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Outline / Contributions
● Context and motivation
● Description of Reverb

● Differential, customizable, access-controlled 
auditing for distributed middleware

● Application example
● Experimental results

● Small performance overhead
● Preserves application scalability

● Concluding remarks
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Context / motivation
● Application trends

● Large scale, component-based, dynamically configurable / 
extensible

● Configuration changes can raise issues
● System integrity, performance effects, responsibility for 

outages
● Audit tools for configuration changes help

● “Paper trail”, on-line or off-line forensic analysis
● Perform audit actions differentially, dynamically

● Differential change control: who can initiate which changes? 
● Differential auditing:  which changes are audited, and who 

sees the audit trail?
● Change constraints at run-time, without taking applications off-

line



Reverb:  Dynamic, differential 
control

● Reverb provides mechanism to
● Track dynamic configuration actions
● Impose controls on permissible actions (which / who)
● Control access to audit trail

● Dedicated event channel for configuration events 
(RChannel)
● Access controlled
● Differential customization of configuration events

● Implemented in publish/subscribe middleware
● “ECho” provides customizable event channel abstraction 

(EChannel)

● Monitored events: channel creation/destruction, 
subscription, channel customization



Reverb in action
• Sensors, visualization from large science 

application

Wireless 
TCP/IP image display &

control GUIs

f()

Installation of image filters 
(greyscale, edge detection, etc)



Reverb auditing
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Differential auditing / change 
control

● Should any / all users have access to customizations?  
to the RChannel?

● Policy-driven access to RChannel, customizations
● Per-principal, per-customization basis - differential

● Reverb provides protected access
● ECho protected mode – capabilities required
● Dennis & Van Horn style – reference + rights
● Cryptographic protection against forgery / replay
● Trusted policy module (Overwatch) to issue / sign capabilities

● Configuration policy statements (XML) at startup, 
during execution
● Policy statements can dictate differential actions
● Overwatch creates differential code, RChannel references



Specifying customizations

{
int i, j;

if (input.principal == “BOB”) {
if (input.config_type == CREATION) {
return 1; /* interested */

else
return 0; /* filter out */

}

Evaluated in the context of a function declaration of the form:

int  F( { <i-stream> input },  { <o-stream> output } )

● Coarse-grain: by configuration type
● CREATION, SUBSCRIPTION, CUSTOMIZATION, etc.

● Fine-grain: based on application spec

● How to specify?  How to execute?
● Dynamically compiled filter 

functions
● Safe(r) subset of C

● Execution at source

● Satisfies large % of needs

● DLL / shared objects
● More complex filtering

● Stateful

● Configuration event structures published in API



Reverb policy statements
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Capability for 
code / RChannel

<userPolicy>
<name> Bob </name>
<Reverb-restrictions>
<auditDisallowed>

CREATION
</auditDisallowed>
</Reverb-restrictions>
</userPolicy>

<customization takesParams=”false”>
<name> greyImage </name>
<code>...</code>
<Reverb-actions>

<disallowUser>
Bob

</disallowUser>
</Reverb-actions>
</customization>

Authentication
Database



Customized, protected 
RChannels

● More efficient event propagation
● Applications define exactly what information 

goes to what principals (least privilege)
● Subdivide audit processing

● Monolithic audit de-multiplexer unwieldy, complex
● Instead, small audit components, each with 

specialized task

● Dynamic policy reactions at Overwatch
● Disable customizations for suspect users
● Disable suspect customization code



Reverb protection overhead
● Protection mechanisms profiled against 

unmodified middleware
● Overheads

● Channel create, subscribe, filter uninstall are small 
(3-5%)

● Customization larger (~8%), but more XML, 
communication, crypto

● Most overheads outside data path – cost is 
amortized



Reverb Scalabilty
(5 Reverb clients, action script)
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Reverb Scalability - Multiple Client Customizations 
(20/80)
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Conclusion
● This talk has described Reverb

● Middleware mechanism to support auditing and forensics for 
large distributed applications

● Customizable, protected, efficient dissemination of 
configuration information
● Customizable – Subscribers choose which configuration 

events they wish to see
● Protected – only principals authorized by application policy can 

access RChannel
● Efficient – tolerable overheads, scalability as Reverb and non-

Reverb subscribers increase

● Dynamic, differential auditing, change control
● Part of larger work on data protection in high-

performance, pervasive applications



Questions?


