
Patrick M. Widener
College of Computing

Georgia Institute of Technology
pmw @ cc.gatech.edu

www.cercs.gatech.edu

Reverb: Middleware for
Distributed Application Forensics

Outline / Contributions
● Context and motivation
● Description of Reverb

● Differential, customizable, access-controlled
auditing for distributed middleware

● Application example
● Experimental results

● Small performance overhead
● Preserves application scalability

● Concluding remarks

Cluster Computer
Application

Services

Cluster Computer
Application

Services

Dedicated
Science Network

LABLAB

Instrumented
Testbeds/Facilities

High End
Users and
Displays

Academic
Users

Academic
Users

End Users and
Displays

Reduce
Rate – 10xWindow

Filter

Color
ReductionWindow

Filter

Reduce
Rate – 2x

Data reduction/fusion
Information creation/manipulation

transform

specialize

downsample

differentiate
Services
• dynamically deployed,

cooperating components
• heterogeneous platforms,

devices, users

Example problem domain – scientific
application

Context / motivation
● Application trends

● Large scale, component-based, dynamically configurable /
extensible

● Configuration changes can raise issues
● System integrity, performance effects, responsibility for

outages
● Audit tools for configuration changes help

● “Paper trail”, on-line or off-line forensic analysis
● Perform audit actions differentially, dynamically

● Differential change control: who can initiate which changes?
● Differential auditing: which changes are audited, and who

sees the audit trail?
● Change constraints at run-time, without taking applications off-

line

Reverb: Dynamic, differential
control

● Reverb provides mechanism to
● Track dynamic configuration actions
● Impose controls on permissible actions (which / who)
● Control access to audit trail

● Dedicated event channel for configuration events
(RChannel)
● Access controlled
● Differential customization of configuration events

● Implemented in publish/subscribe middleware
● “ECho” provides customizable event channel abstraction

(EChannel)

● Monitored events: channel creation/destruction,
subscription, channel customization

Reverb in action
• Sensors, visualization from large science

application

Wireless
TCP/IP image display &

control GUIs

f()

Installation of image filters
(greyscale, edge detection, etc)

Reverb auditing

PublisherPublisher

SubscriberSubscriber

SubscriberSubscriber

publisher (640x480 color image)

greyscale

all images

EChannel

EChannel

RChannel

downsample
color

downsample
color

Reverb events
• Submitted to RChannel at publisher
• No user intervention (auto-submit by

middleware
• Distributed to all RChannel subscribers

Reverb events
• Submitted to RChannel at publisher
• No user intervention (auto-submit by

middleware
• Distributed to all RChannel subscribers

SUBSCRIPTION
SUBSCRIPTION

CREATION
CREATION

CUSTOMIZATION
CUSTOMIZATION

RChannel
subscriber

RChannel
subscriber

Differential auditing / change
control

● Should any / all users have access to customizations?
to the RChannel?

● Policy-driven access to RChannel, customizations
● Per-principal, per-customization basis - differential

● Reverb provides protected access
● ECho protected mode – capabilities required
● Dennis & Van Horn style – reference + rights
● Cryptographic protection against forgery / replay
● Trusted policy module (Overwatch) to issue / sign capabilities

● Configuration policy statements (XML) at startup,
during execution
● Policy statements can dictate differential actions
● Overwatch creates differential code, RChannel references

Specifying customizations

{
int i, j;

if (input.principal == “BOB”) {
if (input.config_type == CREATION) {
return 1; /* interested */

else
return 0; /* filter out */

}

Evaluated in the context of a function declaration of the form:

int F({ <i-stream> input }, { <o-stream> output })

● Coarse-grain: by configuration type
● CREATION, SUBSCRIPTION, CUSTOMIZATION, etc.

● Fine-grain: based on application spec

● How to specify? How to execute?
● Dynamically compiled filter

functions
● Safe(r) subset of C

● Execution at source

● Satisfies large % of needs

● DLL / shared objects
● More complex filtering

● Stateful

● Configuration event structures published in API

Reverb policy statements

User
policy

User
policy

Customization
metadata

Customization
metadata

OverwatchOverwatch

Capability for
code / RChannel

<userPolicy>
<name> Bob </name>
<Reverb-restrictions>
<auditDisallowed>

CREATION
</auditDisallowed>
</Reverb-restrictions>
</userPolicy>

<customization takesParams=”false”>
<name> greyImage </name>
<code>...</code>
<Reverb-actions>

<disallowUser>
Bob

</disallowUser>
</Reverb-actions>
</customization>

Authentication
Database

Customized, protected
RChannels

● More efficient event propagation
● Applications define exactly what information

goes to what principals (least privilege)
● Subdivide audit processing

● Monolithic audit de-multiplexer unwieldy, complex
● Instead, small audit components, each with

specialized task

● Dynamic policy reactions at Overwatch
● Disable customizations for suspect users
● Disable suspect customization code

Reverb protection overhead
● Protection mechanisms profiled against

unmodified middleware
● Overheads

● Channel create, subscribe, filter uninstall are small
(3-5%)

● Customization larger (~8%), but more XML,
communication, crypto

● Most overheads outside data path – cost is
amortized

Reverb Scalabilty
(5 Reverb clients, action script)

0
0.5

1
1.5

2
2.5

3
3.5

10 20 30 40 50

number of ECho subscribers

ti
m

e
 (

s) total send time

system CPU time

user CPU time

Reverb Scalability - Multiple Client Customizations
(20/80)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50

Number of Reverb clients

Ti
m

e
(s

) total send time
system CPU time
user CPU time

Conclusion
● This talk has described Reverb

● Middleware mechanism to support auditing and forensics for
large distributed applications

● Customizable, protected, efficient dissemination of
configuration information
● Customizable – Subscribers choose which configuration

events they wish to see
● Protected – only principals authorized by application policy can

access RChannel
● Efficient – tolerable overheads, scalability as Reverb and non-

Reverb subscribers increase

● Dynamic, differential auditing, change control
● Part of larger work on data protection in high-

performance, pervasive applications

Questions?

