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OR
How fast can we compute the OR of n bits?

Evaluate formula:  x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

Classical complexity: Θ(N)
Quantum algorithm [Grover 1996]: O(

√
N)

Quantum lower bound [BBBV 1996]: Ω(
√

N)

How many queries are required to evaluate OR?

i

Model:  Given a black box for the bits.

x xi x |i, b⊕ xi〉|i, b〉
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The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities) 

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

How many queries must we make to determine who wins the game 
(assuming the players play optimally)?

1-player wins if he can make any move that gives 1 (OR)

0-player wins if she can make any move that gives 0
i.e., she only loses if all of her moves give 1 (AND)

We must evaluate a formula involving AND and OR gates:
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Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:                )Θ(n0.753)

Quantum lower bound [Barnum, Saks 02]: Ω(
√

n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]:
√

n O(log n)k−1

Grover with noisy inputs [Høyer, Mosca, de Wolf 03]: O(
√

n · ck)

And for low degree (e.g., d = 2), nothing better than classical was 
known until very recently!

But these algorithms are only close to tight for k constant.
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Random walk on G

State:  Probability pj(t) of being at vertex j at time t

Dynamics:
d
dt

!p = −γL!p

A =





0 1 1 0 0
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0 1 1 0 1
0 1 0 1 0





adjacency matrix

L =





−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2





Laplacian

Quantum walk on G

State:  Amplitude qj(t) to be at vertex j at time t

Dynamics: i
d
dt

!q = −γL!q (or                    , or . . .)i
d
dt

!q = γA!q
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Evaluating AND-OR trees by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k

Claim:  For small k, the wave is transmitted if the formula (translated 
into NAND gates) evaluates to 0, and reflected if it evaluates to 1.

[Farhi, Goldstone, Gutmann 07]
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nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

Consider read-once formulas: every leaf is a different input.
(Equivalently, count duplicated inputs with multiplicity.)

Quantum lower bound [Barnum-Saks 02]: Ω(
√

n)
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Results

Conjecture [Laplante, Lee, Szegedy 05]:  Formula size is lower bounded 
by the square of the bounded-error quantum query complexity.

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 07]

This talk:

•             query quantum algorithm for evaluating 
“approximately balanced” NAND formulas (optimal!)
O(
√

n)

•                 time (and query) quantum algorithm for evaluating 
the balanced, binary NAND formula with n inputs

√
n1+o(1)

•                 time (and query) quantum algorithm for 
evaluating arbitrary NAND formulas

√
n1+o(1)
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The algorithm

Outline

• Scattering → phase estimation

• Hamiltonian for a continuous-
time quantum walk (with non-
uniform edge weights)

• Low-energy eigenstates 
“compute NAND”

• Continuous time → discrete 
time (gives a small speedup)

• Formula rebalancing

1. Start at the root of the tree
2. Perform phase estimation 

with precision               on 
a discrete-time quantum 
walk on the tree

3. If the estimated phase is 0 
or   , then output 1; 
otherwise output 0

≈ 1/
√

n

π
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From scattering to phase estimation

To do scattering calculations, we compute a complete basis of 
eigenstates:

Left:

Right:

Bound:

Instead, we can just look at eigenstates of the graph itself.

Phase estimation:  Given U and an eigenstate |'i with U |'i = ei ' |'i, 
we can estimate ' to precision    in             steps.
(Equivalent to measuring H = i log U.)

δ O(1/δ)

G

eikx + R(k) e−ikx T (k) eikx

T̄ (k) e−ikx e−ikx + R̄(k) eikx

eκx B(κ) e−κx
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The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .
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.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Eigenstates: H|E〉 = E|E〉 hpv〈p|E〉 +
∑

c

hvc〈c|E〉 = E〈v|E〉

For E = 0: 〈p|Ψ〉 = −
∑

c

hvc

hpv
〈c|Ψ〉

Graph:  Tree representing the NAND 
formula, with edges added to 1 inputs 
(so that all leaves evaluate to 0).

(Also, add two NOT gates to the root and use different weights there.)
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If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

v

c
0

1 1

0
r

. . 
.

. . 
.

. . .

Induction:  All children v of r have NAND(v) = 1;
some child c of v has NAND(c) = 0.

Base case:  A single leaf.

r
0 |Ψ〉 = |r〉

hrv〈r|Ψ〉 = −hvc〈c|Ψ〉 $= 0

put a state here with |hc|ªi|  > 0



Zero-energy eigenstates evaluate NAND:
Quantitative version

Theorem (quantitative).  For approximately balanced formulas:

If NAND(r) = 1, then eigenstates |Ei with
have hr|Ei = 0.

|E| < O( 1√
n
)

If NAND(r) = 0, then                        for some |ªi 
with H |ªi = 0.

|〈r|Ψ〉| > Ω(1)

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

Theorem (qualitative).

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.
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We could perform phase estimation directly on the dynamics of this 
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of 
quantum gates, using the black box to simulate the walk near the 
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Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

simulation steps

(run time)2

≈ (eiA/2meiB/meiA/2m)m (run time)3/2

Instead, we can avoid the o(1) by using a discrete-time quantum walk.

We could perform phase estimation directly on the dynamics of this 
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of 
quantum gates, using the black box to simulate the walk near the 
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]
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Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Eigenvalues of               :
√

P ◦ PT λj Eigenvalues of U: e±i arcsin λj

Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Claim:  Any symmetric matrix H with positive entries can be factorized 
as                        for some stochastic matrix P.     (use Perron vector)H =

√
P ◦ PT

(note that locality of H → locality of P )

This gives a general way to relate continuous- and discrete-time 
quantum walk.  Small eigenphases of         and U are equal up to third 
order.

e−iH
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Formula rebalancing
A quantum walk algorithm clearly cannot work for highly unbalanced 
formulas:

. . 
.

But we can apply

Theorem [Bshouty, Cleve, Eberly 91]:  Any NAND formula of size n 
can be rewritten as an equivalent NAND formula of depth O(log n) 
and size n1 + o(1).



Applications to recursive functions
Recursive “all equal” function [Ambainis 03]

Recursive majority function [Boppana 86]

Q. query complexity: (adversary method)

(NAND of 6)O(
√

6k) = O(2.45k)
Ω(( 3√

2
)k) = Ω(2.12k)

Polynomial degree: 2k

f(x, y, z) =

{
1 x = y = z

0 otherwise
recurse k times

Q. query complexity:
O(
√

5k) = O(2.24k) (NAND of 5)
Ω(2k) (adversary method)

f(x, y, z) =

{
1 x + y + z ≥ 2
0 otherwise

recurse k times

C. query complexity [JKS 03]: Ω(( 7
3 )k) = Ω(2.33k)

o(( 8
3 )k) = o(2.67k)



Closed problems
This also resolves a conjecture of [O’Donnell-Servedio 03]:

Any NAND formula of size n can be approximated by a polynomial 
of degree                .
Hence formulas are (classically!) PAC learnable in time               .2
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[Reichardt, Špalek 07]:  Generalization to formulas built from other 
gates, using new gate widgets, as well as the concept of span programs.
Gives optimal (or nearly optimal) algorithms for many other functions, 
including an optimal algorithm (O(2k)) for recursive ternary majority.

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial 
of degree                .
Hence formulas are (classically!) PAC learnable in time               .2

√
n1+o(1)

√
n1+o(1)

Open problems
• Formulas with yet more general gates?
• Similar algorithm for circuits?
• Can we compute a certificate for the value of a formula?
• Improved formula rebalancing?


