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Motivations Bioinformatic applications

: bioinformatic application

o reference databanks

"flat" text files

» few MB to several GB

» update : daily to monthly

» number and size of data increase very quickly

v

@ requests
> one algorithm applied to one or two databanks
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Motivations Bioinformatic applications

From log files of an existing bioinformatic portal :

@ some requests are more frequent than other
» blast over sp.fas : 77% of requests
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From log files of an existing bioinformatic portal :

@ some requests are more frequent than other
» blast over sp.fas : 77% of requests

@ the usage of databanks and kind of requests is constant.
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Motivations Bioinformatic applications

From log files of an existing bioinformatic portal :

@ some requests are more frequent than other
» blast over sp.fas : 77% of requests

@ the usage of databanks and kind of requests is constant.

We can start from the study of previous usage schemes.
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Motivations Bioinformatic applications

extract from logs of NPS@, bioinformatic web portal :

Number of databanks 23

Number of algorithms 8

Number of couple algorithm-databanks 80
Size of the smallest databank 1 MB
Size of the largest databank 12 GB

antoine.vernois@ens-lyon.fr Simultaneous scheduling of data and computation



Motivations Replication

e databanks

Goal :
@ improve computation time,

@ and/or platform throughput.

Data sets are initially stored on public server :
@ insert them into the grid
@ keep them up to date

@ prevent bottleneck
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Motivations Replication

e databanks

Goal :
@ improve computation time,

@ and/or platform throughput.

Data sets are initially stored on public server :
@ insert them into the grid
@ keep them up to date

@ prevent bottleneck

Question : Where and when create replicas? ?
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Motivations Replication

Store all databanks on each server.

@ not always possible : too many data

@ too much space occupied by useless databanks
» databanks are not all used at all the time. (embl.fas = 12 Gb, < 1%
of requests)

@ updating databanks become costly
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Replication

@ scheduling and replication are two independant processes,
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@ replication has to be done by users,
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Motivations Replication

@ scheduling and replication are two independant processes,
@ replication has to be done by users,

@ schedulers don't take care of locality of data.

An idea :

Join scheduling of computation and replication of data
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© Model

@ Parameters
@ Constraints
@ Solutions
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Parameters

we know

@ platform

@ bioinformatic
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Parameters

we know

@ platform
> n computation servers P;

* storage space : m;
* computation power : w;

@ bioinformatic
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Parameters

@ platform
> n computation servers P;

* storage space : m;
* computation power : w;

@ bioinformatic

» m databanks d; of size : size;
> p algorithms ay :

* linear with size of databanks : ay, * size + ck
> requests R(k, j)

* usage frequency : f(k,j)
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Model Parameters

we have to determine

@ TP : throughput
° (517 : placement of databanks

@ n;(k,j) : requests done by each server
» number of jobs R(k,j) done by P; : n;(k, j)
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Constraints

@ each data at least on one server
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each data at least on one server

@ a server cannot store more than availaible space

@ a server cannot compute more than availiable computation power

a request can be executed only if data is on the server
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Constraints

each data at least on one server

@ a server cannot store more than availaible space

@ a server cannot compute more than availiable computation power

a request can be executed only if data is on the server

job distribution follow usage frequency
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Constraints

each data at least on one server

@ a server cannot store more than availaible space

@ a server cannot compute more than availiable computation power

a request can be executed only if data is on the server

job distribution follow usage frequency

Goal : Maximize throughput of the platform (makespan)
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Constraints

linear program formulation
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Solutions

Integer and rational number problem

@ use of integer approximation for 53

With realistic information, we can notice :
@ the most used data are more replicated

@ storage space is not full
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Simulations et results

© Simulations et results
@ Experimental environment
@ Results
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Simulations et results Experimental environment

@ use of OptorSim

» simulator for grid data management
» developped for European DataGrid project

@ largely modified to match our needs

> heterogeneous compute system
» batch scheduler

> heterogeneous computation time
>
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Simulations et results Experimental environment

@ test platform :

> generated by Tiers
» 10 platforms

@ Requests :

> based on real requests
» 40000 requests
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Simulations et results Results

jon time : fonction of network bandwidth
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Simulations et results Results

jon time : function of storage space availiable
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Simulations et results

Results

jon time : function of storage space (zoom)
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@ Conclusions
@ What have been done...
@ What is to be done...
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(@NISIEIN  What have been done...

@ Steady state model

@ Simulation

Good optimisations for

> low speed network
» small storage space

Placement is efficient
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[@NISILEN  What is to be done...

progress

@ Dynamic solution

@ Real execution with DIET environment
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