CMSC 330 HOMEWORK EXERCISES \#1

Problems. In each of the following problems you are given a language and are asked to produce a regular expression and/or finite automaton for the language. In some cases you are asked to give "either" a DFA or regular expression (your choice) and in other cases to give "both" a DFA and regular expression. When writing regular expressions, use the shorthand ϵ to denote the empty string. Write DFA's in the form of a transition diagram. The underlying alphabet is $\Sigma=\{a, b\}$.
The notation \#a(w) appearing below means the number of a 's occurring in string w. For example, \#a $(b b a b a)=2$.
Note that in all the DFAs shown, missing transitions signify a transition to a dead state (a non-final state with transitions back to itself on all elements of the input alphabet).

1. (Either DFA or Reg. Exp) $\{w \mid w$ begins with $a b a b\}$.

2. (Either) $\{w \mid w$ ends with $a b a b\}$.

3. (Either) $\{w \mid w$ begins with $a b$ and ends with $b a\}$.
(Note: The string $a b a$ is in this language!)

4. (Either) $\{w \mid$ either $\# a(w)$ is divisible by 3 or w begins with $b b b\}$.

5. (Either) $\{w \mid \# a(w) \equiv 2(\bmod 5)\}$.
(Recall that $i \equiv j(\bmod k)$ if and only if $(i-j)$ is divisible by k.)

6. (Either) $\{w \mid \# a(w) \equiv 1(\bmod 3)$ and $\# b(w)$ is odd $\}$.

7. (Either) $\{w \mid \# a(w)$ is even or $|w|$ is even $\}$.

8. (Both DFA and Reg. Exp) $\{w \mid a a a$ is a substring of $w\}$.

$$
(a \mid b)^{*}(a a a)(a \mid b)^{*}
$$

9. (Both) $\{w \mid a a a$ is not a substring of $w\}$.

$$
\left(b^{*}(\epsilon|a| a a) b\right)^{*}(\epsilon|a| a a)
$$

10. (Either) $\{w \mid w$ contains exactly one occurrence of the substring $a a a\}$. (Note: the string aaaa has two occurrences of $a a a!$)

11. (DFA only) $\{w \mid$ neither $a a$ nor $b b$ is a substring of $w\}$.

