GISolve

A Grid-based problem solving environment for computationally intensive geographic information analysis

Shaowen Wang

Department of Geography & Grid Research & educatiOn group @ IoWa (GROW)
ITS Academic Technologies – Research Services
The University of Iowa
Iowa City, IA 52242, USA

July 24, 2005

Collaborators

- Marc P. Armstrong, Professor, Department of Geography and Program in Applied Mathematical and Computational Sciences
- Jun Ni, Ph.D., Associate Research Scientist, ITS Academic Technologies – Research Services
- Yan Liu, Graduate Research Assistant, ITS
 Academic Technologies Research Services

Purpose

Purpose

Background

Design

Implementation

Case Study

Evaluation

- To address why the Grid is important to geographic information analysis research
- To demonstrate the design and implementation of GISolve – a Gridbased problem solving environment for computationally intensive geographic information analysis

Background

Purpose

Background

Design

Implementation

Case Study

Evaluation

- The amount of geographic information
 - Ever increasing
 - Application driven
 - GPS, LBS, RS
- Computationally intensive geographic analysis
 - Heuristic search
 - Simulation
 - Optimization
 - Statistical methods
- Grid computing
 - Cyberinfrastructure
 - Open Grid Service Architecture (OGSA)
 - Web services
- Problem solving environments
 - Grid portals

GIScience Grid Portal

Purpose

Background

Design

Implementation

Case Study

Evaluation

Grid Resources – A User View

Purpose

Background

Design

Implementation

Case Study

Evaluation

Grid Complexity

Purpose

Background

Design

Implementation

Case Study

Evaluation

- Grid middleware limitation
 - Provides a selected set of protocols and services
 - Not directly user- or application- oriented
- Heterogeneous
- Dynamic
- Administrated in different security domains
- Faults
 - Usually unpredictable

GISolve Architecture

Computational domain modeling

Data access module

Domain decomposition

Task scheduling

Information broker and resource discovery

Problem solving environments implemented using Grid portal technologies

Protocols and services for data access on the Grid, such as the Globus GridFTP

Resource allocation

Grid information services

Grid Middleware such as Globus, Legion, and Condor

GISolve Services

Purpose

Background

Design

Implementation

Case Study

Evaluation

- Security
- Decomposition and task scheduling
- Geographic data access
- Resource information brokering

Classification of GISolve Services

Purpose

Background

Design

Implementation

Case Study

Evaluation

GISolve Workflow

Purpose

Background

Design

Implementation

Case Study

Evaluation

A Three-Layer Model of Grid Portal Technologies

Purpose

Background

Design

Implementation

Case Study

Evaluation

Technology Specification

Purpose

Background

Design

Implementation

Case Study

Evaluation

- Jetspeed portal server
 - Jetspeed: portal engine
 - Turbine: MVC (Model-View-Control) framework
 - Velocity: dynamic html generation
 - Tomcat: portal container
- Multi-user support
 - User registration and management
 - User-based state management
- Configurable portal interface
 - Customized layout
 - Display control of each portlet interface

APIs Implemented

Purpose

Background

Design

Implementation

Case Study

Evaluation

- APIs developed
 - [org.gisolve.globus]: Globus Toolkit enhancement
 - [edu.uiowa.gisolve.ogsa]: Grid service (interface definition, user-level Grid service implementation)
 - [org.apache.jetspeed.modules.actions.gisolveportlets]: Jetspeed portlet action implementation
 - [gisolveportlets]: portal support for Grid service
 APIs (state management, Grid service client APIs)
- APIs integrated
 - Java COG (GT2), GT3/GT4 Core, OGSA (WS GRAM, RFT), MyProxy, LDAP, JNI, JPL

Defining GISolve Services

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

A task scheduling service gWSDL:

```
<definitions name="TSService targetNamespace=http://uiowa.edu/grow/namespaces/2004/04/gisolve/TS ... />
<!-- import external types -->
<<import location="../ogsi/ogsi.gwsdl" .../>
<!-- self-defined types -->
</mport location="gidTypes.xsd" namespace="http://uiowa.edu/grow/namespaces/2004/04/gisolve/gidtypes"/>
<!-- local types schema -->
<<types><xsd:schema .../></types>
<!-- message definition -->
><message name="SchedInputMessage">...</message>
-<message name="SchedOutputMessage">...</message>
-<!-- service operation definition -->
><gwsdl:portType name="TSPortType" extends="ogsi:GridService">
       <-coperation name="schedule">
              <<input message="tns:SchedInputMessage"/>

v<output message="tns:SchedOutputMessage"/>

              <-fault name="Fault" message="ogsi:FaultMessage"/>
       </operation>
       <sd:serviceData name="TSState" ... />
</gwsdl:portType>
```

OGSI to WSRF

```
WSDL
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DCService" ... ...
  xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
  xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
  xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor" >
  <wsdl:import namespace="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties....wsdl"</pre>
     location="../wsrf/properties/WS-ResourceProperties.wsdl"/>
  <types>... ...<xsd:element name="DCResourceProperties">... ...</xsd:element></types>
  <!-- WSRF Grid service PortType definition -->
  <portType name="DCPortType" wsdlpp:extends="wsrpw:GetResourceProperty"</pre>
     wsrp:ResourceProperties="tns:DCResourceProperties">
     <operation name="decompose">... ...</operation>
  </portType>
```

gWSDL

```
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DCService" ... ...</pre>
  xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"
  xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions"
  xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceData">
  <!-- import ogsi Grid Service gwsdl. Location is under gt3/schema/ogsi/ -->
  <import location="../ogsi/ogsi.gwsdl" namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>
  <!-- Grid service interface definition -->
  <gwsdl:portType name="DCPortType" extends="ogsi:GridService">
     <operation name="decompose">... ...</operation>
     <sd:serviceData name="DCState" type="xsd:int" ... ... />
  </gwsdl:portType>
```

GISolve Services in Action

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

Deployed GISolve services:

[globus4@rsgridportal globus4]\$ globus-start-container Starting SOAP server at: https://128.255.162.167:8443/wsrf/services/ With the following services:

... ...

[12]: https://128.255.162.167:8443/wsrf/services/gisolve/TSService

... ..

[47]: https://128.255.162.167:8443/wsrf/services/gisolve/DCService

Case Study – G_i*(d) Statistic

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

$$G_{i}^{*}(d) = \frac{\sum_{j} w_{ij}(d) x_{j} - W_{i}^{*} x}{s\{[(nS_{1i}^{*}) - W_{i}^{*2}]/(n-1)\}^{1/2}}$$

References

- Getis, A., and Ord, J.K., 1992, The analysis of spatial association by use of distance statistics. *Geographical Analysis*, 24(3): 189-206.
- Ord, J. K., and Getis, A., 1995, Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4): 286-306.

Synthetic Datasets

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

20000-point a uniform random distribution

20000-point: two clusters, each of which has a normal distribution with a standard deviation of 2

User Interface

Purpose

Background

Design

Implementation

Case Study

Evaluation

An Example of Spatial Computational Domain Decomposition

Purpose

Background

Design

Implementation

Case Study

Evaluation

A Task Scheduling Service

Purpose

Background

Design

Implementation

Case Study

Evaluation

- Decoupled from domain decomposition services
- *NP*-complete problem
 - Max-min algorithm implemented
- Using the theoretical estimate to compute the Expected Time to Compute (ETC) matrix

A Diagrammatic Example of Static Task Scheduling

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

Resource1

Resource2

Resource3

Grid Testbed Implementation - HawkGrid

Purpose

Background

Design

Implementation

Case Study

Evaluation

Purpose

Background

Design

Implementation

Case Study

Evaluation

Conclusions

DEMO

Performance

Purpose

Background

Design

Implementation

Case Study

Evaluation

- The problem cannot be solved by any single computer in our Grid testbed
 - 3.2G memory
- Solved within 10 minutes through GISolve

Conclusions

Purpose

Background

Design

Implementation

Case Study

Evaluation

- GISolve demonstrates how the Grid can benefit research on computationally intensive geographic information analyses
- GISolve integrates OGSA-based Web services to support the computational aspects of GIServices

Ongoing Research

- Interoperability of GISolve services
- Adaptive domain decomposition services
- Evaluation of GISolve performance
- Extension of the types of geographic information analyses GISolve supports

Acknowledgement

- This research is partially supported by the HawkGrid project funded by the Office of Vice President for Research at The University of Iowa
- Computational resources used for experiments include a cluster supported by the U.S. NSF iVDGL (international Virtual Data Grid Laboratory) project

