£

SUM

Coordination of Data Movement with
Computation Scheduling on a Cluster

Alex Romosan, Doron Rotem,
Arie Shoshani and John Bent*

Lawrence Berkeley National Laboratory
*University of Wisconsin

Outline

- Problem Description
- Architecture

- Scheduling Strategies

 FIFO
 Shortest Job First

 Linear Programming

- Network Flow Representation
- Simulation Environment
* Results

S

' A
(rreeee

’ Problem Domain

Archival storage

Scheduler]

Compute cluster

Problem Description Jfk

SUM

- Schedule a collection of jobs, each requiring one
or more input files, to run on a group of servers,
each server having one or more compute slots
and a disk cache that can hold some fraction of
the data

- A job can be scheduled on a server if:

* the server has at least one available compute slot

« all data files needed are available on the server's disk
cache

* Need to coordinate data movement with

-

o) Goal

- Automatically match each job to the machine
that has the file needed for the job

- ability to schedule jobs and fetch files from tape

 heed information on the content in each disk cache

- Optimize parallel analysis on the cluster

« Minimize movement of files between cluster nodes
« Use node cluster as evenly as possible

« Automatic replication of hot files

« Automatic management of disk space

- Automatic removal of cold files

-

' A
(rreeee

’ Solution

- Use existing software components:

« Condor for job scheduling

« Condor for matchmaking of slots and files
« open-ended description of what to match on (classAd)

 DRMs for disk management

- dynamic storage allocation
- ability to “pin” and “release” files

 HRMs for fetching files from tape

- Developed “glue” component to achieve
co-scheduling

~

Architecture

JDM - Job Decomposition IDM schedd

Module
FSM Collector

FSM - File Scheduling Negotiator
Module
DRM | |startd DRM | |startd DRM | |startd DRM | |startd
HRM

~

| A
Frererre ‘m

Condor Master Node

Job requests
é > IDM [>

Collector

Negotiator

T T | FSM @
\T SCh?dd ClassAd

\
\
f%le : file 1
‘ . .
} file) existing
\
} files
|
2
file m
\
|
\
\
|
\
\

Worker Node

-

M) Scheduling Algorithms 93

SuUM

- FIFO
- Grab job at head of queue in FIFO order

- Simplest and fairest
- Shortest Job First

- Estimate time to completion for each job
« Schedule shortest job first
« Overhead O(#jobs x #servers)

« Exit “early” if shortest job found

* Linear Programming

L D AAAAAAA l I‘I‘AI‘IAI“ y Y S “A‘I.l‘l‘ll ‘IAI.. AI‘J AAI‘.A y 3

-

o) § FIFO

- Schedule jobs as they arrive
* ho scheduling overhead
- Choose next server in round-robin fashion

 many unneeded local and remote replications
 server underutilization

* low throughput

Shortest Job First Algorithm ﬁ

- Optimally minimizes average waiting time
 possible starvation of long jobs

- Use data movement as first-order approximation
of job runtime.

- Compute data cost incurred if job were to be
scheduled on each server:
0, if file already on server

 File size weighted by either local or remote cost

- Schedule job that requires cheapest amount of
data movement

Scheduling Using LP models Jfk

R > L) N
- Create node weighted bipartite graph B(F,S,E)

« F-files requested by the queued jobs

« S—servers in the cluster

. E—edges e(fl_,sj)
- Define costs and constraints for edges
- Articulate an objective function

* Find an LP library to do the heavy lifting

-

ceceee) | Bipartite Graph Representation F o

EEEEEEEEEEE :

7 12 10 4 9 6 Number of jobs
requesting a file
S, S, S,

8 12 6 Server slots

-

“<21 3 Network Flow Representation F o

SUM

without replication { Source edge

/\

capacity

3 /
K |

-

Frreerernr

| Local and Remote Replications

local replications

{ Source

S S S,

1 2

8 12 6

{ Sink

Mathematical Programming ‘&

SUM

- Let / denote local and r remote replication costs

- For an edge (f ,s,) the cost C(f ,s,) of connecting
file 7 to server s is represented b

L, f. does not reside on S buYa copy resides

Oon some Server

C(fps))=

r, f.doesnotreside on any server

2 x(f8)C(f)

f

N Mi)!v.(l?l.,i§5: I, 1if ﬂOW(fl.,Sj>>O

[]
n f\"L MNAAY YT T4

Mathematical Programming

— FEormulation(cont'd) S

- Flow on an edge cannot exceed its capacity
flow(f., s)<capacity(f.,s \Vi,]

. Flow in}?O?trggdjg eqza ﬁ ?v]r; owt&f it

. Flowf ? rt a sink equals total flow
intd the Sse‘We ?f ’ wv(’

> flow(s , sink) mm&Z N(f), D> S(s)

- Require the ’maximum ossible ﬂow

An Approximation Jfk

S UM

* Previous formulation is known to NP-hard by
reduction from set cover

- Replace x(f , s,) with the ratio of actual flow on
the edge to its total capacity

- New objective fun}?Otvi&?. 5))
i’ C

minimize Z (f.,s)

.o annr*ffv(£ C \ : J

- This is a linear program solvable in polynomial

LP Algorithm Implementation Jfk

I — >) |\ 1
- Create a fully connected bipartite graph with an
edge from each file to each server

 ignore unpopular files and unavailable servers

- Constrain each edge to be min of file popularity
and server capacity

- Constrain all edges exiting a file to not exceed
its popularity

- Constrain all edges entering a server to not
exceed its capacity 9

o .a\.‘ LP Algorithm Implementation
—{CO0d

- Compute maximum throughput to be min of jobs
in queue and available server slots

S UM

« set constraint that flow equals max throughput
- Define cost of using each edge:
« C(e) = X/ max_edge capacity

« where X is

« 0 if that edge exists
« LOCAL_COST if another server has a copy
« REMOTE_COST if file is not cached locally

. Aok abhlilceaakivice Erricadfam e walwmimealmea oo ol

~

A
F(reeeee |||l

Jobs queued

Jobs finished

Example th

S UM

- Create fully connected bipartite

graph with an edge from each file to
each server

Constrain each edge to be min of
file populdrity and server ¢apacity

0 < e, < min(57)=5

0 < e, < min(3,4)=3

e, +e, <7
Constrain all edges exiting a file to
not exceed its popularity

e +e, <3
1 3
a 1L a <K

Constrain all edges entering a

PR N T (- 1 . | T

~

A
(rreeee

! Example (cont'd) Fo

S UM

Jobs queued - Compute max throughput to be min

of jobs in queue and available sever
/ 4 slots e, +e.,+e,+e,=8

- Define c&cé(ilg)f ?sif}g each edge

2

Cle) = 10

3

minimize (0Xe, +1Xe.+10Xe.+10Xe)

1 2
\ @ - Set objective to minimize cost
3 5 e = 3

1

e, = 4
Jobs finished - Let LP do the-heavy lifting

-

cecees)) SJF and LP Comparison Jfk

S UM

source Jobs queued Jobs queued

%

- ~ e
5 5 5
SI S2
X /
sink Jobs finished Jobs finished

Network diagram SJF LP

-

' A
(rreeee

]

- Researched different libraries

 http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html#Q2

Finding an LP Solver

- http://www.cs.sunysb.edu/~algorith/files/linear-programming.shtml

- Selected Ip_solve

Written in ANSI C

Ported to *nix

Solve up to 30K variables, 50K constraints

FREE for non-commercial use

Generally considered best free code available

24

-

A
(rreeee

I!I‘

- 8 single and 1 dual CPU 1.5GHz Athlons
« 20GB disk cache and 2GB of RAM per node

- Sched_sim written in C++ with extensive use of
STL

« geared towards simulation of shared-nothing clusters
- Used the Condor batch scheduling system

 ran 6643 simulations
« consumed 27.92 CPU days

- Two types of measurements

e meaciiremente of cimiilated ecveteme

Simulation Environment .'ﬁr:1I

-

' A
(rreeee

’ Simulation Parameters

- Server configuration
« Capacity for jobs and data
« Cache policy

- Dataset

» Size of complete dataset and of each file

« Characteristics of popularity distribution
- Network

« Bandwidth to archive server and within local network

- Jobs

26

-

il Scheduling Sensitivity
- 10,000 jobs, 2-64K files, 32 servers
0 rro | | | | | '
. LP
700 SIF
600 |
-]
g s00 |
=
%‘ 400 |
T
S 300 |
[7.2]
200 |
100 |
. . .
= w8 8

Numb er of files

- LPis very sensitive to the number of edges
- Unable to run when edges = 8K*32

27

£

=

=2 Number of File Replications

- 10,000 jobs, 100 files, 1-32 servers

6000 7000
LP
o D
s000 [FIFO - BOBE
5000 |
4000 | @
-
S 4000 |
[=]
3000 | ,,g
E 3000 |
-7}
2000 | K
2000 |
1000 | 1000 |
0 0
1 2 4 8 16 32 1 2 4 8 16 32
Numb er of servers Number of servers

- SJF makes fewer local copies than LP
* FIFO very wasteful .

Popularity Distribution

- Zipf's popularity distribution, 1000 jobs

1000 1000

FIFO

FIFO
920 | LP — 900 LP ———
SJIF ———— SJF ———
800 | 800 |
700 | 700 |
& g
= 600 | B 600 |
= =]
=] 5]
s 500 | z 500 |
s -
g 400 | g 400 |
=4 [+
300 | 300 |
200 | 200 |
100 [100 |
0 ' ' 0 ' '
Ll -r L] - =] - Ar=] - - v -+ br=] - =] - - -+ =
L] L] u o~ (=, (= =] o — A¥-] u [| (=5 o o
(o] [—] [—] (o] w =~ (—] =] o] w
] - - W, — - L -] u
b - Lo A1
Numb er of files Numb er of files

Small cache Infinite Cache

29

-

/-N A
F(reeeee |||‘

- Delay scheduling to minimize calls to LP
- 10,000 jobs, 100 files, 1-32 servers

230

Scheduling Overhead £

=

Scheduling time

1 2 4 8 16 32

Number of servers

- Delays reduce scheduling overhead

-

A
F(reeeee |||‘

- 10,000 jobs, 100 files, 1-32 servers

2500

LP Local copies with delays Jfk

S UM

DO
D1
D3

2000 T

ju—y
Ln
=
=

Local-copies
[y
=
-
-

300 |

1 2 4 8 16 32

Numb er of servers

Delay to LP results in fewer local copies.

-

reece | LP Scheduling time with delays

- 10,000 jobs, 100 files, 1-32 servers

0.14

DO

D1
0.12 |Ds

0.1 |

0.08 |

0.06 |

Sched-per-job

0.04 |

0.02 |

1 2 4 8 16 32

Number of servers
32

Conclusions Jfk

S UM

- FIFO performs the most local and remote copies

FIFO has the lowest server utilization

 the three methods converge with increasing number
of servers

SJF and LP are equivalent in the number of
replications performed and run times

Longer delays between successive LP's
significantly reduce scheduling time

Increasing the number of servers causes

e foawar reamoie conice and maore loeal coniac

Future Work th

—————————————————————————————————————— 1 P
- More simulations needed to study the effects of
the different variables

* Use real workflows

- Study workflows with dependencies between
inputs and outputs of successive jobs

- Test additional algorithms
 prefetch files to compute nodes

- Take into account “remote transfer in progress”
events

o llees enbhachiilins alaaavithhrmme A Advive raal eueinm

