
Simulating quantum mechanics
with quantum computers

Andrew Childs
University of Maryland

“… nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)

Why simulate quantum mechanics?

Implementing quantum algorithms
• continuous-time quantum walk (e.g., for
formula evaluation, search, …)

• adiabatic quantum computation (e.g., for
optimization or state generation)

• linear/differential equations

Computational chemistry/physics
• chemical reactions (e.g., nitrogen fixation)
• properties of materials
• condensed matter physics
• particle physics

Simulating quantum mechanics with quantum computers

Implementation
• What classically-hard simulations are easiest
for a quantum computer?

• What simulation algorithm is best in practice
for medium-scale problems?

• What optimizations can be applied to improve
the implementation of algorithms?

• Are there resource tradeoffs (e.g., time vs.
space)?

• Can we reliably do a classically-hard
simulation without fault tolerance?

• How do the details of an experimental system
(connectivity of qubits, timescales for different
gates, etc.) interact with algorithmic issues?

Algorithms
• Can we give an efficient algorithm?
• What is the best possible complexity as a
function of various parameters?

Algorithms

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian H.

A classical computer cannot even represent the state efficiently.

A quantum computer cannot produce a complete description of the state.

i
d

dt
| (t)i = H| (t)i | (t)i = e�iHt| (0)i)

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time t,
and an initial state , produce the final state (to within some error tolerance ²)| (0)i | (t)i

But given succinct descriptions of
• the initial state (suitable for a quantum computer to prepare it efficiently) and
• a final measurement (say, measurements of the individual qubits in some basis),
a quantum computer can efficiently answer questions that (apparently) a classical one cannot.

Local and sparse Hamiltonians

Note: A k-local Hamiltonian with L terms is d-sparse with d = 2k L

Local Hamiltonians [Lloyd 96]

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries per row, d = poly(log N)
(where H is N £ N)

H =In any given row, the location of the jth nonzero
entry and its value can be computed efficiently

where each acts on k = O(1) qubitsH =
PL

`=1 H` H`

Product formula simulation

[Lloyd 96]

�
e
�iAt/r

e
�iBt/r

�r
= e

�i(A+B)t +O(t2/r)

Combine individual simulations with the Lie
product formula. E.g., with two terms:

lim
r!1

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t

To ensure error at most ², take
r = O

�
(kHkt)2/✏

�

To get a better approximation, use higher-order
formulas.

[Berry, Ahokas, Cleve, Sanders 07]

E.g., second order:

(e�iAt/2r
e
�iBt

e
�iAt/2r)r = e

�i(A+B)t

+O(t3/r2)

Suppose we want to simulate H =
LX

`=1

H`

Systematic expansions to arbitrary order are
known [Suzuki 92]

Using the 2kth order expansion, the number of
exponentials required for an approximation
with error at most ² is at most

52kL2kHkt
⇣

LkHkt
✏

⌘1/2k

Sparse Hamiltonians and coloring
Strategy: Color the edges of the graph of H. Then the simulation breaks into small pieces that
are easy to handle.

= + +

[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman 03; Aharonov, Ta-Shma 03; Childs, Kothari 10]

A sparse graph can be efficiently colored using only local information, so this gives efficient
simulations.

Sometimes we can do better with different graph decompositions.

Real-time simulation?

0 0 1 0 1 1 0

Systems simulate their own dynamics in real time!

Can we give an algorithm with complexity precisely O(t)?

No fast-forwarding theorem: Simulating Hamiltonian dynamics for time t requires gates.⌦(t)

Complexity of kth order product formula simulation is .O(52kt1+1/2k)

Hamiltonian simulation by quantum walk

[Childs10; Berry, Childs 12]

Spectral theorem: Each eigenvalue ¸ of H
corresponds to two eigenvalues
of the walk operator (with eigenvectors
closely related to those of H).

±e±i arcsin�

Quantum walk corresponding to H

span{| ji}Nj=1Alternately reflect about ,

| ji := |ji ⌦
✓
⌫

NX

k=1

q
H

⇤
jk|ki+ ⌫j |N + 1i

◆

and swap the two registers.

,

Simulation by phase estimation

|�i 7! |�i| ^arcsin�i

7! e�i�t|�i| ^arcsin�i
7! e�i�t|�i

(phase estimation)

(inverse phase est)

If H is sparse, this walk is easy to implement. Theorem: steps of this walk suffice
to simulate H for time t with error at most ².

O(t/
p
✏)

High-precision simulation?

Can we improve the dependence on ²?

Many approximate computations can be done with complexity poly(log(1/²)):

•computing ¼
•boosting a bounded-error subroutine
•Solovay-Kitaev circuit synthesis
•and more…

Quantum walk simulation: O(1/
p
✏)

Can we do better?

Product formulas (2kth order): O(52k✏�2k)

Lower bound (based on the unbounded-error query complexity of parity): ⌦
� log(1/✏)
log log(1/✏)

�

0 0 1 0 1 1 0

Hamiltonian simulation by linear combinations of unitaries

[Berry, Childs, Cleve, Kothari, Somma 14 & 15]

e
�iHt =

1X

k=0

(�iHt)k

k!

⇡
KX

k=0

(�iHt)k

k!

Write with unitary.H =
P

` ↵`H` H`

LCU Lemma: Given the ability to perform
unitaries Vj with unit complexity, one can
perform the operation with
complexity . Furthermore, if U is
(nearly) unitary then this implementation can
be made (nearly) deterministic.

U =
P

j �jVj

O(
P

j |�j |)

Main idea: Directly implement the series

Then

is a linear combination of unitaries.

KX

k=0

X

`1,...,`k

(�it)k

k! ↵`1 · · ·↵`kH`1 · · ·H`k

Query complexity: O
�
t

log(t/✏)
log log(t/✏)

�

Main ideas:

• Boost the amplitude for success by oblivious
amplitude amplification

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i
• Implement U with some amplitude:

Tradeoff between t and ²

Combining known lower bounds on the complexity of simulation as a function of t and ² gives

⌦
⇣
t+

log 1
✏

log log 1
✏

⌘
O

⇣
t

log t
✏

log log t
✏

⌘
vs. upper bound of

Very recent work, using an alternative method for implementing a linear combination of
quantum walk steps, gives an optimal tradeoff.

[Low, Chuang 16]

Main idea: Encode the eigenvalues of H in a two-dimensional subspace; use a carefully-chosen
sequence of single-qubit rotations to manipulate those eigenvalues.

To compute the rotation angles, we must find the roots of a high-degree polynomial to high
precision. This can be done in polynomial time (classically), but it’s expensive in practice.

Algorithm comparison

Algorithm Query complexity Gate complexity

Product formula, 1st order

Product formula, (2k)th order

Quantum walk

Fractional-query simulation

Taylor series

Linear combination of q. walk steps

Quantum signal processing

O
�
d
2
t

log(dt/✏)
log log(dt/✏)

�
O
�
d
2
t

log2(dt/✏)
log log(dt/✏)

�

O(d4t2/✏) O(d4t2/✏)

O
�
52kd3t(dt✏)

1/2k
�

O
�
52kd3t(dt✏)

1/2k
�

O
�
d
2
t

log(dt/✏)
log log(dt/✏)

�
O
�
d
2
t

log2(dt/✏)
log log(dt/✏)

�

O(dt/
p
✏)

O
�
dt

log3.5(dt/✏)
log log(dt/✏)

�

O(dt/
p
✏)

O
�
dt+ log(1/✏)

log log(1/✏)

�
O
�
dt+ log(1/✏)

log log(1/✏)

�
O
�
dt

log(dt/✏)
log log(dt/✏)

�

OPTIMAL!

Implementation

Toward practical quantum speedup

IBM Google/UCSB MarylandDelft

Important early goal: demonstrate quantum computational advantage
… but can we find a practical application of near-term devices?

Challenges
• Improve experimental systems
• Improve algorithms and their implementation, making the best use of available hardware

Our goal: Produce concrete resource estimates for the simplest possible practical application
of quantum computers

What to simulate?

Quantum chemistry? Spin systems!

Heisenberg model on a ring: H =
nX

j=1

�
~�j · ~�j+1 + hj�

z
j

�
hj 2 [�h, h] uniformly random

This provides a model of self-thermalization and many-body localization.

The transition between thermalized and localized phases (as a function of h) is poorly
understood. Most extensive numerical study: fewer than 25 spins. [Luitz, Laflorencie, Alet 15]

Could explore the transition by preparing a simple initial state, evolving, and performing a simple
final measurement. Focus on the cost of simulating dynamics.

For concreteness: h = 1, t = n, ✏ = 10�3, 20  n  100

Algorithms

Algorithm Gate complexity (t, ²) Gate complexity (n)

Product formula (PF), 1st order

Product formula (PF), (2k)th order

Quantum walk

Fractional-query simulation

Taylor series (TS)

Linear combination of q. walk steps

Quantum signal processing (QSP)

Segmented QSP, q iterates per segment

O(t2/✏)

O(52kt1+1/2k
/✏

1/2k)

O(t/
p
✏)

O(n5)

O(52kn3+1/k)

O(n4 log n)

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
3 log2 n
log logn

�

O
�
t
log3.5(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O(t+ log(1/✏)) O(n3)

O(t1+2/q
/✏

2/q) O
�
n
3+4/q

�

Algorithms

Algorithm Gate complexity (t, ²) Gate complexity (n)

Product formula (PF), 1st order

Product formula (PF), (2k)th order

Quantum walk

Fractional-query simulation

Taylor series (TS)

Linear combination of q. walk steps

Quantum signal processing (QSP)

Segmented QSP, q iterates per segment

O(t2/✏)

O(52kt1+1/2k
/✏

1/2k)

O(t/
p
✏)

O(n5)

O(52kn3+1/k)

O(n4 log n)

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
3 log2 n
log logn

�

O
�
t
log3.5(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O(t+ log(1/✏)) O(n3)

O(t1+2/q
/✏

2/q) O
�
n
3+4/q

�

Circuit synthesis
multiplexor :: [Double] -> [Qubit] -> Qubit -> Circ ([Qubit], Qubit)
multiplexor as controls target = case controls of
 -- No controls.
 [] -> do
 let angle = as !! 0
 expYt (- angle) target
 return ([], target)

 -- One control.
 [q0] -> do
 let (as0, as1) = split_angles as
 ([], target) <- multiplexor as0 [] target
 target <- qnot target `controlled` q0
 ([], target) <- multiplexor as1 [] target
 target <- qnot target `controlled` q0
 return ([q0], target)

 -- Two controls.
 [q0,q1] -> do
 let (as0, as1) = split_angles as
 ([q1], target) <- multiplexor as0 [q1] target
 target <- qnot target `controlled` q0
 ([q1], target) <- multiplexor as1 [q1] target
 target <- qnot target `controlled` q0
 return ([q0,q1], target)

 -- Three controls.
 [q0,q1,q2] -> do
 let (as0, as1, as2, as3) = split_angles_3 as
 ([q2], target) <- multiplexor as0 [q2] target
 target <- qnot target `controlled` q1
 ([q2], target) <- multiplexor as1 [q2] target
 target <- qnot target `controlled` q0
 ([q2], target) <- multiplexor as3 [q2] target
 target <- qnot target `controlled` q1
 ([q2], target) <- multiplexor as2 [q2] target
 target <- qnot target `controlled` q0
 return ([q0,q1,q2], target)

 -- Four or more controls.
 qs -> do
 let (as0, as1) = split_angles as
 let (qhead:qtail) = qs
 (qtail, target) <- multiplexor as0 qtail target
 target <- qnot target `controlled` qhead
 (qtail, target) <- multiplexor as1 qtail target
 target <- qnot target `controlled` qhead
 return (qs, target)

 where
 -- Compute angles for recursive decomposition of a multiplexor.
 split_angles :: [Double] -> ([Double], [Double])
 split_angles l =
 let (l1, l2) = splitIn2 l in
 let p w x = (w + x) / 2 in
 let m w x = (w - x) / 2 in
 (zipWith p l1 l2, zipWith m l1 l2)

 -- Compute the angles for recursive decomposition of a multiplexor
 -- with three controls, saving 2 CNOT gates, as in the
 -- optimization in Fig. 2 of Shende et.al.
 split_angles_3 :: [Double] -> ([Double],[Double],[Double],[Double])
 split_angles_3 l =
 let (l1, l2, l3, l4) = splitIn4 l in
 let pp w x y z = (w + x + y + z) / 4 in
 let pm w x y z = (w + x - y - z) / 4 in
 let mp w x y z = (w - x - y + z) / 4 in
 let mm w x y z = (w - x + y - z) / 4 in
 let lpp = zipWith4 pp l1 l2 l3 l4 in
 let lpm = zipWith4 pm l1 l2 l3 l4 in
 let lmp = zipWith4 mp l1 l2 l3 l4 in
 let lmm = zipWith4 mm l1 l2 l3 l4 in
 (lpp, lmm, lpm, lmp)

We implemented each of these algorithms
using Quipper, a quantum circuit description
language that facilitates concrete resource
counts

Gate sets:
• Clifford+Rz

• Clifford+T

Quipper can produce Clifford+T circuits
using recently-developed optimal synthesis
algorithms [Kliuchnikov, Maslov, Mosca 13; Ross,
Selinger 16]

We verified correctness using simulations of subroutines and small
instances.

Resource estimates

0 20 40 60 80 100

0

50

100

150

200

250

300

System size

Q
u
b
it
s

PF
TS
QSP

10 100

10
5

10
6

10
7

10
8

10
9

10
10

20 30 50 70

System size

C
N
O
T

g
a
t
e
c
o
u
n
t
(
C
li
↵
o
r
d
+
R

z
)

PF4 (com)
TS

QSP (seg)

10 100

10
5

10
6

10
7

10
8

10
9

10
10

20 30 50 70

System size

C
N
O
T

g
a
t
e
c
o
u
n
t
(
C
li
↵
o
r
d
+
R

z
)

PF4 (com)

PF4 (emp)
TS

QSP (seg)
QSP

Resource estimates

Simulating a 50-qubit system (PF4, empirical):
•50 qubits
•3.2×108 T gates

Factoring a 1024-bit number [Kutin 06]:
•3132 qubits
•5.7×109 T gates

Simulating FeMoco [Reiher et al. 16]:
•111 qubits
•1.0×1014 T gates

10 100

107

108

109

1010

1011

1012

20 30 50 70

System size

T
ga

te
co
u
nt

(C
li
↵
or
d
+
T
)

PF4 (com)

PF4 (emp)
TS

QSP (seg)
QSP

Outlook

Super-classical quantum simulation without invoking fault tolerance?
• Improved error bounds (e.g., empirical error bound for QSP algorithm?)

• Optimized implementations
• Alternative target systems
• New simulation algorithms
• Experiments!

Better provable bounds for simulation algorithms
• Product formula error bounds beyond the triangle inequality
• Efficient synthesis of the QSP circuit

Resource estimates for more practical models
• Architectural constraints, parallelism
• Fault-tolerant implementations

Resource estimates for simulating quantum field theory

Algorithms

Dominic Berry Richard Cleve Robin Kothari Rolando Somma

Dmitri Maslov Yunseong Nam Neil Julien Ross Yuan Su

Implementation

Product formula comparisons

10 100

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

20 30 50 70

System size

C
N
O
T

g
a
t
e
c
o
u
n
t

PF4
Ana
Min
Com
Emp

10 100

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

20 30 50 70

System size

C
N
O
T

g
a
t
e
c
o
u
n
t

Min
PF1
PF2
PF4
PF6

