CMSC 330 Exam 1: Oct. 6, 1999

1. Give an unambiguous grammar for the language:
L={w]|we{0,1}* and neither 00 nor 11 is a substring of w }

Generate the grammar from this DFA:

l

And the grammar is:

A'— Ale
A—=0B|1C |0 |1
B—0D|1C |1
C—0B|1D|0
D—0D|1D
But all the productions that have a D in them can be eliminated, since they can never

generate a string of all terminals (that’s what the dead state in the DFA means). So
a simpler grammar is:

A'— Ale

A—=0B|1C |0 |1
B—1C |1
C—0B10

2. Show a regular expression that generates all strings in the language:
L={w]|wé€{a,b}* and w has at most one set of three consecutive b’s }

(a | ba | bba)" (b]bb]|bbb|e€) (alab]|abb)”

3. Prove that the following grammar is ambiguous.

S—W | X

W — 0W3 | 0U3

U— 102 | 12
X—-YZ

Y — 0Y1 |01

7 — 273 |23

The way to show a grammar is ambiguous is to show two leftmost (or rightmost)
derivations for the same string. For this grammar, the easiest string to show is 0123:

S=X=Y7Z=01Z= 0123

or

S=W=0U3= 0123
4. Produce a deterministic finite automaton (DFA) that recognizes the language:
L={w]|we&{0,1}* and the last two symbols of w include one 0 and one 1 }
Note that L contains no strings of length less than 2.

The label in the state shows the last or last 2 symbols seen in the string upon reaching
that state:

0 1

5. Write an unambiguous context free grammar for Boolean expressions with operands
represented by <id> and operators & (XOR),! (NOT) and = (IMPLIES). & and =
are infix binary operators and ! is a prefix unary operator. ! has highest precedence,
@ has next highest precedence, and = has the lowest precedence. For the binary
operators, & has left associativity and = has right associativity. Parentheses are used
to override precedence and associativity (i.e. if B is a boolean expression, then so is

(B))
Let B be the start symbol.

First, rules for the lowest precedence operator, with right associativity:

B—-C=B|C

Second, rules for the middle precedence operator, with left associativity:

C—-CaD|D

Last, rules for the highest precedence operator, for generating operands, and for paren-
thesized expressions:

D =D | (B)|<id >

