CMSC 330 HOMEWORK EXERCISES #1

Problems. In each of the following problems you are given a language and are asked to produce a regular expression and/or finite automaton for the language. In some cases you are asked to give "either" a DFA or regular expression (your choice) and in other cases to give "both" a DFA and regular expression. When writing regular expressions, use the shorthand ϵ to denote the empty string. Write DFA's in the form of a transition diagram. The underlying alphabet is $\Sigma = \{a, b\}$.

The notation #a(w) appearing below means the number of *a*'s occurring in string *w*. For example, #a(bbaba) = 2.

Note that in all the DFAs shown, missing transitions signify a transition to a dead state (a non-final state with transitions back to itself on all elements of the input alphabet).

1. (Either DFA or Reg. Exp) $\{w | w \text{ begins with } abab\}$.

2. (Either) $\{w | w \text{ ends with } abab\}.$

3. (Either) {w | w begins with ab and ends with ba}.(Note: The string aba is in this language!)

4. (Either) $\{w | \text{ either } \#a(w) \text{ is divisible by 3 or } w \text{ begins with } bbb\}.$

5. (Either) $\{w | \#a(w) \equiv 2 \pmod{5} \}$. (Recall that $i \equiv j \pmod{k}$ if and only if (i - j) is divisible by k.)

6. (Either) $\{w | \#a(w) \equiv 1 \pmod{3} \text{ and } \#b(w) \text{ is odd} \}.$

7. (Either) $\{w | #a(w) \text{ is even or } |w| \text{ is even} \}$.

8. (Both DFA and Reg. Exp) $\{w | aaa \text{ is a substring of } w\}$.

 $(a \mid b)^* \; (aaa) \; (a \mid b)^*$

9. (Both) $\{w | aaa \text{ is not a substring of } w\}$.

 $(b^* (\epsilon \mid a \mid aa) b)^* (\epsilon \mid a \mid aa)$

10. (Either) $\{w | w \text{ contains exactly one occurrence of the substring } aaa \}$. (Note: the string aaaa has two occurrences of aaa!)

11. (DFA only) $\{w | \text{ neither } aa \text{ nor } bb \text{ is a substring of } w\}$.

