
Motivations & Confessions

Biologist’s Perspective

Bacteria Appreciation

10 quadrillion human cells vs. 100 quadrillion bacterial cells

The upside of diarrhea

It’s a small world after all, in the soil, in the oceans …



Millions of bacteria species, plus the strains

Currently ~300 complete genomes vs less 
than 20 eukaryotic genomes available

Much can be learned from these, and more 
are being sequenced every week

1000 genomes in ~2008

So where do these bacteria hide these 
secrets?



Beautiful Nuggets of TRUTH

In a thing we called CLUSTERS!

So what’s a CLUSTER?

“functionally-related set of genes that code for 
proteins that perform a role in the same 
biological process or are sub-units in the 
same structure and are located near each 
other in the DNA”
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The SIGNIFICANCE of CLUSTERS:

Genomic context gives us insight to unknown gene 
functions

~50% of genes in bacteria (euks don’t), good chance
your gene clusters somewhere!

Why do they cluster?

Common regulation, Lateral Gene Transfer, Protein-
Protein Interactions?



Am I in the right room?

Detecting CLUSTERS requires computing  
the SIMILARITY between every protein in our 
database.

~2.5 million protein sequences in our DB

BLAST x Bunch of Computers = Similarities

.123 ms/per char X 440 char/per seq X 2.5M

> 4.25 years for a single processor



QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.



Drug Target Pipeline of NMPDR

Curators harvest proteins of interest from the 
literature

Do computations to determine if its druggable

Identify characteristics of a druggable pocket:
size, shape, key residues

Suggest more focused candidates for 
chemical screening and docking applications



Exploitable Observations*

Proteins structures descending from a common ancestor
are remarkably similar

Residues in the active sites of these proteins are under 
evolutionary pressure to maintain their functional integrity, 
and therefore do not mutate as frequently as less 
functionally important residues

*J. Mol.Biol.(1996) 257, 342-358, Lichtarge et al



Some of the Tools

SCOPmap provides us with structural 
classifications of our targets.

We take sets of proteins with the same 
structural classification and a representative 
structure as input to a evolutionary trace 
program.

The ET predicts binding pockets and key 
residues
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Problem Solving Approach
• Problem

– Applications Consist of many distinct but related 
computations.

– Use same data base, same code, output collected and 
integrated

– Computations are independent, time not consistent
– Tens of thousands of computations
– Multiple heterogeneous clusters available

• Different schedulers
• Different security models

• Challenge
– Efficiently distribute the computations across the resources, 

monitor their execution and collect the output.



Problem Solving Approach

• Our requirements:
– Dynamically acquire resources during the run
– Provide different credentials
– Detect failed jobs, rerun them
– Distribute a private database to all computations

• In other words, we need a Grid 
Metascheduler



Grid Metascheduler

• Two examples
– Community Scheduler Framework

• Platform Inc. provides framework for building community 
scheduler

• No metascheduler deployed on our resources
– GT3 Blast Grid Service

• Excellent for single researcher with small set of 
sequences

• Static allocation
• Assumes single credentials
• Assumes small number of sequences (We have 2.4 

million)
• Assume use of public NR (We have our own)



Traditional Scheduling

• Divide the input in to N pieces and schedule 
N jobs, or schedule 1 job on N processors
– N can be too large (10’s of thousands)
– Inefficient distribution of reference datasets
– Failure of an individual computation causes entire 

job to fail
– Difficult to prevent time-outs while still requesting 

reasonable amounts of time.



The self Scheduling Model
• Divide the computations into N pieces of work (The 

pool of work)
• Create a master that owns the work and hands it out, 

one piece at a time, to workers that ask for it. Master 
keeps track of available, completed and to-be-
finished work

• Create clients that ask for units of work, runs the 
computation, delivers results and ask for more work.

• We call this the Askfor
• A variant of traditional master-worker



Askfor

• Use each cluster scheduler to dynamically
schedule as many workers as possible as 
often as possible.

• Scheduling scheme depends on individual 
scheduler policies and keen observation of 
the scheduler queue dynamics over time.

• Each worker runs for the full scheduled time, 
continually asking for work from the master 
and returning solutions.



Resources

• Jazz Cluster at ANL
– 350 nodes

• 2.4GHz Intel Xeon
• 1 - 2 GB RAM

– 10TB Shared disk Global File System 
(GFS)

– 10TB Parallel Virtual File System (PVFS)



Resources 
• Teragrid Distributed Clusters

– 9 clusters, at different sites
– 40Gbs network

• Typical Cluster (ANL)
– 62 Nodes

• Dual 1.3 GHz Intel Itanium 2
• 4GB RAM

– 96 Nodes
• Dual 2.4GHz Intel Xeon
• 4GB RAM

– 15TB General Parallel File System (GPFS)
– 5TB PVFS



Version 1: 
Persistent server
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Version 1: 
Persistent Server

• Custom for large BLAST computation
• Python-based askfor server
• NR manually distributed to cluster nodes
• First run at the problem, simple and 

straightforward implementation
• Server is single point-of-failure (death of 

server releases all cluster nodes)
– However, server maintains persistent state and is 

restartable
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V1, cont.

• Immediate feedback when a client dies
– Connection goes away
– Manager can reassign work

• Potential for resource overload
– Requires file descriptor per cluster node in 

use



Road Tested

This model has been used 
regularly for the past 18 months to 
support several genome 
annotation projects.

We have consumed over 32,000 
node hours on ANL’s Jazz cluster 
alone using this model.



V2: Scopmap via Apache
• Custom for Scopmap protein structure computation
• Asynchronous  client/server comms

– Apache server
– XMLRPC/CGI interface
– Computation state maintained in relational db

• No file distribution required
– Work units and results small enough to carry in XMLRPC 

messages
– Required databases installed as part of Scopmap program 

installation



V2, cont.

• Async interface results in more reliability (no 
dependency on single server)

• However, lose information about status of 
clients
– Scopmap computation can run very long (some 

pieces of work exhausted the 20-hour node 
allocation time)

– Without heartbeat, cannot tell if job is dead or 
taking a long time



Performance of V2 Askfor Model

Attempted to classify all proteins in 
E.coli K12 with SCOPmap

Successful for over a 1000 proteins

3.5 days - aggregate of 196 nodes
VS

176 days for the serial computation



V3: General tool

• Builds on earlier tools:
– Apache-based server
– SOAP-based communications
– Relational database for state maintenance

• Intended to be more general purpose
– Pluggable application logic
– Supports file staging



V3, cont.
• Addresses other weaknesses:

– Client heartbeat provides mgr with complete state 
information

– Careful signal handling and abnormal termination 
support

• Results in more server traffic, with some 
spectacular load spikes on the creation of 
100-node worker pools
– But computers are highly capable, so brute-force 

solution works well
-Successfully used for large BLAST computations



Conclusion & Future

Our production and experimental usage 
experiences validate the AskFor model for 
use in high-volume distributed computations

Envision a web services interface to  a 
centralized AskFor Manager that presents 
units of work to large-scale, distributed, back-
end processing engines for applications in 
computational biology.
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