
CMSC 330 Exam 2: April 24, 2000

Show all work necessary to justify your answers!

1. (30 points total)

(a) (10 points)
If parameters are passed by value, and using static scoping rules, what does the
environment (name/value pairs) look like just before procedure Q returns, for the
following program, which uses Pascal syntax?

program P2;

var x, y: integer;

procedure Q;

begin

x := y * 4;

end;

procedure R;

var x: integer;

begin

x := y + 3;

y := 2 * y;

if (x < 10) R

else Q;

write(x);

end;

begin

x := 2;

y := 5;

R;

writeln(x, y);

end.

P2, Q, R: void -> void

x: integer

x: integer

y: integer 20

8

80

x: integer 13R

R

P2

Q

(b) (20 points)
What does the program output with:

� static scoping,

� dynamic scoping

for non-local variables.

static : 13 8 80 20

dynamic: 80 8 2 20

2. (30 points)
What will the following program, in C++ syntax, output if parameters are passed
with:

� call-by-value

� call-by-value-result, with binding of the result at call time

� call-by-value-result, with binding of the result at return time, from left to right
in the order of the parameters

� call-by-reference

� call-by-name

#include <iostream.h>

int i, j;

int main(int argc, char* argv[])

{

int k, A[5];

for (k = 0; k < 5; k++) {

A[k] = k;

}

i = 4; j = 1;

g(i, j, A[i], A[j]);

cout << i << " " << j;

for (k = 0; k < 5; k++) {

cout << " " << A[k];

}

cout << '\n';

}

void g(int j, int k, int l, int m)

{

j -= 3; k += 1;

l *= 3; m *= 2;

i += k;

}

value: 6 1 0 1 2 3 4

value-result (bind at call): 1 2 0 2 2 3 12

value-result (bind at return): 1 2 0 12 2 3 4

reference: 3 2 0 2 2 3 12

call-by-name: 3 2 0 3 4 3 4

3. (40 points total)
This question requires you to write pseudo-code for several MIPS assembly language
instructions that must be executed to run the following program. Your pseudo-code
should be as detailed as the assembly instructions, but we are not concerned about
syntax. For example, the instruction \sw $fp, 0($sp)" can be written as \store the
frame pointer at 0 past the stack pointer."

program P;

var X, Y: integer;

procedure G(M: integer, var Total: integer);

procedure Print(Val: integer);

begin

writeln(Val, Total);

end;

begin

if (M >= 1) then

begin

M := M - 1;

Total := Total + M + 1;

G(M, Total)

end

else

Print(Total)

end;

begin

X := 8;

Y := 1;

G(X, Y);

end.

You should assume the register conventions discussed in class, and parameter passing
is done as was shown in class for Pascal (i.e. default is pass-by-value, unless explicitly
speci�ed pass-by-reference in a procedure header with var).

The template for a single stack frame (activation record instance) is shown below.

Variables
Local

$fp

$sp

0($fp)

???

???

???

Temporaries

Saved Registers

Static Link

Return Address

Dynamic Link

???

(a) (10 points)
Show a complete layout for the stack frames (activation record instances) for
procedures P and G, based on the template. Fill in all the missing relative addresses
(marked by ??? in the template), and make sure to show all local variables, and
their locations in the stack frame relative to the frame pointer. Remember that,
by convention, the saved registers and temporaries use 44 bytes.

$fp

$sp

0($fp)

-4($fp)

-8($fp)

-56($fp)

-12($fp)

Dynamic Link

Return Address

Static Link

Saved Registers

-60($fp)

Temporaries

Y

P

M

Total

$fp

$sp

0($fp)

-4($fp)

-8($fp)

-56($fp)

-12($fp)

Dynamic Link

Return Address

Static Link

Saved Registers

Temporaries

-60($fp)

G

X

(b) (25 points)
Provide the pseudo-code that is necessary to set up the runtime stack when pro-
cedure G calls itself recursively, for both the caller and the callee. Use the stack
frame layout for G from the �rst part of this question to obtain the addresses of
local variables.

In caller:

lw $a0, -8($fp) # static link (same as static link of current

activation of G)

lw $a1, -56($fp) # get M as first parameter

lw $a2, -60($fp) # get Total as second parameter

jal G

In callee:

sw $fp, 0($sp) # store dynamic link (old frame pointer)

sw $ra, -4($sp) # save return address (for recursive calls)

sw $a0, -8($sp) # save static link

sw $a1, -56($sp) # store parameter M

sw $a2, -60($sp) # store parameter Total

move $fp, $sp # set new frame pointer

sub $sp, $sp, 64 # set new stack pointer

(c) (5 points)
What does the program print?

37 37

