
CMSC 330 Practice Exam 2 - April 2000

Show all work necessary to justify your answers!

1. What will the following program, in C++ syntax, output if parameters are passed
with:

� call-by-value

� call-by-value-result

� call-by-reference

� call-by-name

int i, j;

int main(int argc, char* argv[])

{

i = 1;

j = 2;

f(i, j);

cout << i << " " << j << '\n';

}

void f(int j, int k)

{

j = j - 9;

k = k + 8;

i = i - j;

}

value: 9 2
value-result: -8 10
reference: 0 10
name: 0 10

2. This question requires you to write pseudo-code for several MIPS assembly language
instructions that must be executed to run the following program. Your pseudo-code
should be as detailed as the assembly instructions, but we are not concerned about
syntax. For example, the instruction \sw $fp, 0($sp)" can be written as \store the
frame pointer at 0 past the stack pointer."

program Example ;

var A1,B1: integer;

procedure C(var N,Tot: integer);

procedure Show(Value:integer);

begin

writeln(Value);

writeln(Tot);

writeln(B1)

end;

begin

if (N >= 1) then

begin

Tot := Tot * N;

N := N - 1;

C(N,Tot)

end

else

Show(Tot)

end;

begin

A1 := 4;

B1 := 1;

C(A1,B1)

end.

You should assume the register conventions discussed in class, and parameter passing
is done as was shown in class for Pascal (i.e. default is pass-by-value, unless explicitly
speci�ed pass-by-reference in a procedure header with var).

The template for a single stack frame (activation record instance) is shown below.

Variables
Local

$fp

$sp

0($fp)

???

???

???

Temporaries

Saved Registers

Static Link

Return Address

Dynamic Link

???

(a) Show a complete layout for the stack frames (activation record instances) for
Example() and C(), based on the template. Fill in all the missing relative ad-
dresses (marked by ??? in the template), and make sure to show all local variables,
and their locations in the stack frame relative to the frame pointer. Remember
that, by convention, the saved registers and temporaries use 44 bytes.

$fp

$sp

0($fp)

-4($fp)

-8($fp)

-56($fp)

-12($fp)

Dynamic Link

Return Address

Static Link

Saved Registers

-60($fp)

Temporaries

A1

B1

Example

N

Tot

$fp

$sp

0($fp)

-4($fp)

-8($fp)

-56($fp)

-12($fp)

Dynamic Link

Return Address

Static Link

Saved Registers

Temporaries

-60($fp)

C

(b) Provide the pseudo-code that is necessary to access the values of the arguments
to writeln in the three writeln statement in procedure Show:

� writeln(Value);

� writeln(Tot);

� writeln(B1)

Value is local and passed by value:

la $t0, -56($fp) # only local variable in Show

lw $t0, ($t0)

Tot is non-local (from C) and pass-by-reference to C:

lw $t0, -8($fp) # static link to ARI of C

lw $t0, -60($t0) # Tot

lw $t0, ($t0) # follow pointer to B1

B1 is non-local (from Example), so need to follow 2 static links

lw $t0, -8($fp) # static link to ARI for C

lw $t0, -8($t0) # static link to ARI for Example

lw $t0, -60($t0) # B1

(c) What does the program print?

24
24
24

3. (a) If parameters are passed by value, and using static scoping rules, what does the
environment (name/value pairs, including functions) look like just before function
g returns, for the following program, which uses C++ syntax?

int x, y;

int main(int argc, char* argv[])

{

x = 2;

y = 10;

f();

cout << x << " " << y << '\n';

}

void g()

{

x = y / 5;

}

void f()

{

int x;

x = y + 6;

y = 4 * y;

g();

cout << x << '\n';

}

Top-level
(global)

f

main: int * char** -> int

f, g: void -> void

x: int

x: int

y: int 40

16

8

(b) What does the program output with:

� static scoping,

� dynamic scoping

for non-local variables.

static :
16
8 40

dynamic:
8
2 40

