
Motivations & Confessions

Biologist’s Perspective

Bacteria Appreciation

10 quadrillion human cells vs. 100 quadrillion bacterial cells

The upside of diarrhea

It’s a small world after all, in the soil, in the oceans …

Millions of bacteria species, plus the strains

Currently ~300 complete genomes vs less
than 20 eukaryotic genomes available

Much can be learned from these, and more
are being sequenced every week

1000 genomes in ~2008

So where do these bacteria hide these
secrets?

Beautiful Nuggets of TRUTH

In a thing we called CLUSTERS!

So what’s a CLUSTER?

“functionally-related set of genes that code for
proteins that perform a role in the same
biological process or are sub-units in the
same structure and are located near each
other in the DNA”

genomeA

genomeB

genomeC

genomeD

trpA trpB trpD trpC

trpA trpB trpD trpEa

trpA trpD trpC

trpA trpB trpD trpC

Conserved Clusters

Overbeek et al, PNAS, 1999

The SIGNIFICANCE of CLUSTERS:

Genomic context gives us insight to unknown gene
functions

~50% of genes in bacteria (euks don’t), good chance
your gene clusters somewhere!

Why do they cluster?

Common regulation, Lateral Gene Transfer, Protein-
Protein Interactions?

Am I in the right room?

Detecting CLUSTERS requires computing
the SIMILARITY between every protein in our
database.

~2.5 million protein sequences in our DB

BLAST x Bunch of Computers = Similarities

.123 ms/per char X 440 char/per seq X 2.5M

> 4.25 years for a single processor

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Drug Target Pipeline of NMPDR

Curators harvest proteins of interest from the
literature

Do computations to determine if its druggable

Identify characteristics of a druggable pocket:
size, shape, key residues

Suggest more focused candidates for
chemical screening and docking applications

Exploitable Observations*

Proteins structures descending from a common ancestor
are remarkably similar

Residues in the active sites of these proteins are under
evolutionary pressure to maintain their functional integrity,
and therefore do not mutate as frequently as less
functionally important residues

*J. Mol.Biol.(1996) 257, 342-358, Lichtarge et al

Some of the Tools

SCOPmap provides us with structural
classifications of our targets.

We take sets of proteins with the same
structural classification and a representative
structure as input to a evolutionary trace
program.

The ET predicts binding pockets and key
residues

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

*J. Mol.Biol.(1996) 257, 342-358, Lichtarge et al

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

*J. Mol.Biol.(1996) 257, 342-358, Lichtarge et al

Problem Solving Approach
• Problem

– Applications Consist of many distinct but related
computations.

– Use same data base, same code, output collected and
integrated

– Computations are independent, time not consistent
– Tens of thousands of computations
– Multiple heterogeneous clusters available

• Different schedulers
• Different security models

• Challenge
– Efficiently distribute the computations across the resources,

monitor their execution and collect the output.

Problem Solving Approach

• Our requirements:
– Dynamically acquire resources during the run
– Provide different credentials
– Detect failed jobs, rerun them
– Distribute a private database to all computations

• In other words, we need a Grid
Metascheduler

Grid Metascheduler

• Two examples
– Community Scheduler Framework

• Platform Inc. provides framework for building community
scheduler

• No metascheduler deployed on our resources
– GT3 Blast Grid Service

• Excellent for single researcher with small set of
sequences

• Static allocation
• Assumes single credentials
• Assumes small number of sequences (We have 2.4

million)
• Assume use of public NR (We have our own)

Traditional Scheduling

• Divide the input in to N pieces and schedule
N jobs, or schedule 1 job on N processors
– N can be too large (10’s of thousands)
– Inefficient distribution of reference datasets
– Failure of an individual computation causes entire

job to fail
– Difficult to prevent time-outs while still requesting

reasonable amounts of time.

The self Scheduling Model
• Divide the computations into N pieces of work (The

pool of work)
• Create a master that owns the work and hands it out,

one piece at a time, to workers that ask for it. Master
keeps track of available, completed and to-be-
finished work

• Create clients that ask for units of work, runs the
computation, delivers results and ask for more work.

• We call this the Askfor
• A variant of traditional master-worker

Askfor

• Use each cluster scheduler to dynamically
schedule as many workers as possible as
often as possible.

• Scheduling scheme depends on individual
scheduler policies and keen observation of
the scheduler queue dynamics over time.

• Each worker runs for the full scheduled time,
continually asking for work from the master
and returning solutions.

Resources

• Jazz Cluster at ANL
– 350 nodes

• 2.4GHz Intel Xeon
• 1 - 2 GB RAM

– 10TB Shared disk Global File System
(GFS)

– 10TB Parallel Virtual File System (PVFS)

Resources
• Teragrid Distributed Clusters

– 9 clusters, at different sites
– 40Gbs network

• Typical Cluster (ANL)
– 62 Nodes

• Dual 1.3 GHz Intel Itanium 2
• 4GB RAM

– 96 Nodes
• Dual 2.4GHz Intel Xeon
• 4GB RAM

– 15TB General Parallel File System (GPFS)
– 5TB PVFS

Version 1:
Persistent server

Cluster 1

Askfor Server

Cluster
Node

Cluster
Node
Cluster
Node
Cluster
Node
Cluster
Node

NR

Cluster 2

Cluster
Node

Cluster
Node
Cluster
Node
Cluster
Node
Cluster
Node

NR

Version 1:
Persistent Server

• Custom for large BLAST computation
• Python-based askfor server
• NR manually distributed to cluster nodes
• First run at the problem, simple and

straightforward implementation
• Server is single point-of-failure (death of

server releases all cluster nodes)
– However, server maintains persistent state and is

restartable

Cluster 1

Askfor Server

Cluster
Node

Cluster
Node
Cluster
Node
Cluster
Node
Cluster
Node

NR

Cluster 2

Cluster
Node

Cluster
Node
Cluster
Node
Cluster
Node
Cluster
Node

NR

V1, cont.

• Immediate feedback when a client dies
– Connection goes away
– Manager can reassign work

• Potential for resource overload
– Requires file descriptor per cluster node in

use

Road Tested

This model has been used
regularly for the past 18 months to
support several genome
annotation projects.

We have consumed over 32,000
node hours on ANL’s Jazz cluster
alone using this model.

V2: Scopmap via Apache
• Custom for Scopmap protein structure computation
• Asynchronous client/server comms

– Apache server
– XMLRPC/CGI interface
– Computation state maintained in relational db

• No file distribution required
– Work units and results small enough to carry in XMLRPC

messages
– Required databases installed as part of Scopmap program

installation

V2, cont.

• Async interface results in more reliability (no
dependency on single server)

• However, lose information about status of
clients
– Scopmap computation can run very long (some

pieces of work exhausted the 20-hour node
allocation time)

– Without heartbeat, cannot tell if job is dead or
taking a long time

Performance of V2 Askfor Model

Attempted to classify all proteins in
E.coli K12 with SCOPmap

Successful for over a 1000 proteins

3.5 days - aggregate of 196 nodes
VS

176 days for the serial computation

V3: General tool

• Builds on earlier tools:
– Apache-based server
– SOAP-based communications
– Relational database for state maintenance

• Intended to be more general purpose
– Pluggable application logic
– Supports file staging

V3, cont.
• Addresses other weaknesses:

– Client heartbeat provides mgr with complete state
information

– Careful signal handling and abnormal termination
support

• Results in more server traffic, with some
spectacular load spikes on the creation of
100-node worker pools
– But computers are highly capable, so brute-force

solution works well
-Successfully used for large BLAST computations

Conclusion & Future

Our production and experimental usage
experiences validate the AskFor model for
use in high-volume distributed computations

Envision a web services interface to a
centralized AskFor Manager that presents
units of work to large-scale, distributed, back-
end processing engines for applications in
computational biology.

Complete
Genomes

Semi-Automated
Feature
Identification
And Annotation

Subsystems
Analysis

Reaction Set
Determination

S Matrix
Generation

Flux
Based
Models

Phenotype
Prediction

Computational Genomics Comparative Analysis Model Development Systems Analysis

Organism
Phylogeny

Reconstructing
Gene
Histories

Horizontal
Gene Transfer
Studies

Chromosomal
Cluster
Phylogeny

Gene Function
Clarification

Evolutionary Analysis

Subsystem
Phylogenetics

Encoding
Pathway
Variants

Compound
Database

Reaction
Database

Encoding
Reaction
Variants

Core
Metabolism

Spontaneous
Reactions

Transport

Transcription
Regulation
Signaling

Constraints
Observations

Dynamic modeling

Reaction Rates

Kinetics Based Models

Allosteric Regulation

Evolution of Kinetics

Personal Tools Community Access P2P Micropublishing Web Services Open Grids

Mirroring

Publish/Subscribe

Blogs and Podcasting

Clearing Houses

Curation and Review

Examples:

The SEED
Alliance for
Cell Signaling

Toolkits

Frameworks

Standalone Suites

Personal clusters

Examples:

BioLinux
EMBOSS
BioPerl

FTP Data Access

Centralized
Websites

Portals

Examples:

PubMed
EMBL web
BLAST severs
My*name it*

WS interfaces
To Public Servers

WS to standalone
Applications

Re-architected
Tools

LW Clients

Workflow Tools

Service
Oriented
Architectures

Services
Based
Access to
Resources

Tool and
Content
Providers

Service
Oriented
Programming
tools

Acknowledgements

This work was supported by the
Mathematical, Information and
Computational Sciences Division
subprogram of the Office of Advanced
Scientific Computing Research,Office
of Science, U.S. Department of
Energy, under Contract W-31-109-
ENG-38

