Introduction to Computational Topology

Ahmed Abdelkader

Guest Lecture

CMSC 754 – Spring 2020 May 7th, 2020

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Pages 1-3

Early Topological Insights

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Seven Bridges of Königsberg: find a path that crosses each bridge exactly once

The Origins of Graph Theory

- Euler observed that the subpaths within each land mass are irrelevant.
- Use an abstract model of land masses and their connectivity a graph!
- A path enters a node through an edge, and exits through another edge.
- The solution exists if there are exactly 0 or 2 nodes of odd degree.

Complete graph K_5 , complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is *t*-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]

Complete graph K_5 , complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is *t*-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]

Complete graph K_5 , complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is *t*-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]

Complete graph K_5 , complete bipartite graph $K_{3,3}$, and the Petersen graph

Forbidden Graph Characterizations

- A minor H of a graph G is the result of a sequence of operations:
 - Contraction (merge two adjacent vertices), edge and vertex deletion.
- A graph if planar iff it does not have any K_5 or $K_{3,3}$ minors.
- Hadwiger conjecture: a graph is *t*-colorable iff it does not have any K_t minors.

Figures from Wikipedia [3, 4, 5]

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not *tear* or *pinch* the surface.
- The genus corresponds to the number of holes or handles.
- Joke: a *topologist* cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not *tear* or *pinch* the surface.
- The genus corresponds to the number of *holes* or *handles*.
- Joke: a *topologist* cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not *tear* or *pinch* the surface.
- The genus corresponds to the number of *holes* or *handles*.
- Joke: a *topologist* cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not *tear* or *pinch* the surface.
- The genus corresponds to the number of *holes* or *handles*.
- Joke: a *topologist* cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

Topological Invariants

- Instead of edge deletion and contraction for graphs, we study surfaces under continuous deformations that do not *tear* or *pinch* the surface.
- The genus corresponds to the number of *holes* or *handles*.
- Joke: a *topologist* cannot distinguish his coffee mug from his doughnut!
 - Topology as rubber-sheet geometry

How do you compute the genus without looking?

Convex Polytopes

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F) $\chi = V E + F$
- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]

Convex Polytopes

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F) $\chi = V E + F$
- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.

• Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]

Convex Polytopes

Euler's Polyhedron Formula

- Alternating sum of the number of vertices (V), edges (E), and facets (F) $\chi = V - E + F$
- As spheres can be continuously deformed into convex polytopes, they also have an Euler characteristic of 2.
- Unlike the genus, this is easily computed by simple counting or algebra.

Figures from Wikipedia [10, 11, 12, 13, 14]

Page 4

What about non-convex surfaces?

Wireframes

Rendering all triangles

Wireframe, edges only

- A *p*-simplex is the convex hull of (p + 1) affinely-independent points.
- We write this as $\sigma = [v_0, \ldots, v_p] = \operatorname{conv}\{v_0, \ldots, v_p\}$ and say dim $\sigma = p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension dim K is the maximum dimension of its simplices.
- If $\sigma_1, \sigma_2 \in K$, then $\sigma_1 \cap \sigma_2 \in K$. The (-1)-simplex \emptyset is always in K.

- A *p*-simplex is the convex hull of (p + 1) affinely-independent points.
- We write this as $\sigma = [v_0, \ldots, v_p] = \operatorname{conv}\{v_0, \ldots, v_p\}$ and say dim $\sigma = p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension dim K is the maximum dimension of its simplices.
- If $\sigma_1, \sigma_2 \in K$, then $\sigma_1 \cap \sigma_2 \in K$. The (-1)-simplex \emptyset is always in K.

- A *p*-simplex is the convex hull of (p + 1) affinely-independent points.
- We write this as $\sigma = [v_0, \ldots, v_p] = \operatorname{conv}\{v_0, \ldots, v_p\}$ and say dim $\sigma = p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension dim K is the maximum dimension of its simplices.
- If $\sigma_1, \sigma_2 \in K$, then $\sigma_1 \cap \sigma_2 \in K$. The (-1)-simplex \emptyset is always in K.

- A *p*-simplex is the convex hull of (p + 1) affinely-independent points.
- We write this as $\sigma = [v_0, \ldots, v_p] = \operatorname{conv}\{v_0, \ldots, v_p\}$ and say dim $\sigma = p$.
- A simplicial complex K is a set of simplices closed under intersection, and its dimension dim K is the maximum dimension of its simplices.
- If $\sigma_1, \sigma_2 \in K$, then $\sigma_1 \cap \sigma_2 \in K$. The (-1)-simplex \emptyset is always in K.

- A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write this as τ ≤ σ, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if dim $\tau \neq \dim \sigma$.
- The boundary $\partial\sigma$ is the collection of proper faces of σ
- The *interior* of σ is defined as $|\sigma| = \sigma \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.

- A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write this as τ ≤ σ, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if dim $\tau \neq \dim \sigma$.
- The boundary $\partial\sigma$ is the collection of proper faces of σ
- The *interior* of σ is defined as $|\sigma| = \sigma \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.

- A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write this as τ ≤ σ, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if dim $\tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The *interior* of σ is defined as $|\sigma| = \sigma \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.

- A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write this as τ ≤ σ, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if dim $\tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The *interior* of σ is defined as $|\sigma| = \sigma \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.

- A face τ is a k-simplex connecting (k + 1) of the vertices of σ. We write this as τ ≤ σ, and say that σ is a coface of τ.
- A (co)face τ of a simplex σ is proper if dim $\tau \neq \dim \sigma$.
- The boundary $\partial \sigma$ is the collection of proper faces of σ
- The *interior* of σ is defined as $|\sigma| = \sigma \partial \sigma$.
- The underlying space of a complex K is defined as $|K| = \bigcup_{\sigma \in K} |\sigma|$.

How to represent a *mapping* between two surfaces?

Continuous Deformations

A continuous deformation of a cow model into a ball

Continuous Maps

Continuity at x = 2 by (ε, δ)

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ) -definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Continuous Maps

Continuity at x = 2 by (ε, δ)

Continuity at $x \in X$ using neighborhoods

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ) -definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Continuous Maps

Continuity at x = 2 by (ε, δ)

Definition of Continuity

- Small changes in the input yield small changes in the output.
- Calculus formalizes this notion using the (ε, δ) -definition of the limit.
- For general topologies, we use neighborhoods instead of (ε, δ) intervals.

Homeomorphisms

$$\begin{array}{c} \overbrace{f}{\leftarrow} \\ \overbrace{f^{-1}} \\ \end{array}$$

Definition

Two topological spaces X and Y are said to be *homeomorphic* whenever there exists a continuous map $f : X \to Y$ with a continuous inverse $f^{-1} : Y \to X$. Such a function f is called a *homeomorphism*.

Figure from Wikipedia [15]

But, we will be using the triangulations rather than the surfaces ...

Triangulations

Definition

- A triangulation of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.
- A topological space is *triangulable* if it admits a triangulation.

Triangulations

Definition

- A triangulation of a topological space X is a simplicial complex \hat{X} such that X and $|\hat{X}|$ are homeomorphic.
- A topological space is *triangulable* if it admits a triangulation.

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The *star* of σ is the collection its cofaces:

 $\operatorname{St}_{\mathcal{K}}(\sigma) = \{ \tau \in \mathcal{K} \mid \sigma \preceq \tau \}.$

• The star neighborhood of σ is the union of the interior of its cofaces:

 $N_{\mathcal{K}}(\sigma) = \cup_{\tau \in \operatorname{St}_{\mathcal{K}}(\sigma)} |\tau|.$

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:

 $\operatorname{St}_{\mathcal{K}}(\sigma) = \{ \tau \in \mathcal{K} \mid \sigma \preceq \tau \}.$

• The star neighborhood of σ is the union of the interior of its cofaces:

 $N_{\mathcal{K}}(\sigma) = \cup_{\tau \in \operatorname{St}_{\mathcal{K}}(\sigma)} |\tau|.$

Simplicial Neighborhoods

- Fix a simplicial complex K.
- The star of σ is the collection its cofaces:

 $\operatorname{St}_{\mathcal{K}}(\sigma) = \{ \tau \in \mathcal{K} \mid \sigma \preceq \tau \}.$

• The star neighborhood of σ is the union of the interior of its cofaces:

$$N_{\mathcal{K}}(\sigma) = \bigcup_{\tau \in \operatorname{St}_{\mathcal{K}}(\sigma)} |\tau|.$$

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v\in\hat{X}$

 $\hat{f}\left(\mathsf{N}_{\hat{X}}(v)
ight)\subseteq\mathsf{N}_{\hat{Y}}\left(u
ight) \quad ext{for some vertex }u=\phi(v)\in\hat{Y}.$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map f_∆: X̂ → Ŷ̂ that approximates the original function f.

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

 $\hat{f}\left(\mathsf{N}_{\hat{X}}(\mathsf{v})
ight)\subseteq\mathsf{N}_{\hat{Y}}\left(u
ight) \quad ext{for some vertex } u=\phi(\mathsf{v})\in\hat{Y}.$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map f_∆: X̂ → Ŷ̂ that approximates the original function f.

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

 $\hat{f}\left(\mathsf{N}_{\hat{X}}(v)
ight)\subseteq\mathsf{N}_{\hat{Y}}\left(u
ight) \quad ext{for some vertex } u=\phi(v)\in\hat{Y}.$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map f_∆: X̂ → Ŷ̂ that approximates the original function f.

The Star Condition

- Fix two simplicial complexes \hat{X} and \hat{Y} and a map $\hat{f} : |\hat{X}| \to |\hat{Y}|$.
- We say that \hat{f} satisfies the star condition if for all vertices $v \in \hat{X}$

 $\hat{f}\left(\mathsf{N}_{\hat{X}}(v)
ight)\subseteq\mathsf{N}_{\hat{Y}}\left(u
ight) \quad ext{for some vertex } u=\phi(v)\in\hat{Y}.$

- The map ϕ : Vert $\hat{X} \rightarrow$ Vert \hat{Y} extends to a simplicial map that maps every simplex $\sigma \in \hat{X}$ to some simplex $\tau \in \hat{Y}$.
- The simplicial map induces a simplicial approximation: a piecewise-linear map f_∆: X̂ → Ŷ̂ that approximates the original function f.

What if $\hat{f} : |\hat{X}| \to |\hat{Y}|$ fails the star condition?

Simplicial Approximation Theorem

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f} : \hat{X} \to \hat{Y}$.
- The barycenter of $\sigma = [v_0, \ldots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_i$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f} : \hat{X} \to \hat{Y}$.
- The barycenter of $\sigma = [v_0, \ldots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^{p} v_i$.
- Repeated subdivisions eventually achieve the star condition.

Simplicial Approximation Theorem

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f}: \hat{X} \to \hat{Y}$.
- The *barycenter* of $\sigma = [v_0, \dots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^p v_i$.
- Repeated subdivisions eventually achieve the star condition.

Pages 5-7

Simplicial Approximation Theorem

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f} : \hat{X} \to \hat{Y}$.
- The *barycenter* of $\sigma = [v_0, \dots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^p v_i$.
- Repeated subdivisions eventually achieve the star condition.

Pages 5-7

Simplicial Approximation Theorem

- If there exists a vertex $v \in \hat{X}$ such that $\hat{f}(N_{\hat{X}}(v))$ is not contained in $N_{\hat{Y}}(u)$ for any vertex $u \in \hat{Y}$, then $N_{\hat{X}}(v)$ is too large!
- Solution: refine \hat{X} without changing $\hat{f} : \hat{X} \to \hat{Y}$.
- The barycenter of $\sigma = [v_0, \dots, v_p]$ is defined as $\frac{1}{p+1} \sum_{i=0}^p v_i$.
- Repeated subdivisions eventually achieve the star condition.

- Recall the alternating sum used to compute the Euler characteristic χ .
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

- Recall the alternating sum used to compute the Euler characteristic χ .
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

- Recall the alternating sum used to compute the Euler characteristic χ .
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

- Recall the alternating sum used to compute the Euler characteristic χ .
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count?

- Recall the alternating sum used to compute the Euler characteristic χ .
- We would like to derive a similar computation on a simplicial complex K.
- But, a single simplex can be shared among multiple cofaces.
- How do we keep track of the correct count? Algebra!

- Define a *p*-chain as a subset of the *p*-simplices in the complex *K*.
- We write a *p*-chain as a formal sum $c = \sum_{i} a_i \sigma_i$, where σ_i ranges over the *p*-simplices and a_i is a coefficient.
- We will work with coefficients in $\mathbb{F}_2 = \{0, 1\}$ with addition modulo 2.

- Define a *p*-chain as a subset of the *p*-simplices in the complex *K*.
- We write a *p*-chain as a formal sum $c = \sum_{i} a_i \sigma_i$, where σ_i ranges over the *p*-simplices and a_i is a coefficient.

• We will work with coefficients in $\mathbb{F}_2 = \{0, 1\}$ with addition modulo 2.

- Define a *p*-chain as a subset of the *p*-simplices in the complex *K*.
- We write a *p*-chain as a formal sum $c = \sum_{i} a_i \sigma_i$, where σ_i ranges over the *p*-simplices and a_i is a coefficient.
- We will work with coefficients in $\mathbb{F}_2 = \{0, 1\}$ with addition modulo 2.

- Two *p*-chains can be added to obtain a new *p*-chain.
- Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i)\sigma_i$.
- As $a_i + b_i \in \mathbb{F}_2$ for all *i*, we get that $c_1 + c_2$ is a chain.
- Regarding *p*-chains as sets, we can interpret that c₁ + c₂ with modulo 2 coefficients is the symmetric difference between the two sets.

- Two *p*-chains can be added to obtain a new *p*-chain.
- Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.
- As $a_i + b_i \in \mathbb{F}_2$ for all *i*, we get that $c_1 + c_2$ is a chain.
- Regarding *p*-chains as sets, we can interpret that $c_1 + c_2$ with modulo 2 coefficients is the *symmetric difference* between the two sets.

- Two *p*-chains can be added to obtain a new *p*-chain.
- Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.
- As $a_i + b_i \in \mathbb{F}_2$ for all *i*, we get that $c_1 + c_2$ is a chain.
- Regarding *p*-chains as sets, we can interpret that c₁ + c₂ with modulo 2 coefficients is the symmetric difference between the two sets.

- Two *p*-chains can be added to obtain a new *p*-chain.
- Letting $c_1 = \sum_i a_i \sigma_i$ and $c_2 = \sum_i b_i \sigma_i$. Then, $c_1 + c_2 = \sum_i (a_i + b_i) \sigma_i$.
- As $a_i + b_i \in \mathbb{F}_2$ for all *i*, we get that $c_1 + c_2$ is a chain.
- Regarding *p*-chains as sets, we can interpret that c₁ + c₂ with modulo 2 coefficients is the symmetric difference between the two sets.

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma$.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all α, β, γ ∈ A we have α (β γ) = (α β) γ.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all α, β, γ ∈ A we have α (β γ) = (α β) γ.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma$.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all α, β, γ ∈ A we have α (β γ) = (α β) γ.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all $\alpha, \beta, \gamma \in A$ we have $\alpha \bullet (\beta \bullet \gamma) = (\alpha \bullet \beta) \bullet \gamma$.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Algebra I

A group (A, \bullet) is a set A together with a binary operation satisfying:

- Closure: for all $\alpha, \beta \in A$, we have that $\alpha \bullet \beta \in A$.
- Associativity: so that for all α, β, γ ∈ A we have α (β γ) = (α β) γ.
- A has an *identity element* ω such that $\alpha + \omega = \alpha$ for all $\alpha \in A$.

If, in addition, • is *commutative*, we have that $\alpha \bullet \beta = \beta \bullet \alpha$ for all $\alpha, \beta \in A$, and we say the group (A, \bullet) is *abelian*.

Chains as Groups

We can now recognize *p*-chains $(C_p, +)$ as abelian groups.

Chains as Vector Spaces

Linear Extensions

- Fix a *p*-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex *K*.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single (p-1)-chain

$$\partial_{\rho}\sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_{\rho}],$$

- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the *p*-th chain group.
- For any *p*-chain $c = \sum_{i} a_i \sigma_i$, its boundary is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i}.$$

Linear Extensions

- Fix a *p*-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex *K*.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single (p-1)-chain

$$\partial_{\rho}\sigma = \sum_{i=0}^{p} [v_0, \ldots, \hat{v}_i, \ldots, v_{\rho}],$$

- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the *p*-th chain group.
- For any *p*-chain $c = \sum_{i} a_i \sigma_i$, its boundary is the (p-1)-chain

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i\right) = \sum_i a_i \partial_p \sigma_i.$$

Linear Extensions

- Fix a *p*-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex *K*.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single (p-1)-chain

$$\partial_{\boldsymbol{p}}\sigma = \sum_{i=0}^{\boldsymbol{p}} [v_0, \ldots, \hat{v}_i, \ldots, v_{\boldsymbol{p}}],$$

- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the *p*-th chain group.
- For any *p*-chain $c = \sum_{i} a_i \sigma_i$, its boundary is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i}.$$

Linear Extensions

- Fix a *p*-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex *K*.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single (p-1)-chain

$$\partial_{\boldsymbol{p}}\sigma = \sum_{i=0}^{\boldsymbol{p}} [v_0, \ldots, \hat{v}_i, \ldots, v_{\boldsymbol{p}}],$$

- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the *p*-th chain group.
- For any *p*-chain $c = \sum_{i} a_i \sigma_i$, its boundary is the (p-1)-chain

$$\partial_p c = \partial_p \left(\sum_i a_i \sigma_i \right) = \sum_i a_i \partial_p \sigma_i.$$

Linear Extensions

- Fix a *p*-simplex $\sigma = [v_0, \ldots, v_p]$ in the complex *K*.
- Recall that the boundary of σ is the collection of its proper faces, which we denoted by $\partial \sigma$.
- We can now express the boundary elements as a single (p-1)-chain

$$\partial_{\boldsymbol{p}}\sigma = \sum_{i=0}^{\boldsymbol{p}} [v_0, \ldots, \hat{v}_i, \ldots, v_{\boldsymbol{p}}],$$

- Notice that we used the subscript to qualify the *boundary operator* as the one acting on the *p*-th chain group.
- For any *p*-chain $c = \sum_{i} a_i \sigma_i$, its boundary is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i}.$$

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are *p*-chains, then: $\partial_p(c_1 + (p) c_2) = \partial_p c_1 + (p-1) \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: ∂_p : C_p → C_{p-1}.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex *K* with a series of algebraic modules.

 $\dots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \dots$

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are *p*-chains, then: $\partial_p(c_1 + (p) c_2) = \partial_p c_1 + (p-1) \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: ∂_p : C_p → C_{p-1}.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex *K* with a series of algebraic modules.

 $\dots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \dots$

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are *p*-chains, then: $\partial_p(c_1 + (p) c_2) = \partial_p c_1 + (p-1) \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: ∂_p : C_p → C_{p-1}.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex *K* with a series of algebraic modules.

 $\dots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \dots$

- The boundary operator ∂_p commutes with the group operations.
- If c_1 and c_2 are *p*-chains, then: $\partial_p(c_1 + (p) c_2) = \partial_p c_1 + (p-1) \partial_p c_2$, where we qualify the addition operators on each side of the equation.
- This means that ∂_p induces a group homomorphism or a mapping between groups that preserves the group structures: ∂_p : C_p → C_{p-1}.
- We can arrange the chain groups into a chain complex, effectively replacing the geometric complex *K* with a series of algebraic modules.

$$\ldots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \ldots$$

But like .. what's the point?

Chains Pages 8-9

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\{\sigma_i\}_i$ and $\{\tau_j\}_j$ denote the *p*-simplices and (p-1)-simplices of *K*.
- The boundary of a *p*-chain $c = \sum_i a_i \sigma_i$ is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i} = \sum_{i}a_{i}\sum_{j}\partial_{p}^{j,i}\tau_{j} = \sum_{j}b_{j}\tau_{j},$$

where $b_i = \sum_i (a_i \partial_p^{j,i})$, and $\partial_p^{j,i}$ is 1 if $\tau_j \in \partial_p \sigma_i$ and 0 otherwise. • With that, we can express the boundary operator ∂_p in matrix form.

$$\partial_{p}c = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_{p} = \begin{bmatrix} \partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1,n_{p}} \\ \partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2,n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p}^{n_{p-1},0} & \partial_{p}^{n_{p-1},2} & \cdots & \partial_{p}^{n_{p-1},n_{p}} \end{bmatrix}, \quad c = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n_{p}} \end{bmatrix}$$

Chains Pages 8-9

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\{\sigma_i\}_i$ and $\{\tau_j\}_j$ denote the *p*-simplices and (p-1)-simplices of *K*.
- The boundary of a *p*-chain $c = \sum_i a_i \sigma_i$ is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i} = \sum_{i}a_{i}\sum_{j}\partial_{p}^{j,i}\tau_{j} = \sum_{j}b_{j}\tau_{j},$$

where $b_i = \sum_i (a_i \partial_p^{j,i})$, and $\partial_p^{j,i}$ is 1 if $\tau_j \in \partial_p \sigma_i$ and 0 otherwise.

• With that, we can express the boundary operator ∂_p in matrix form.

$$\partial_{\rho}c = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_{\rho} = \begin{bmatrix} \partial_{\rho}^{1,1} & \partial_{\rho}^{1,2} & \cdots & \partial_{\rho}^{1,n_{\rho}} \\ \partial_{\rho}^{2,1} & \partial_{\rho}^{2,2} & \cdots & \partial_{\rho}^{2,n_{\rho}} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{\rho}^{n_{\rho-1},0} & \partial_{\rho}^{n_{\rho-1},2} & \cdots & \partial_{\rho}^{n_{\rho-1},n_{\rho}} \end{bmatrix}, \quad c = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{n_{\rho}} \end{bmatrix}$$

Chains Pages 8-9

Boundary Matrices

Chains Groups as Vector Spaces

- Let $\{\sigma_i\}_i$ and $\{\tau_j\}_j$ denote the *p*-simplices and (p-1)-simplices of *K*.
- The boundary of a *p*-chain $c = \sum_i a_i \sigma_i$ is the (p-1)-chain

$$\partial_{p}c = \partial_{p}\left(\sum_{i}a_{i}\sigma_{i}\right) = \sum_{i}a_{i}\partial_{p}\sigma_{i} = \sum_{i}a_{i}\sum_{j}\partial_{p}^{j,i}\tau_{j} = \sum_{j}b_{j}\tau_{j},$$

where $b_i = \sum_i (a_i \partial_p^{j,i})$, and $\partial_p^{j,i}$ is 1 if $\tau_j \in \partial_p \sigma_i$ and 0 otherwise.

• With that, we can express the boundary operator ∂_p in matrix form.

$$\partial_{p}c = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n_{p-1}} \end{bmatrix}, \quad \partial_{p} = \begin{bmatrix} \partial_{p}^{1,1} & \partial_{p}^{1,2} & \cdots & \partial_{p}^{1,n_{p}} \\ \partial_{p}^{2,1} & \partial_{p}^{2,2} & \cdots & \partial_{p}^{2,n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{p}^{n_{p-1},0} & \partial_{p}^{n_{p-1},2} & \cdots & \partial_{p}^{n_{p-1},n_{p}} \end{bmatrix}, \quad c = \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n_{p}} \end{bmatrix}$$

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$.

Which Boundaries are Useful?

Consider the 1-chains on the torus to the right.

- We have a blue and a red loop.
- Also the boundary of the black triangle.
- Which of those help distinguish the torus from a sphere?

Chains with No Boundary

- We are particularly interested in *p*-chains *c* satisfying $\partial_p c = \emptyset$.
- Any such chain is called a *p*-cycle.
- A *p*-cycle that arises as the boundary of a (p + 1)-chain is a *p*-boundary.
- We need a way to count distinct *p*-cycles while ignoring all *p*-boundaries.
- Observe that $\partial_p \circ \partial_{p+1} = 0$. The fundamental lemma of homology!

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_ρ into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_ρ into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_ρ into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in B_p$.
- The equivalence relation partitions Z_ρ into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in \mathbb{B}_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in \mathbb{B}_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Equivalence and Quotients

Boundaries and Cycles as Subgroups

- Denote all *p*-cycles by Z_p and all *p*-boundaries by B_p .
- As the boundary map commutes with addition, Z_p is a subgroup of C_p .
- Likewise, B_p is a subgroup of Z_p .
- For any *p*-cycle $\alpha \in Z_p$ and a *p*-boundary β , we get that $\alpha + \beta \in Z_p$.

- We define an *equivalence relation* that identifies a pair of elements $\alpha, \alpha' \in \mathbb{Z}_p$ whenever $\alpha' = \alpha + \beta$ for some $\beta \in \mathbb{B}_p$.
- The equivalence relation partitions Z_p into equivalence classes or cosets; the coset [α] consists of all the elements identified with α.
- Then, the collection of cosets together with the addition operator give rise to the *quotient group* Z_p/B_p of the elements in Z_p modulo the elements in B_p .

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of A.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.

• For a set of binary vectors, such as C_p or Z_p

- The order is the number of distinct binary vectors.
- The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Algebra III

- Take a group (A, \bullet) .
 - The order of the group is the cardinality of *A*.
 - The rank of the group is the cardinality of a minimal generator.
- For a set of binary vectors, such as C_p or Z_p
 - The order is the number of distinct binary vectors.
 - The rank is the number basis vectors that span the entire set.

- We can now defined the *p*-th homology group as $H_p = Z_p/B_p$.
- The rank of H_p is known as the *p*-th Betti number β_p

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p.$$

Rank-Nullity

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

In the Context of Homology

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \to W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements $v \in V$ for which $T(v) \neq 0$ are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

 $\dim V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T).$

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Algebra IV

- Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation.
- We define the kernel of T as the subspace of V, denoted Ker(T) of all vectors v such that T(v) = 0.
- The remaining elements v ∈ V for which T(v) ≠ 0 are mapped to a subspace of W, i.e., the *image* of T.
- The rank-nullity theorem states that

dim $V = \dim \operatorname{Image}(T) + \dim \operatorname{Ker}(T)$.

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Homology

Page 10

Rank-Nullity

- Z_p is the kernel of ∂_p , while B_{p-1} is its image.
- Hence, rank $C_p = \operatorname{rank} Z_p + \operatorname{rank} B_{p-1}$.
- Note that $B_{-1} = \emptyset$, and for a *d*-dimensional complex, $Z_{d+1} = \emptyset$.

Page 10

The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler's polyhedron formula, we may write

$$\begin{split} \chi &= \sum_{p \ge 0} (-1)^p \operatorname{rank} C_p = \sum_{p \ge 0} (-1)^p (\operatorname{rank} Z_p + \operatorname{rank} B_{p-1}) \\ &= (\operatorname{rank} Z_0 + \operatorname{rank} B_{-1}) - (\operatorname{rank} Z_1 + \operatorname{rank} B_0) + (\operatorname{rank} Z_2 + \operatorname{rank} B_1) - \dots \\ &= (\operatorname{rank} Z_0 - \operatorname{rank} B_0) - (\operatorname{rank} Z_1 - \operatorname{rank} B_1) + (\operatorname{rank} Z_2 - \operatorname{rank} B_2) - \dots \\ &= \sum_{p \ge 0} (-1)^p (\operatorname{rank} Z_p - \operatorname{rank} B_p) \\ &= \sum_{p \ge 0} (-1)^p \beta_p. \end{split}$$

Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.

Ahmed Abdelkader (CS@UMD)

Page 10

The Euler Characteristic Revisited

A Generalized Formula

Recalling the alternating sum in Euler's polyhedron formula, we may write

$$\begin{split} \chi &= \sum_{p \ge 0} (-1)^p \operatorname{rank} C_p = \sum_{p \ge 0} (-1)^p (\operatorname{rank} Z_p + \operatorname{rank} B_{p-1}) \\ &= (\operatorname{rank} Z_0 + \operatorname{rank} B_{-1}) - (\operatorname{rank} Z_1 + \operatorname{rank} B_0) + (\operatorname{rank} Z_2 + \operatorname{rank} B_1) - \dots \\ &= (\operatorname{rank} Z_0 - \operatorname{rank} B_0) - (\operatorname{rank} Z_1 - \operatorname{rank} B_1) + (\operatorname{rank} Z_2 - \operatorname{rank} B_2) - \dots \\ &= \sum_{p \ge 0} (-1)^p (\operatorname{rank} Z_p - \operatorname{rank} B_p) \\ &= \sum_{p \ge 0} (-1)^p \beta_p. \end{split}$$

Note that the homology groups and the Betti numbers do not depend on the specific triangulation of the underlying space, i.e., they are indeed topological invariants.

Ahmed Abdelkader (CS@UMD)

Matrix Reduction

Rank Computations

- To compute β_p as the difference between rank Z_p and rank B_p we work with the matrix representation of the boundary map ∂_p .
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of *Gaussian elimination* is used to get the Smith normal form.

Matrix Reduction

Rank Computations

- To compute β_p as the difference between rank Z_p and rank B_p we work with the matrix representation of the boundary map ∂_p .
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of *Gaussian elimination* is used to get the Smith normal form.

Matrix Reduction

Rank Computations

- To compute β_p as the difference between rank Z_p and rank B_p we work with the matrix representation of the boundary map ∂_{p} .
- Using a sequence of row/column operations, the matrix is reduced without changing its rank into a simple form easily providing the ranks.
- A variant of *Gaussian elimination* is used to get the Smith normal form.

What about the maps between spaces?

- A simplicial map $\hat{f}_{\Delta} : \hat{X} \to \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y} .
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y} , which we denote by $\hat{f}_{\#} : C_p(\hat{X}) \to C_p(\hat{Y})$, as shown in the diagram.
- As f
 _# commutes with boundary maps, it also maps the cycles and boundaries of X to the cycles and boundaries of Y, respectively.
- Hence, f
 [#] maps the homology groups of X
 to the homology groups of Ŷ, i.e., it induces a map on homology denoted by H(f): H_p(X) → H_p(Ŷ).

- A simplicial map $\hat{f}_{\Delta} : \hat{X} \to \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y} .
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y} , which we denote by $\hat{f}_{\#} : C_p(\hat{X}) \to C_p(\hat{Y})$, as shown in the diagram.
- As f
 [#] commutes with boundary maps, it also maps the cycles and boundaries of X to the cycles and boundaries of Y, respectively.
- Hence, f
 ⁺_# maps the homology groups of X̂ to the homology groups of Ŷ, i.e., it induces a map on homology denoted by H(f̂) : H_p(X̂) → H_p(Ŷ).

- A simplicial map $\hat{f}_{\Delta} : \hat{X} \to \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y} .
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y} , which we denote by $\hat{f}_{\#} : C_p(\hat{X}) \to C_p(\hat{Y})$, as shown in the diagram.
- As f
 [#] commutes with boundary maps, it also maps the cycles and boundaries of X to the cycles and boundaries of Y, respectively.
- Hence, f
 [#] maps the homology groups of X
 to the homology groups of Ŷ, i.e., it induces a map on homology denoted by H(î): H_p(X) → H_p(Ŷ).

- A simplicial map $\hat{f}_{\Delta} : \hat{X} \to \hat{Y}$ maps simplices in \hat{X} to simplices in \hat{Y} .
- A simplicial map extends to a map from the chains of \hat{X} to the chains of \hat{Y} , which we denote by $\hat{f}_{\#} : C_p(\hat{X}) \to C_p(\hat{Y})$, as shown in the diagram.
- As f
 [#] commutes with boundary maps, it also maps the cycles and boundaries of X to the cycles and boundaries of Y, respectively.
- Hence, f
 _# maps the homology groups of X̂ to the homology groups of Ŷ, i.e., it induces a map on homology denoted by H(f̂): H_p(X̂) → H_p(Ŷ̂).

Functoriality

Pages 10.5-12

Applications of $H(\hat{f}): H_p(\hat{X}) \to H_p(\hat{Y})$

Indirect Inference

If a map $f: Y_1 \to Y_2$ factors through $f_1: Y_1 \to X$ and $f_2: X \to Y_2$ such that $f = f_2 \circ f_1$, then we can infer the homology groups of X using knowledge of the homology groups of Y_1 and Y_2 .

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

- Assume that $f : \mathbb{D} \to \mathbb{D}$ is continuous and has no fixed point.
- Define $r : \mathbb{D} \to \partial \mathbb{D}$ as the intersection of the ray form x to f(x) with $\partial \mathbb{D}$.
- As f is continuous, so is r. Hence, the diagram in the middle commutes.
- Passing through homology, as shown to the right, we get that
 - $H_1(\partial \mathbb{D}) \cong \mathbb{F}_2$ while $H_1(\mathbb{D}) = 0$.
 - But then, $H(r) \circ H(\iota) \neq Id$. A contradiction!

But, how do we get triangulations in the first place?

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

Sampled Data and Noise

- We are given a collection of sample points from an unknown underlying manifold or surface in \mathbb{R}^d .
- We would like to infer some of the properties of the manifold.
- To do so, we grow a ball at each sample and take the union.
- Then, we derive an abstract simplicial complex from the union of balls.

But, how do we choose the radii of the balls?

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from r = 0 to $r = \infty$.
- Each topological feature will be present over an interval [a, b].

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from r = 0 to $r = \infty$.
- Each topological feature will be present over an interval [a, b).

- As shown above, different radii may result in very different results.
- Imagine a continuous process growing the radii from r = 0 to $r = \infty$.
- Each topological feature will be present over an interval [a, b).

- Each topological feature will be present over an interval [a, b).
- Define the persistence of the feature as b a.
- Features of high persistence are salient, while noise has low persistence.

- Each topological feature will be present over an interval [a, b).
- Define the persistence of the feature as b a.
- Features of high persistence are salient, while noise has low persistence.

- Each topological feature will be present over an interval [a, b).
- Define the persistence of the feature as b a.
- Features of high persistence are salient, while noise has low persistence.

Conclusion

Summary

Main Concepts Introduced

- Continuous deformations
- Simplicial approximations
- Chain algebra and homology
- Functoriality

Figure from Wikipedia [15]

Summary

Key Concepts Missing

- Persistent homology
- Persistence diagrams and barcodes
- Simplicial collapses
- Sparse filtrations and interleaving