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$
 \[\hat{f}(N_{\hat{X}}(v)) \subseteq N_{\hat{Y}}(u) \] for some vertex $u = \phi(v) \in \hat{Y}$.
- The map $\phi : \text{Vert} \hat{X} \to \text{Vert} \hat{Y}$ extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map $\hat{f}_\Delta : \hat{X} \to \hat{Y}$ that approximates the original function f.
Continuous Maps between Simplicial Complexes

The Star Condition

- Fix two simplicial complexes \(\hat{X} \) and \(\hat{Y} \) and a map \(\hat{f} : |\hat{X}| \rightarrow |\hat{Y}| \).
- We say that \(\hat{f} \) satisfies the star condition if for all vertices \(v \in \hat{X} \)
 \[
 \hat{f}(N_{\hat{X}}(v)) \subseteq N_{\hat{Y}}(u) \quad \text{for some vertex } u = \phi(v) \in \hat{Y}.
 \]
- The map \(\phi : \text{Vert } \hat{X} \rightarrow \text{Vert } \hat{Y} \) extends to a simplicial map that maps every simplex \(\sigma \in \hat{X} \) to some simplex \(\tau \in \hat{Y} \).
- The simplicial map induces a simplicial approximation: a piecewise-linear map \(\hat{f}_{\Delta} : \hat{X} \rightarrow \hat{Y} \) that approximates the original function \(f \).
What if $\hat{f} : |\hat{X}| \rightarrow |\hat{Y}|$ fails the star condition?
Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex \(v \in \hat{X} \) such that \(\hat{f}(N_{\hat{X}}(v)) \) is not contained in \(N_{\hat{Y}}(u) \) for any vertex \(u \in \hat{Y} \), then \(N_{\hat{X}}(v) \) is too large!
- Solution: refine \(\hat{X} \) without changing \(\hat{f} : \hat{X} \to \hat{Y} \).
- The barycenter of \(\sigma = [v_0, \ldots, v_p] \) is defined as \(\frac{1}{p+1} \sum_{i=0}^{p} v_i \).
- Repeated subdivisions eventually achieve the star condition.
Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f} : \hat{X} \rightarrow \hat{Y}$.
- The barycenter of $\sigma = [v_0, \ldots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_i$.
- Repeated subdivisions eventually achieve the star condition.
Simplicial Approximation Theorem

If there exists a vertex \(v \in \hat{X} \) such that \(\hat{f}(N_{\hat{X}}(v)) \) is not contained in \(N_{\hat{Y}}(u) \) for any vertex \(u \in \hat{Y} \), then \(N_{\hat{X}}(v) \) is too large!

Solution: refine \(\hat{X} \) without changing \(\hat{f}: \hat{X} \to \hat{Y} \).

The barycenter of \(\sigma = [v_0, \ldots, v_p] \) is defined as \(\frac{1}{p+1} \sum_{i=0}^{p} v_i \).

Repeated subdivisions eventually achieve the star condition.
Simplicial Approximation Theorem

If there exists a vertex \(v \in \hat{X} \) such that \(\hat{f}(N_{\hat{X}}(v)) \) is not contained in \(N_{\hat{Y}}(u) \) for any vertex \(u \in \hat{Y} \), then \(N_{\hat{X}}(v) \) is too large!

Solution: refine \(\hat{X} \) without changing \(\hat{f} : \hat{X} \to \hat{Y} \).

The \textit{barycenter} of \(\sigma = [v_0, \ldots, v_p] \) is defined as \(\frac{1}{p+1} \sum_{i=0}^{p} v_i \).

Repeated subdivisions eventually achieve the star condition.
Simplicial Approximation Theorem

Barycentric Subdivisions

- If there exists a vertex \(v \in \hat{X} \) such that \(\hat{f}(N_{\hat{X}}(v)) \) is not contained in \(N_{\hat{Y}}(u) \) for any vertex \(u \in \hat{Y} \), then \(N_{\hat{X}}(v) \) is too large!
- Solution: refine \(\hat{X} \) without changing \(\hat{f} : \hat{X} \to \hat{Y} \).
- The barycenter of \(\sigma = [v_0, \ldots, v_p] \) is defined as \(\frac{1}{p+1} \sum_{i=0}^{p} v_i \).
- Repeated subdivisions eventually achieve the star condition.
Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?
Recall the alternating sum used to compute the Euler characteristic χ.

We would like to derive a similar computation on a simplicial complex K.

But, a single simplex can be shared among multiple cofaces.

How do we keep track of the correct count?
Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?
Simplicial Counting

- Recall the alternating sum used to compute the Euler characteristic χ.
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?
Recall the alternating sum used to compute the Euler characteristic χ. We would like to derive a similar computation on a simplicial complex K. But, a single simplex can be shared among multiple cofaces. How do we keep track of the correct count? Algebra!
Chains

Counting Modulo 2

- Define a p-chain as a subset of the p-simplices in the complex K.
- We write a p-chain as a formal sum $c = \sum_i a_i \sigma_i$, where σ_i ranges over the p-simplices and a_i is a coefficient.
- We will work with coefficients in $\mathbb{F}_2 = \{0, 1\}$ with addition modulo 2.
Chains

Counting Modulo 2

- Define a \(p \)-chain as a subset of the \(p \)-simplices in the complex \(K \).
- We write a \(p \)-chain as a formal sum \(c = \sum_i a_i \sigma_i \), where \(\sigma_i \) ranges over the \(p \)-simplices and \(a_i \) is a coefficient.
- We will work with coefficients in \(\mathbb{F}_2 = \{0, 1\} \) with addition modulo 2.
Define a p-chain as a subset of the p-simplices in the complex K.

We write a p-chain as a formal sum $c = \sum_i a_i \sigma_i$, where σ_i ranges over the p-simplices and a_i is a coefficient.

We will work with coefficients in $\mathbb{F}_2 = \{0, 1\}$ with *addition modulo 2*.
Counting Modulo 2

- Two p-chains can be added to obtain a new p-chain.
- Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.
- As $a_i + b_i \in \mathbb{F}_2$ for all i, we get that $c_1 + c_2$ is a chain.
- Regarding p-chains as sets, we can interpret that $c_1 + c_2$ with modulo 2 coefficients is the *symmetric difference* between the two sets.
Two p-chains can be added to obtain a new p-chain. Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$. As $a_i + b_i \in \mathbb{F}_2$ for all i, we get that $c_1 + c_2$ is a chain. Regarding p-chains as sets, we can interpret that $c_1 + c_2$ with modulo 2 coefficients is the symmetric difference between the two sets.
Two p-chains can be added to obtain a new p-chain.

Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.

As $a_i + b_i \in \mathbb{F}_2$ for all i, we get that $c_1 + c_2$ is a chain.

Regarding p-chains as sets, we can interpret that $c_1 + c_2$ with modulo 2 coefficients is the symmetric difference between the two sets.
Two p-chains can be added to obtain a new p-chain.

Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.

As $a_i + b_i \in \mathbb{F}_2$ for all i, we get that $c_1 + c_2$ is a chain.

Regarding p-chains as sets, we can interpret that $c_1 + c_2$ with modulo 2 coefficients is the symmetric difference between the two sets.
Chain Groups

Algebra I

A group \((A, \bullet)\) is a set \(A\) together with a binary operation satisfying:

- Closure: for all \(\alpha, \beta \in A\), we have that \(\alpha \bullet \beta \in A\).
- Associativity: so that for all \(\alpha, \beta, \gamma \in A\) we have \(\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma\).
- \(A\) has an identity element \(\omega\) such that \(\alpha + \omega = \alpha\) for all \(\alpha \in A\).

If, in addition, \(\bullet\) is commutative, we have that \(\alpha \bullet \beta = \beta \bullet \alpha\) for all \(\alpha, \beta \in A\), and we say the group \((A, \bullet)\) is abelian.

Chains as Groups

We can now recognize \(p\)-chains \((C_p, +)\) as abelian groups.

Chains as Vector Spaces

If the complex \(K\) has \(n_p\) \(p\)-simplices, then \(C_p\) is (isomorphic to) the set of binary vectors of length \(n_p\), i.e., \(\{0, 1\}^{n_p}\), with the exclusive-or operation \(\oplus\).
Algebra I

A *group* (A, \bullet) is a set A together with a *binary operation* satisfying:
- **Closure**: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- **Associativity**: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma$.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, \bullet is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize p-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

If the complex K has n_p p-simplices, then C_p is (isomorphic to) the set of *binary vectors* of length n_p, i.e., $\{0, 1\}^{n_p}$, with the exclusive-or operation \oplus.

Chain Groups

Algebra I

A group \((A, \bullet)\) is a set \(A\) together with a binary operation satisfying:

- Closure: for all \(\alpha, \beta \in A\), we have that \(\alpha \bullet \beta \in A\).
- Associativity: so that for all \(\alpha, \beta, \gamma \in A\) we have \(\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma\).
- \(A\) has an identity element \(\omega\) such that \(\alpha + \omega = \alpha\) for all \(\alpha \in A\).

If, in addition, \(\bullet\) is commutative, we have that \(\alpha \bullet \beta = \beta \bullet \alpha\) for all \(\alpha, \beta \in A\), and we say the group \((A, \bullet)\) is abelian.

Chains as Groups

We can now recognize \(p\)-chains \((C_p, +)\) as abelian groups.

Chains as Vector Spaces

If the complex \(K\) has \(n_p\) \(p\)-simplices, then \(C_p\) is (isomorphic to) the set of binary vectors of length \(n_p\), i.e., \(\{0, 1\}^{n_p}\), with the exclusive-or operation \(\oplus\).
Chain Groups

Algebra I

A group \((A, \bullet)\) is a set \(A\) together with a binary operation satisfying:

- Closure: for all \(\alpha, \beta \in A\), we have that \(\alpha \bullet \beta \in A\).
- Associativity: so that for all \(\alpha, \beta, \gamma \in A\) we have \(\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma\).
- \(A\) has an identity element \(\omega\) such that \(\alpha + \omega = \alpha\) for all \(\alpha \in A\).

If, in addition, \(\bullet\) is commutative, we have that \(\alpha \bullet \beta = \beta \bullet \alpha\) for all \(\alpha, \beta \in A\), and we say the group \((A, \bullet)\) is abelian.

Chains as Groups

We can now recognize \(p\)-chains \((C_p, +)\) as abelian groups.

Chains as Vector Spaces

If the complex \(K\) has \(n_p\) \(p\)-simplices, then \(C_p\) is (isomorphic to) the set of binary vectors of length \(n_p\), i.e., \(\{0, 1\}^{n_p}\), with the exclusive-or operation \(\oplus\).
Chain Groups

Algebra I

A *group* \((A, \bullet)\) is a set \(A\) together with a *binary operation* satisfying:

- **Closure**: for all \(\alpha, \beta \in A\), we have that \(\alpha \bullet \beta \in A\).
- **Associativity**: so that for all \(\alpha, \beta, \gamma \in A\) we have \(\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma\).
- \(A\) has an *identity element* \(\omega\) such that \(\alpha + \omega = \alpha\) for all \(\alpha \in A\).

If, in addition, \(\bullet\) is *commutative*, we have that \(\alpha \bullet \beta = \beta \bullet \alpha\) for all \(\alpha, \beta \in A\), and we say the group \((A, \bullet)\) is *abelian*.

Chains as Groups

We can now recognize \(p\)-chains \((C_p, +)\) as *abelian groups*.

Chains as Vector Spaces

If the complex \(K\) has \(n_p\) \(p\)-simplices, then \(C_p\) is (isomorphic to) the set of *binary vectors* of length \(n_p\), i.e., \(\{0, 1\}^{n_p}\), with the exclusive-or operation \(\oplus\).
Algebra I

A *group* (A, \bullet) is a set A together with a *binary operation* satisfying:

- **Closure**: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- **Associativity**: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma$.
- **Identity Element**: A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, \bullet is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize p-chains $(C_p, +)$ as *abelian groups*.

Chains as Vector Spaces

If the complex K has $n_p p$-simplices, then C_p is (isomorphic to) the set of *binary vectors* of length n_p, i.e., $\{0, 1\}^{n_p}$, with the exclusive-or operation \oplus.
Chain Groups

Algebra I

A group \((A, \bullet)\) is a set \(A\) together with a binary operation satisfying:

- Closure: for all \(\alpha, \beta \in A\), we have that \(\alpha \bullet \beta \in A\).
- Associativity: so that for all \(\alpha, \beta, \gamma \in A\) we have \(\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma\).
- \(A\) has an identity element \(\omega\) such that \(\alpha + \omega = \alpha\) for all \(\alpha \in A\).

If, in addition, \(\bullet\) is commutative, we have that \(\alpha \bullet \beta = \beta \bullet \alpha\) for all \(\alpha, \beta \in A\), and we say the group \((A, \bullet)\) is abelian.

Chains as Groups

We can now recognize \(p\)-chains \((C_p, +)\) as abelian groups.

Chains as Vector Spaces

If the complex \(K\) has \(n_p\) \(p\)-simplices, then \(C_p\) is (isomorphic to) the set of binary vectors of length \(n_p\), i.e., \(\{0, 1\}^{n_p}\), with the exclusive-or operation \(\oplus\).
Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p - 1)$-chain

$$\partial_p \sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_p],$$

where \hat{v}_i indicates that v_i is excluded in the corresponding face.
- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the p-th chain group.
- For any p-chain $c = \sum_i a_i \sigma_i$, its boundary is the $(p - 1)$-chain

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.$$
Boundary of a Chain

Linear Extensions

- Fix a p-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p - 1)$-chain

$$\partial_p \sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_p],$$

where \hat{v}_i indicates that v_i is excluded in the corresponding face.
- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c = \sum_i a_i \sigma_i$, its boundary is the $(p - 1)$-chain

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.$$
Boundary of a Chain

Linear Extensions

- Fix a \(p \)-simplex \(\sigma = [v_0, \ldots, v_p] \) in the complex \(K \).

- Recall that the boundary of \(\sigma \) is the collection of its proper faces, which we denoted by \(\partial \sigma \).

- We can now express the boundary elements as a single \((p - 1)\)-chain

\[
\partial_p \sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_p],
\]

where \(\hat{v}_i \) indicates that \(v_i \) is excluded in the corresponding face.

- Notice that we used the subscript to qualify the **boundary operator** as the one acting on the \(p \)-th chain group.

- For any \(p \)-chain \(c = \sum_i a_i \sigma_i \), its boundary is the \((p - 1)\)-chain

\[
\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.
\]
Linear Extensions

- Fix a p-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p - 1)$-chain:

$$\partial_p \sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_p],$$

where \hat{v}_i indicates that v_i is excluded in the corresponding face.
- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c = \sum_i a_i \sigma_i$, its boundary is the $(p - 1)$-chain:

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.$$
Boundary of a Chain

- Fix a p-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex K.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single $(p-1)$-chain

$$\partial_p \sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_p],$$

where \hat{v}_i indicates that v_i is excluded in the corresponding face.
- Notice that we used the subscript to qualify the boundary operator as the one acting on the p-th chain group.
- For any p-chain $c = \sum_i a_i \sigma_i$, its boundary is the $(p-1)$-chain

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.$$
The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_p commutes with the group operations.

- If c_1 and c_2 are p-chains, then: $\partial_p(c_1 +_{(p)} c_2) = \partial_p c_1 +_{(p-1)} \partial_p c_2$, where we qualify the addition operators on each side of the equation.

- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_p : C_p \rightarrow C_{p-1}$.

- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots$$
The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are p-chains, then: $\partial_p(c_1 +_{(p)} c_2) = \partial_p c_1 +_{(p-1)} \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_p : C_p \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$
\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots
$$
The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are p-chains, then: $\partial_p(c_1 +_{(p)} c_2) = \partial_p c_1 +_{(p-1)} \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_p : C_p \rightarrow C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$\ldots \rightarrow \partial_{p+2} C_{p+1} \rightarrow \partial_{p+1} C_p \rightarrow \partial_p C_{p-1} \rightarrow \partial_{p-1} C_{p-2} \rightarrow \ldots$$
The Chain Complex

Boundary Homomorphisms

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are p-chains, then: $\partial_p(c_1 +_p c_2) = \partial_p c_1 + (p-1) \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: $\partial_p : C_p \to C_{p-1}$.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex K with a series of algebraic modules.

$$\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$
But like .. what’s the point?
Boundary Matrices

Chains Groups as Vector Spaces

- Let \(\{\sigma_i\}_i \) and \(\{\tau_j\}_j \) denote the \(p \)-simplices and \((p-1) \)-simplices of \(K \).
- The boundary of a \(p \)-chain \(c = \sum_i a_i \sigma_i \) is the \((p-1) \)-chain

\[
\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i = \sum_i a_i \sum_j \partial^{j,i}_p \tau_j = \sum_j b_j \tau_j,
\]

where \(b_i = \sum_i (a_i \partial^{j,i}_p) \), and \(\partial^{j,i}_p \) is 1 if \(\tau_j \in \partial_p \sigma_i \) and 0 otherwise.
- With that, we can express the boundary operator \(\partial_p \) in matrix form.

\[
\partial_p c = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_p = \begin{bmatrix} \partial^{1,1}_p & \partial^{1,2}_p & \cdots & \partial^{1,n_p}_p \\ \partial^{2,1}_p & \partial^{2,2}_p & \cdots & \partial^{2,n_p}_p \\ \vdots & \vdots & \ddots & \vdots \\ \partial^{n_p-1,0}_p & \partial^{n_p-1,2}_p & \cdots & \partial^{n_p-1,n_p}_p \end{bmatrix}, \quad c = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_p} \end{bmatrix}
\]
Boundary Matrices

Chains Groups as Vector Spaces

- Let \(\{\sigma_i\}_i \) and \(\{\tau_j\}_j \) denote the \(p \)-simplices and \((p - 1)\)-simplices of \(K \).
- The boundary of a \(p \)-chain \(c = \sum_i a_i \sigma_i \) is the \((p - 1)\)-chain

\[
\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i = \sum_i a_i \sum_j \partial^{j,i}_p \tau_j = \sum_j b_j \tau_j,
\]

where \(b_i = \sum_i \left(a_i \partial^{j,i}_p \right) \), and \(\partial^{j,i}_p \) is 1 if \(\tau_j \in \partial_p \sigma_i \) and 0 otherwise.
- With that, we can express the boundary operator \(\partial_p \) in matrix form.

\[
\partial_p c = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_p = \begin{bmatrix} \partial^{1,1}_p & \partial^{1,2}_p & \cdots & \partial^{1,n_p}_p \\ \partial^{2,1}_p & \partial^{2,2}_p & \cdots & \partial^{2,n_p}_p \\ \vdots & \vdots & \ddots & \vdots \\ \partial^{n_{p-1},1}_p & \partial^{n_{p-1},2}_p & \cdots & \partial^{n_{p-1},n_p}_p \end{bmatrix}, \quad c = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_p} \end{bmatrix}
\]
Boundary Matrices

Chains Groups as Vector Spaces

- Let \(\{\sigma_i\}_i \) and \(\{\tau_j\}_j \) denote the \(p \)-simplices and \((p-1)\)-simplices of \(K \).
- The boundary of a \(p \)-chain \(c = \sum_i a_i \sigma_i \) is the \((p-1)\)-chain

\[
\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i = \sum_i a_i \sum_j \partial_{p,i}^j \tau_j = \sum_j b_j \tau_j,
\]

where \(b_i = \sum_i (a_i \partial_{p,i}^j) \), and \(\partial_{p,i}^j \) is 1 if \(\tau_j \in \partial_p \sigma_i \) and 0 otherwise.
- With that, we can express the boundary operator \(\partial_p \) in matrix form.

\[
\partial_p c = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_p = \begin{bmatrix} \partial_{p,1,1} & \partial_{p,1,2} & \cdots & \partial_{p,1,n_p} \\ \partial_{p,2,1} & \partial_{p,2,2} & \cdots & \partial_{p,2,n_p} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p,n_{p-1},0} & \partial_{p,n_{p-1},2} & \cdots & \partial_{p,n_{p-1},n_p} \end{bmatrix}, \quad c = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_p} \end{bmatrix}
\]
Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p + 1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Figure from Wikipedia [18]
Boundaries and Cycles

Which Boundaries are Useful?
Consider the 1-chains on the torus to the right.
- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary
- We are particularly interested in p-chains c satisfying $\partial_p c = \emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Figure from Wikipedia [18]
Boundaries and Cycles

Which Boundaries are Useful?
Consider the 1-chains on the torus to the right.
- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary
- We are particularly interested in p-chains c satisfying $\partial_p c = \emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Figure from Wikipedia [18]
Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.
- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_p c = \emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Figure from Wikipedia [18]
Boundaries and Cycles

Which Boundaries are Useful?
Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in \(p \)-chains \(c \) satisfying \(\partial_p c = \emptyset \).
- Any such chain is called a \(p \)-cycle.
- A \(p \)-cycle that arises as the boundary of a \((p + 1)\)-chain is a \(p \)-boundary.
- We need a way to count distinct \(p \)-cycles while ignoring all \(p \)-boundaries.
- Observe that \(\partial_p \circ \partial_{p+1} = 0 \).

Figure from Wikipedia [18]
Boundaries and Cycles

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.
- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in p-chains c satisfying $\partial_p c = \emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.
Boundaries and Cycles

Which Boundaries are Useful?
Consider the 1-chains on the torus to the right.
- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary
- We are particularly interested in p-chains c satisfying $\partial_p c = \emptyset$.
- Any such chain is called a p-cycle.
- A p-cycle that arises as the boundary of a $(p+1)$-chain is a p-boundary.
- We need a way to count distinct p-cycles while ignoring all p-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$. The fundamental lemma of homology!
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.
Equivalence and Quotients

Boundaries and Cycles as Subgroups
- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II
- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all \(p \)-cycles by \(Z_p \) and all \(p \)-boundaries by \(B_p \).
- As the boundary map commutes with addition, \(Z_p \) is a subgroup of \(C_p \).
- Likewise, \(B_p \) is a subgroup of \(Z_p \).
- For any \(p \)-cycle \(\alpha \in Z_p \) and a \(p \)-boundary \(\beta \), we get that \(\alpha + \beta \in Z_p \).

Algebra II

- We define an equivalence relation that identifies a pair of elements \(\alpha, \alpha' \in Z_p \) whenever \(\alpha' = \alpha + \beta \) for some \(\beta \in B_p \).
- The equivalence relation partitions \(Z_p \) into equivalence classes or cosets; the coset \([\alpha]\) consists of all the elements identified with \(\alpha \).
- Then, the collection of cosets together with the addition operator give rise to the quotient group \(Z_p / B_p \) of the elements in \(Z_p \) modulo the elements in \(B_p \).
Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all p-cycles by Z_p and all p-boundaries by B_p.
- As the boundary map commutes with addition, Z_p is a subgroup of C_p.
- Likewise, B_p is a subgroup of Z_p.
- For any p-cycle $\alpha \in Z_p$ and a p-boundary β, we get that $\alpha + \beta \in Z_p$.

Algebra II

- We define an equivalence relation that identifies a pair of elements $\alpha, \alpha' \in Z_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset $[\alpha]$ consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the quotient group Z_p/B_p of the elements in Z_p modulo the elements in B_p.

Homology

Algebra III

- Take a group \((A, \bullet)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number of basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now define the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)
 \[
 \beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
 \]
Algebra III

- Take a group \((A,\cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now define the \(p\)-th homology group as \(H_p = Z_p / B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The **order** of the group is the cardinality of \(A\).
 - The **rank** of the group is the cardinality of a minimal *generator*.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number *basis vectors* that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p / B_p\).
- The rank of \(H_p\) is known as the \(p\)-th *Betti number* \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

 \[
 \beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
 \]
Homology

Algebra III

- Take a group \((A, \cdot)\).
 - The order of the group is the cardinality of \(A\).
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as \(C_p\) or \(Z_p\)
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

Homology Groups and Betti Numbers

- We can now defined the \(p\)-th homology group as \(H_p = Z_p/B_p\).
- The rank of \(H_p\) is known as the \(p\)-th Betti number \(\beta_p\)

\[
\beta_p = \text{rank } H_p = \text{rank } Z_p - \text{rank } B_p.
\]
Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T : V \to W$ a **linear transformation**.
- We define the *kernel* of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The *rank-nullity theorem* states that

\[
\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).
\]

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.
Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \to W$ a *linear transformation*.
- We define the *kernel* of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The *rank-nullity theorem* states that

$$\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).$$

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.
Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T : V \to W$ a *linear transformation*.
- We define the *kernel* of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The *rank-nullity theorem* states that

$$\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).$$

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, rank $C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.

Ahmed Abdelkader (CS@UMD)
Let V and W be vector spaces and $T : V \rightarrow W$ a \textit{linear transformation}.

We define the \textit{kernel} of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.

The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the \textit{image} of T.

The \textit{rank-nullity theorem} states that

$$\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).$$

\textbf{In the Context of Homology}

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.
Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T : V \to W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted $\text{Ker}(T)$, of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the image of T.
- The rank-nullity theorem states that

$$\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).$$

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.

Ahmed Abdelkader (CS@UMD)
Introduction to Computational Topology
May 7th, 2020
Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T : V \rightarrow W$ a *linear transformation*.
- We define the *kernel* of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The *rank-nullity theorem* states that

\[
\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).
\]

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T : V \rightarrow W$ a *linear transformation*.
- We define the *kernel* of T as the subspace of V, denoted $\text{Ker}(T)$ of all vectors v such that $T(v) = 0$.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The *rank-nullity theorem* states that

$$\dim V = \dim \text{Image}(T) + \dim \text{Ker}(T).$$

In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.
In the Context of Homology

- Z_p is the kernel of ∂_p, while B_{p-1} is its image.
- Hence, $\text{rank } C_p = \text{rank } Z_p + \text{rank } B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a d-dimensional complex, $Z_{d+1} = \emptyset$.

$$
\begin{align*}
\text{In the Context of Homology} \\
Z_p & \text{ is the kernel of } \partial_p, \text{ while } B_{p-1} \text{ is its image.} \\
\text{Hence, } \operatorname{rank} C_p &= \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}. \\
\text{Note that } B_{-1} &= \emptyset, \text{ and for a } d\text{-dimensional complex, } Z_{d+1} = \emptyset.
\end{align*}
$$
The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler’s polyhedron formula, we may write

\[\chi = \sum_{p \geq 0} (-1)^p \text{rank } C_p = \sum_{p \geq 0} (-1)^p (\text{rank } Z_p + \text{rank } B_{p-1}) \]

\[= (\text{rank } Z_0 + \text{rank } B_{-1}) - (\text{rank } Z_1 + \text{rank } B_0) + (\text{rank } Z_2 + \text{rank } B_1) - \ldots \]

\[= (\text{rank } Z_0 - \text{rank } B_0) - (\text{rank } Z_1 - \text{rank } B_1) + (\text{rank } Z_2 - \text{rank } B_2) - \ldots \]

\[= \sum_{p \geq 0} (-1)^p (\text{rank } Z_p - \text{rank } B_p) \]

\[= \sum_{p \geq 0} (-1)^p \beta_p. \]

Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.
The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler’s polyhedron formula, we may write

\[\chi = \sum_{p \geq 0} (-1)^p \text{rank } C_p = \sum_{p \geq 0} (-1)^p (\text{rank } Z_p + \text{rank } B_{p-1}) \]

\[= (\text{rank } Z_0 + \text{rank } B_{-1}) - (\text{rank } Z_1 + \text{rank } B_0) + (\text{rank } Z_2 + \text{rank } B_1) - \ldots \]

\[= (\text{rank } Z_0 - \text{rank } B_0) - (\text{rank } Z_1 - \text{rank } B_1) + (\text{rank } Z_2 - \text{rank } B_2) - \ldots \]

\[= \sum_{p \geq 0} (-1)^p (\text{rank } Z_p - \text{rank } B_p) \]

\[= \sum_{p \geq 0} (-1)^p \beta_p. \]

Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.
Matrix Reduction

Rank Computations

- To compute β_p as the difference between $\text{rank } Z_p$ and $\text{rank } B_p$ we work with the matrix representation of the boundary map ∂_p.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of *Gaussian elimination* is used to get the *Smith normal form*.

\[
\begin{align*}
\text{rank } B_{p-1} & \quad \text{rank } C_p \\
\text{rank } C_{p-1} & \quad \text{rank } Z_p
\end{align*}
\]
Matrix Reduction

Rank Computations

- To compute β_p as the difference between $\text{rank } Z_p$ and $\text{rank } B_p$, we work with the matrix representation of the boundary map ∂_p.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of *Gaussian elimination* is used to get the *Smith normal form*.

\[
\begin{align*}
\text{rank } B_{p-1} & \quad \text{rank } C_p \\
\text{rank } C_{p-1} & \quad \text{rank } Z_p
\end{align*}
\]
Matrix Reduction

Rank Computations

- To compute β_p as the difference between $\text{rank } Z_p$ and $\text{rank } B_p$ we work with the matrix representation of the boundary map ∂_p.
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of Gaussian elimination is used to get the Smith normal form.
What about the maps between spaces?
Induced Maps on Homology

\[\cdots \xrightarrow{\partial_{\hat{X}}} C_{p+1}(\hat{X}) \xrightarrow{\partial_{\hat{X}}} C_p(\hat{X}) \xrightarrow{\partial_{\hat{X}}} C_{p-1}(\hat{X}) \xrightarrow{\partial_{\hat{X}}} \cdots \]

\[\cdots \xrightarrow{\partial_{\hat{Y}}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_{\hat{Y}}} C_p(\hat{Y}) \xrightarrow{\partial_{\hat{Y}}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_{\hat{Y}}} \cdots \]

Functoriality

- A simplicial map \(\hat{f}_\Delta : \hat{X} \to \hat{Y} \) maps simplices in \(\hat{X} \) to simplices in \(\hat{Y} \).
- A simplicial map extends to a map from the chains of \(\hat{X} \) to the chains of \(\hat{Y} \), which we denote by \(\hat{f}_\# : C_p(\hat{X}) \to C_p(\hat{Y}) \), as shown in the diagram.
- As \(\hat{f}_\# \) commutes with boundary maps, it also maps the cycles and boundaries of \(\hat{X} \) to the cycles and boundaries of \(\hat{Y} \), respectively.
- Hence, \(\hat{f}_\# \) maps the homology groups of \(\hat{X} \) to the homology groups of \(\hat{Y} \), i.e., it induces a map on homology denoted by \(H(\hat{f}) : H_p(\hat{X}) \to H_p(\hat{Y}) \).
Functoriality

A simplicial map $\hat{f}_\Delta : \hat{X} \to \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.

A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_\# : C_p(\hat{X}) \to C_p(\hat{Y})$, as shown in the diagram.

As $\hat{f}_\#$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.

Hence, $\hat{f}_\#$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}) : H_p(\hat{X}) \to H_p(\hat{Y})$.

\[\cdots \xrightarrow{\partial_\hat{X}} C_{p+1}(\hat{X}) \xrightarrow{\partial_\hat{X}} C_p(\hat{X}) \xrightarrow{\partial_\hat{X}} C_{p-1}(\hat{X}) \xrightarrow{\partial_\hat{X}} \cdots \]

\[\downarrow \hat{f}_\# \]

\[\cdots \xrightarrow{\partial_\hat{Y}} C_{p+1}(\hat{Y}) \xrightarrow{\partial_\hat{Y}} C_p(\hat{Y}) \xrightarrow{\partial_\hat{Y}} C_{p-1}(\hat{Y}) \xrightarrow{\partial_\hat{Y}} \cdots \]
Induced Maps on Homology

... $\partial_{\hat{X}} \rightarrow C_{p+1}(\hat{X}) \rightarrow C_p(\hat{X}) \rightarrow C_{p-1}(\hat{X}) \rightarrow \cdots$

$\downarrow \hat{f}_\#$

$\partial_{\hat{Y}} \rightarrow C_{p+1}(\hat{Y}) \rightarrow C_p(\hat{Y}) \rightarrow C_{p-1}(\hat{Y}) \rightarrow \cdots$

Functoriality

- A simplicial map $\hat{f}_\Delta : \hat{X} \rightarrow \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y}.
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y}, which we denote by $\hat{f}_\# : C_p(\hat{X}) \rightarrow C_p(\hat{Y})$, as shown in the diagram.
- As $\hat{f}_\#$ commutes with boundary maps, it also maps the cycles and boundaries of \hat{X} to the cycles and boundaries of \hat{Y}, respectively.
- Hence, $\hat{f}_\#$ maps the homology groups of \hat{X} to the homology groups of \hat{Y}, i.e., it induces a map on homology denoted by $H(\hat{f}) : H_p(\hat{X}) \rightarrow H_p(\hat{Y})$.
Induced Maps on Homology

A simplicial map \(\hat{f}_\Delta : \hat{X} \to \hat{Y} \) maps simplices in \(\hat{X} \) to simplices in \(\hat{Y} \).

A simplicial map extends to a map from the chains of \(\hat{X} \) to the chains of \(\hat{Y} \), which we denote by \(\hat{f}_# : C_p(\hat{X}) \to C_p(\hat{Y}) \), as shown in the diagram.

As \(\hat{f}_# \) commutes with boundary maps, it also maps the cycles and boundaries of \(\hat{X} \) to the cycles and boundaries of \(\hat{Y} \), respectively.

Hence, \(\hat{f}_# \) maps the homology groups of \(\hat{X} \) to the homology groups of \(\hat{Y} \), i.e., it induces a map on homology denoted by \(H(\hat{f}) : H_p(\hat{X}) \to H_p(\hat{Y}) \).
Applications of $H(\hat{f}) : H_p(\hat{X}) \rightarrow H_p(\hat{Y})$

\[
\begin{array}{c}
\text{Y}_1 \\ \downarrow f_1 \\
\text{X} \\
\uparrow f_2 \\
\text{Y}_2
\end{array}
\]

Indirect Inference

If a map $f : \text{Y}_1 \rightarrow \text{Y}_2$ factors through $f_1 : \text{Y}_1 \rightarrow \text{X}$ and $f_2 : \text{X} \rightarrow \text{Y}_2$ such that $f = f_2 \circ f_1$, then we can infer the homology groups of X using knowledge of the homology groups of Y_1 and Y_2.
Brouwer’s Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray from x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\nu) \neq \text{Id}$. A contradiction!
Brouwer’s Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that \(f : \mathbb{D} \to \mathbb{D} \) is continuous and has no fixed point.
- Define \(r : \mathbb{D} \to \partial \mathbb{D} \) as the intersection of the ray from \(x \) to \(f(x) \) with \(\partial \mathbb{D} \).
- As \(f \) is continuous, so is \(r \). Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - \(H_1(\partial \mathbb{D}) \cong \mathbb{F}_2 \) while \(H_1(\mathbb{D}) = 0 \).
 - But then, \(H(r) \circ H(\nu) \neq \text{Id} \). A contradiction!
Brouwer’s Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that \(f : \mathbb{D} \rightarrow \mathbb{D} \) is continuous and has no fixed point.
- Define \(r : \mathbb{D} \rightarrow \partial \mathbb{D} \) as the intersection of the ray from \(x \) to \(f(x) \) with \(\partial \mathbb{D} \).
- As \(f \) is continuous, so is \(r \). Hence, the diagram in the middle \textit{commutes}.
- Passing through homology, as shown to the right, we get that
 - \(H_1(\partial \mathbb{D}) \cong \mathbb{F}_2 \) while \(H_1(\mathbb{D}) = 0 \).
 - But then, \(H(r) \circ H(\iota) \neq \text{Id} \). A contradiction!
Brouwer’s Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray from x to $f(x)$ with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq \text{Id}$. A contradiction!
Brouwer’s Fixed Point Theorem

Every continuous map from the disc to itself has a fixed point

- Assume that \(f : \mathbb{D} \to \mathbb{D} \) is continuous and has no fixed point.
- Define \(r : \mathbb{D} \to \partial \mathbb{D} \) as the intersection of the ray form \(x \) to \(f(x) \) with \(\partial \mathbb{D} \).
- As \(f \) is continuous, so is \(r \). Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - \(H_1(\partial \mathbb{D}) \cong \mathbb{F}_2 \) while \(H_1(\mathbb{D}) = 0 \).
 - But then, \(H(r) \circ H(\iota) \neq \text{Id} \). A contradiction!
Brouwer’s Fixed Point Theorem

Assume that \(f : \mathbb{D} \rightarrow \mathbb{D} \) is continuous and has no fixed point. Define \(r : \mathbb{D} \rightarrow \partial \mathbb{D} \) as the intersection of the ray from \(x \) to \(f(x) \) with \(\partial \mathbb{D} \). As \(f \) is continuous, so is \(r \). Hence, the diagram in the middle commutes.

Passing through homology, as shown to the right, we get that
- \(H_1(\partial \mathbb{D}) \cong \mathbb{F}_2 \) while \(H_1(\mathbb{D}) = 0 \).
- But then, \(H(r) \circ H(\iota) \neq \text{Id} \). A contradiction!
But, how do we get triangulations in the first place?
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \(\mathbb{R}^d \).
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
Sampled Data and Noise

The Čech Complex

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d.
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.
But, how do we choose the radii of the balls?
Scale and Persistence

Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r = 0$ to $r = \infty$.
- Each topological feature will be present over an interval $[a, b]$.
Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r = 0$ to $r = \infty$.
- Each topological feature will be present over an interval $[a, b]$.
Scale and Persistence

Examining All Scales at Once

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from $r = 0$ to $r = \infty$.
- Each topological feature will be present over an interval $[a, b]$.
Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval \([a, b]\).
- Define the persistence of the feature as \(b - a\).
- Features of high persistence are salient, while noise has low persistence.
Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval \([a, b]\).
- Define the persistence of the feature as \(b - a\).
- Features of high persistence are salient, while noise has low persistence.
Scale and Persistence

Examining All Scales at Once

- Each topological feature will be present over an interval \([a, b]\).
- Define the persistence of the feature as \(b - a\).
- Features of high persistence are salient, while noise has low persistence.
Summary

\[\partial_p = \begin{bmatrix} \partial_{p,1,1} & \partial_{p,1,2} & \cdots & \partial_{p,1,n_p} \\ \partial_{p,2,1} & \partial_{p,2,2} & \cdots & \partial_{p,2,n_p} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p,n_p-1,0} & \partial_{p,n_p-1,2} & \cdots & \partial_{p,n_p-1,n_p} \end{bmatrix} \]

\[H_p = Z_p / B_p \]

Main Concepts Introduced

- Continuous deformations
- Simplicial approximations
- Chain algebra and homology
- Functoriality

Figure from Wikipedia [15]
Summary

Key Concepts Missing

- Persistent homology
- Persistence diagrams and barcodes
- Simplicial collapses
- Sparse filtrations and interleaving