Reverb: Middleware for
Distributed Application Forensics

Patrick M. Widener

College of Computing
Georgia Institute of Technology
pmw @ cc.gatech.edu

cercs

www.cercs.gatech.edu

utline / Contributi

. Context and motivation

Description of Reverb

. Differential, customizable, access-controlled
auditing for distributed middleware

Application example
Experimental results

. Small performance overhead
. Preserves application scalability

Concluding remarks

Example problem domain — scientific

application
High End
Dedicated — Us.ers and
Science Network *_ Displays
[downsample]\A
Instrumented

End Users and Testbeds/Facilities

Displays

Services

« dynamically deployed,
cooperating components

» heterogeneous platforms,
devices, users

/ [differentiate]

Rate - 10x i
Reduce Filter
Data reduction/fusion

Information creation/manipulation

. Application trends

Large scale, component-based, dynamically configurable /
extensible

. Configuration changes can raise issues

System integrity, performance effects, responsibility for
outages

. Audit tools for configuration changes help
“Paper trail’, on-line or off-line forensic analysis

. Perform audit actions differentially, dynamically
Differential change control: who can initiate which changes?

Differential aL_Jditir_lg): which changes are audited, and who
sees the audit trail

I(_Dhange constraints at run-time, without taking applications off-
ine

Reverb: Dynamic, differential
———control

. Reverb provides mechanism to
Track dynamic configuration actions
Impose controls on permissible actions (which / who)
Control access to audit trail

. Dedicated event channel for configuration events
(RChannel)

. Access controlled
Differential customization of configuration events
. Implemented in publish/subscribe middleware

“ECho” provides customizable event channel abstraction
(EChannel)

. Monitored events: channel cr_eatipn/destruction,
subscription, channel customization

e Sensors, visualization from large science
application

TTTEITTTCTTETPERCITERERRETERTERT =

...
....
. Wirel
.:...... 716?05/? . . &
i .. image display
g ‘e, control GUls

\ N
h ‘
\'

-
- —

Installation of image filters
(greyscale, edge detection, etc)

Reverb auditing

publisher (640x480 color image)

> downsample greyscale

EChannel

RChannel

CUSTOMIZATION

all images

EChannel
Reverb events

» Submitted to RChannel at publisher
* No user intervention (auto-submit by

SUBSCRIPTION

middleware
* Distributed to all RChannel subscribers

Differential auditing / change

Should any / all users have access to customizations?

to the RChannel?

Policy-driven access to RChannel, customizations
Per-principal, per-customization basis - differential

Reverb provides protected access

ECho protected mode - capabilities required

Dennis & Van Horn style - reference + rights

Cryptographic protection against forgery / replay

. Trusted policy module (Overwatch) to issue / sign capabilities

Configuration policy statements (XML) at startup,
during execution

Policy statements can dictate differential actions

Overwatch creates differential code, RChannel references

i N

. Coarse-grain: by configuration type
CREATION, SUBSCRIPTION, CUSTOMIZATION, etc.

Fine-grain: based on application spec
How to specify? How to execute?

Dynamically compiled filter
functions

Safe(r) subset of C
Execution at source
Satisfies large % of needs

DLL / shared objects

More complex filtering
Stateful

Evaluated in the context of a function declaration of the form:

int F({<i-stream> input}, {<o-stream> output})

{

int i, j;

if (input.principal == “BOB”) {
ifT (input.config_type == CREATION) {
return 1; /* interested */
else
return 0; /* filter out */

Configuration event structures published in API

Reverb policy statements

<userPolicy>

<name> Bob </name> U - :
ser

<Reverb-restrictions> salfer Authentication

<auditDisal lowed> Database

CREATION
</auditDisal lowed>
</Reverb-restrictions>
</userPolicy>

<customization takesParams="false”>
<name> greylmage </name>
<code>...</code>
<Reverb-actions>
<disallowUser>
Bob Customization
</disallowUser> metadata
</Reverb-actions> Capability for

</customization> code / RChannel

Customized, protected

. More ef;lcient event propagation

. Applications define exactly what information
goes to what principals (least privilege)

. Subdivide audit processing

. Monolithic audit de-multiplexer unwieldy, complex

. Instead, small audit components, each with
specialized task

. Dynamic policy reactions at Overwatch
. Disable customizations for suspect users
. Disable suspect customization code

. Protection mechanisms profiled against
unmodified middleware

. Overheads
. Channel create, subscribe, filter uninstall are small
(3-5%)
. Customization larger (T8%), but more XML,
communication, crypto

. Most overheads outside data path - cost Is
amortized

Reverb Scalabilty
(9 Reverb clients, action script)

——total send time
system CPU time
- user CPU time

10 20 30 40 50

number of ECho subscribers

Reverb Scalability - Multiple Client Customizations

(2080

2
1.8
1.6

1.4

—— total send time
- system CPU time
user CPU time

1.2

1

0.8

Time (S)

0.6

0.4
0.2

0

10 20 30 40 50

Number of Reverb clients

. This talk has described Reverb

Middleware mechanism to support auditing and forensics for
large distributed applications

. Customizable, protected, efficient dissemination of
configuration information

Customizable - Subscribers choose which configuration
events they wish to see

Protected - only principals authorized by application policy can
access RChannel

Efficient - tolerable overheads, scalability as Reverb and non-
Reverb subscribers increase

. Dynamic, differential auditing, change control

. Part of larger work on data protection in high-
performance, pervasive applications

