
CMSC 330 HOMEWORK EXERCISES #2

1. Give unambiguous grammars for the following languages:

In all the grammars shown, single capital letters are used for non-terminals. Unless
otherwise stated, S is the start symbol.

(a) fanbn j n � 0 and n is even g

S �! aaSbb j �

(b) faibjc2i+1dk j i; j; k � 0g

S �! QD

Q �! Rc

R �! aRcc j P

P �! Pb j �

D �! Dd j �

(c) fa1a2:::anan:::a2a1 j ai 2 fa; bg; 1 � i � ng

S �! aSa j bSb j aa j bb

(d) fambnam+n j m � 0 and n � 1 g

rewrite as ambnanam

S �! aSa j R

R �! bRa j ba

(e) fanbman�m j n � m � 0 g

rewrite as an�mambman�m

S �! aSa j R

R �! aRb j �

(f) All possible sequences of balanced parentheses

S �! (S)S j �

1

(g) fw j w 2 fa; bg� and w has an odd number of a’s and an odd number of b’s g.

Use this DFA, and the algorithm given in class to generate the grammar from the
DFA. A is the start symbol.

a

b

a a a

b

b

b

A

B

C

D

A �! aB j bC

B �! aA j bD j b

C �! bA j aD j a

D �! aC j bB

(h) fw j w 2 fa; bg� and w has an equal number of a’s and b’s g

S �! aX j bY j �

X �! bS j aXX

Y �! aS j bY Y

(i) fambncpdq j m+ n = p + q g

S �! aSd j aTc j bUd j bV c j �

T �! aTc j bV c j �

V �! bV c j �

U �! bUd j bV c j �

2

(j) fambn j m 6= n and m;n � 0 g

S �! AT j TB

A �! Aa j a

B �! Bb j b

T �! aTb j �

(k) fw j w 2 fa; bg� and w contains no substrings of the form abg

Use this DFA, and the algorithm given in class to generate the grammar from the
DFA. S’ is the start symbol.

a b

b a a,b

S QP

S0 �! S j �

S �! aP j a

S �! bS j b

P �! aP j a

P �! bQ

Q �! aQ j bQ

Note that the productions from non-terminal Q are dead productions, meaning they
can’t produce a string of terminals (corresponding to the dead state in the DFA).

3

(l) fw j w 2 fa; bg� and every pair of a’s is followed by at least one b g
Use this DFA, and the algorithm given in class to generate the grammar from the
DFA. S’ is the start symbol.

S P Q R
a

b

a a

b

b

a,b

S0 �! S j �

S �! aP j a j bS j b

P �! aQ j a j bS j b

Q �! aR j bS j b

R �! aR j bR

Again, the productions from non-terminal R are dead productions (so are any pro-
ductions that generate R).

2. Write a grammar for the language

fanbnambm j m;n � 1g [fanbmambn j m;n � 1g

If your grammar is ambiguous, prove that it is.

S �! P j Q

P �! AA

A �! aAb j ab

Q �! aQb j aRb

R �! bRa j ba

Show two leftmost derivations for the string abab, to show the grammar is ambiguous.

S =) P =) AA =) abA =) abab

S =) Q =) aQb =) aRb =) abab

4

3. Consider a grammar with the following productions:

<stmtlist> ::= <stmtlist> ; <stmt> j <stmt>
<stmt> ::= <if stmt> j skip
<if stmt> ::= if b then <stmtlist> <else part> fi
<else part> ::= else <stmtlist> j 2

Do these productions cure the “dangling” else problem by eliminating the ambiguity of
which <if stmt> the final <else part> is associated with? Does the following grammar
cure the problem?

<Stmt> ::= <UStmt> j <CStmt>
<UStmt> ::= skip j begin <StmtList> end
<CStmt> ::= if b then <UStmt> else <Stmt> j if b then <UStmt>
<StmtList> ::= <StmtList> ; <Stmt> j <Stmt>

Both these grammars cure the ambiguity. The first uses the fi ending an if statement to
allow the else to be correctly associated with the proper if statement.

The second grammar also cures the problem, be requiring the then part of the if statement
to be surrounded by a begin/end.

The best way to see this is to try derivations for each grammar.

4. Grammars can be used to express concepts like associativity and precedence. For each of
the following languages, give unambiguous grammars capturing the appropriate associa-
tivity and precedence.

For these grammars, we use Backus-Naur form, meaning that non-terminals are surrounded
by <>.

(a) Operators in APL are right associative and have equal precedence, unless altered by
parentheses. The operators +, -, *, / can appear as both monadic (unary) and dyadic
(binary) operators. Assignment () is also treated as a binary operator that returns
the value assigned as its result. Write an unambiguous context free grammar for APL
expressions containing the operands a, b, and c.

The start symbol is < apl � expr >.

< apl � expr > �! < binary � expr >j< unary � expr >

< binary � expr > �! < unary � expr >< binary � op >< apl � expr >

< unary � expr > �! < unary � op >< unary � expr >j< operand >

< binary � op > �! < unary � op >j

< unary � op > �! + j � j = j �

< operand > �! a j b j c j (< apl � expr >)

5

(b) Propositional calculus formulas having operators unary � and binary �, operands p
and q, and parentheses. The operators should both be right associative and have their
usual precedence.

In this problem, usual precedence means � has higher precedence than �.
< formula > is the start symbol.

< formula > �! < binary � formula >

< binary � formula > �! < unary � formula >�< binary � formula > j

< unary � formula >

< unary�formula >�!�< unary�formula > j (< formula >) j< operand >

< operand > �! p j q

(c) C++ expressions with identifiers a and b and operators ->, *, and ++. -> is a left
associative binary operator, * is a right associative unary operator, and ++ is a right
associative postfix operator. The unary operators have precedence lower than the
postfix expressions but higher than all binary operators. For example, the expression
*a++ increments a before dereferencing it.

< expr > is the start symbol.

< expr > �! < binary � expr >

< binary�expr >�!< binary�expr >!< unary�expr > j< unary�expr >

< unary � expr > �! � < unary � expr > j < postfix� expr >

< postfix� expr > �! < postfix� expr > ++ j < id >

< id > �! a j b

6

5. Context-free grammars cannot express all the restrictions normally placed on programming
languages, e.g., that all procedure statements have the same number of actual parameters
as the procedure’s definition had formals. Consider a LISP-like language which permits
a single procedure definition and procedure statement (each with an arbitrary number of
parameters) defined by the following grammar:

<S> ::= (defun p (<Formals>) <Body>) (p <Actuals>)
<Formals> ::= <Formals> <Id> j 2
<Actuals> ::= <Actuals> <Exp> j 2
<Body> ::= ...
<Id> ::= ...
<Exp> ::= ...

Develop another grammar for this language that enforces the restriction that a call must have
the same number of arguments as the declaration (you can treat <Body>, <Id> and <Exp> as
non-terminals for this purpose).

< S > �! (defun p (< M >)

< M > �! < Formal >< M >< Actual > j) < Body >) (p

< Formal > �! < Id >

< Actual > �! < Exp >

Is it possible to generalize this to a language in which arbitrarily many calls to a procedure
can occur?

The idea of the grammar is that it matches the first formal parameter (in the procedure
definition) with the last actual parameter (in the procedure call), the second formal with the
second to last actual, etc. So, it doesn’t work correctly for more than one procedure call.

As a matter of fact, it is not possible to do this sort of match with a context free grammar
(CFG), since a CFG cannot match arbitrarily many symbols.

For example, the language L = fanbncn j n � 0g is not a context free language. And this
is the formal language that essentially describes matching exactly 2 procedure calls with one
procedure definition.

7

