
Evaluating formulas
on a quantum computer

quant-ph/0703015

Andrew Childs (Waterloo)

Andris Ambainis (Waterloo & Latvia)
Ben Reichardt (Caltech)
Robert Špalek (Google)
Shengyu Zhang (Caltech)

FOCS 2007

http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/0708.3396
http://arxiv.org/abs/quant-ph/0703015
http://arxiv.org/abs/quant-ph/0703015
http://focs2007.org
http://focs2007.org

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

Model: Given a black box for the bits.

x

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

i

Model: Given a black box for the bits.

x

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

i

Model: Given a black box for the bits.

x xi

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

i

Model: Given a black box for the bits.

x xi x

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

i

Model: Given a black box for the bits.

x xi x|i, b〉

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

i

Model: Given a black box for the bits.

x xi x |i, b⊕ xi〉|i, b〉

OR
How fast can we compute the OR of n bits?

Evaluate formula: x1 OR x2 OR . . . OR xn

Applications:
• unstructured search
• fundamental building block for other computations

Classical complexity: Θ(N)
Quantum algorithm [Grover 1996]: O(

√
N)

Quantum lower bound [BBBV 1996]: Ω(
√

N)

How many queries are required to evaluate OR?

i

Model: Given a black box for the bits.

x xi x |i, b⊕ xi〉|i, b〉

The query complexity of two-player games

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities)

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities)

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities)

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

We must evaluate a formula involving AND and OR gates:

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities)

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

1-player wins if he can make any move that gives 1 (OR)

We must evaluate a formula involving AND and OR gates:

The query complexity of two-player games

Consider a two-player game (players ‘0’, ‘1’) in which
• player 0 goes first
• players alternate moves
• each player has d possible moves during their turn
• there are a total of k turns
• the winner after any given sequence of moves (n = dk possibilities)

is given by a black box function f: {0, 1, ..., d}k ! {0, 1}

How many queries must we make to determine who wins the game
(assuming the players play optimally)?

1-player wins if he can make any move that gives 1 (OR)

0-player wins if she can make any move that gives 0
i.e., she only loses if all of her moves give 1 (AND)

We must evaluate a formula involving AND and OR gates:

Game trees

and

or or

and and and and

or or or or or or or or

Example: d = 2, k = 4

Game trees

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

Example: d = 2, k = 4

Game trees

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

Example: d = 2, k = 4

Game trees

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

Example: d = 2, k = 4

Game trees

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

Example: d = 2, k = 4

Game trees

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0

0 1 1 0

1 1

1

Example: d = 2, k = 4

Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:)Θ(n0.753)

Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:)Θ(n0.753)

Quantum lower bound [Barnum, Saks 02]: Ω(
√

n)

Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:)Θ(n0.753)

Quantum lower bound [Barnum, Saks 02]: Ω(
√

n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]:
√

n O(log n)k−1

Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:)Θ(n0.753)

Quantum lower bound [Barnum, Saks 02]: Ω(
√

n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]:
√

n O(log n)k−1

Grover with noisy inputs [Høyer, Mosca, de Wolf 03]: O(
√

n · ck)

Evaluating game trees

Classical complexity: Θ
(
nlogd

d−1+
√

d2+14d+1
4

)

[Snir 85; Saks, Wigderson 86; Santha 95]

(d = 2:)Θ(n0.753)

Quantum lower bound [Barnum, Saks 02]: Ω(
√

n)

Recursive Grover [Buhrman, Cleve, Wigderson 98]:
√

n O(log n)k−1

Grover with noisy inputs [Høyer, Mosca, de Wolf 03]: O(
√

n · ck)

And for low degree (e.g., d = 2), nothing better than classical was
known until very recently!

But these algorithms are only close to tight for k constant.

and

or or

and and and and

or or or or or or or or

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

Continuous-time quantum walk

Graph G:

1 2

3 4

5

Continuous-time quantum walk

Graph G:

1 2

3 4

5
A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

Continuous-time quantum walk

Graph G:

1 2

3 4

5
A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

L =

−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2

Laplacian

Continuous-time quantum walk

Graph G:

1 2

3 4

5

Random walk on G

State: Probability pj(t) of being at vertex j at time t

Dynamics:
d
dt

!p = −γL!p

A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

L =

−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2

Laplacian

Continuous-time quantum walk

Graph G:

1 2

3 4

5

Random walk on G

State: Probability pj(t) of being at vertex j at time t

Dynamics:
d
dt

!p = −γL!p

A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

L =

−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2

Laplacian

Quantum walk on G

State: Amplitude qj(t) to be at vertex j at time t

Dynamics: i
d
dt

!q = −γL!q

Continuous-time quantum walk

Graph G:

1 2

3 4

5

Random walk on G

State: Probability pj(t) of being at vertex j at time t

Dynamics:
d
dt

!p = −γL!p

A =

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

adjacency matrix

L =

−2 1 1 0 0
1 −3 0 1 1
1 0 −2 1 0
0 1 1 −3 1
0 1 0 1 −2

Laplacian

Quantum walk on G

State: Amplitude qj(t) to be at vertex j at time t

Dynamics: i
d
dt

!q = −γL!q (or , or . . .)i
d
dt

!q = γA!q

Evaluating AND-OR trees by scattering
k [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering
k [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k [Farhi, Goldstone, Gutmann 07]

Evaluating AND-OR trees by scattering

0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0

k

Claim: For small k, the wave is transmitted if the formula (translated
into NAND gates) evaluates to 0, and reflected if it evaluates to 1.

[Farhi, Goldstone, Gutmann 07]

Gate sets
{AND, OR, NOT} equivalent to {NAND}

Gate sets
{AND, OR, NOT} equivalent to {NAND}

x

not

x

nand

=

Gate sets
{AND, OR, NOT} equivalent to {NAND}

and

x1 x2

nand

nand

x1 x2

=

x

not

x

nand

=

Gate sets
{AND, OR, NOT} equivalent to {NAND}

and

x1 x2

nand

nand

x1 x2

=

x1 x2

or

nand

x2

nand

x1

nand=

x

not

x

nand

=

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

Consider read-once formulas: every leaf is a different input.
(Equivalently, count duplicated inputs with multiplicity.)

General formulas
nand

nand

nand
nand

nand nand nand

nandnand

nand nand

In a formula (instead of a circuit), the fanout of every gate is 1
(so the graph is a tree).

Consider read-once formulas: every leaf is a different input.
(Equivalently, count duplicated inputs with multiplicity.)

Quantum lower bound [Barnum-Saks 02]: Ω(
√

n)

Results

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 07]

• time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

√
n1+o(1)

Results

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 07]

• time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

√
n1+o(1)

Results

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 07]

This talk:

• query quantum algorithm for evaluating
“approximately balanced” NAND formulas (optimal!)
O(
√

n)

• time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

√
n1+o(1)

Results

Conjecture [Laplante, Lee, Szegedy 05]: Formula size is lower bounded
by the square of the bounded-error quantum query complexity.

[Farhi, Goldstone, Gutmann 07] + [C., Cleve, Jordan, Yeung 07]

This talk:

• query quantum algorithm for evaluating
“approximately balanced” NAND formulas (optimal!)
O(
√

n)

• time (and query) quantum algorithm for evaluating
the balanced, binary NAND formula with n inputs

√
n1+o(1)

• time (and query) quantum algorithm for
evaluating arbitrary NAND formulas

√
n1+o(1)

The algorithm

1. Start at the root of the tree
2. Perform phase estimation

with precision on
a discrete-time quantum
walk on the tree

3. If the estimated phase is 0
or , then output 1;
otherwise output 0

≈ 1/
√

n

π

The algorithm

Outline

• Scattering → phase estimation

• Hamiltonian for a continuous-
time quantum walk (with non-
uniform edge weights)

• Low-energy eigenstates
“compute NAND”

• Continuous time → discrete
time (gives a small speedup)

• Formula rebalancing

1. Start at the root of the tree
2. Perform phase estimation

with precision on
a discrete-time quantum
walk on the tree

3. If the estimated phase is 0
or , then output 1;
otherwise output 0

≈ 1/
√

n

π

From scattering to phase estimation

To do scattering calculations, we compute a complete basis of
eigenstates:

Left:

Right:

Bound:

G

eikx + R(k) e−ikx T (k) eikx

T̄ (k) e−ikx e−ikx + R̄(k) eikx

eκx B(κ) e−κx

From scattering to phase estimation

To do scattering calculations, we compute a complete basis of
eigenstates:

Left:

Right:

Bound:

Instead, we can just look at eigenstates of the graph itself.

Phase estimation: Given U and an eigenstate |'i with U |'i = ei ' |'i,
we can estimate ' to precision in steps.
(Equivalent to measuring H = i log U.)

δ O(1/δ)

G

eikx + R(k) e−ikx T (k) eikx

T̄ (k) e−ikx e−ikx + R̄(k) eikx

eκx B(κ) e−κx

The Hamiltonian

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

(Also, add two NOT gates to the root and use different weights there.)

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Eigenstates: H|E〉 = E|E〉

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

(Also, add two NOT gates to the root and use different weights there.)

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Eigenstates: H|E〉 = E|E〉 hpv〈p|E〉 +
∑

c

hvc〈c|E〉 = E〈v|E〉

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

(Also, add two NOT gates to the root and use different weights there.)

The Hamiltonian

H|v〉 = hpv|p〉 +
∑

c

hvc|c〉

. . .

. .
.

v

p

c

hpv

hvc

Edge weights: hpv ≈ 4

√
sv

sp
sv = # of inputs in subformula under v

Eigenstates: H|E〉 = E|E〉 hpv〈p|E〉 +
∑

c

hvc〈c|E〉 = E〈v|E〉

For E = 0: 〈p|Ψ〉 = −
∑

c

hvc

hpv
〈c|Ψ〉

Graph: Tree representing the NAND
formula, with edges added to 1 inputs
(so that all leaves evaluate to 0).

(Also, add two NOT gates to the root and use different weights there.)

Zero-energy eigenstates evaluate NAND:
Qualitative version

Let NAND(p) denote the value of the NAND subformula under p.
Let r = root of the tree.

Zero-energy eigenstates evaluate NAND:
Qualitative version

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

Theorem.

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

Let NAND(p) denote the value of the NAND subformula under p.
Let r = root of the tree.

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

NAND = 1

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

NAND = 1

Base case: Some child v of p is a leaf.

. .
.

p

v
0

. .
.

1

hpv〈p|Ψ〉 = 0

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

NAND = 1

v

c
1 1

0

1
p

. .
.

. .
.

. .
.

. . .

Induction: Some child v of p has NAND(v) = 0;
all its children c have NAND(c) = 1.

Base case: Some child v of p is a leaf.

. .
.

p

v
0

. .
.

1

hpv〈p|Ψ〉 = 0

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

NAND = 1

v

c
1 1

0

1
p

. .
.

. .
.

. .
.

. . .

Induction: Some child v of p has NAND(v) = 0;
all its children c have NAND(c) = 1.

hpv〈p|Ψ〉 = −
∑

c

hvc〈c|Ψ〉 = 0

Base case: Some child v of p is a leaf.

. .
.

p

v
0

. .
.

1

hpv〈p|Ψ〉 = 0

NAND = 0

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

NAND = 0

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

Base case: A single leaf.

r
0 |Ψ〉 = |r〉

NAND = 0

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

v

c
0

1 1

0
r

. .
.

. .
.

. . .

Induction: All children v of r have NAND(v) = 1;
some child c of v has NAND(c) = 0.

Base case: A single leaf.

r
0 |Ψ〉 = |r〉

NAND = 0

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

v

c
0

1 1

0
r

. .
.

. .
.

. . .

Induction: All children v of r have NAND(v) = 1;
some child c of v has NAND(c) = 0.

Base case: A single leaf.

r
0 |Ψ〉 = |r〉

put a state here with |hc|ªi| > 0

NAND = 0

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

v

c
0

1 1

0
r

. .
.

. .
.

. . .

Induction: All children v of r have NAND(v) = 1;
some child c of v has NAND(c) = 0.

Base case: A single leaf.

r
0 |Ψ〉 = |r〉

hrv〈r|Ψ〉 = −hvc〈c|Ψ〉 $= 0

put a state here with |hc|ªi| > 0

Zero-energy eigenstates evaluate NAND:
Quantitative version

Theorem (quantitative). For approximately balanced formulas:

If NAND(r) = 1, then eigenstates |Ei with
have hr|Ei = 0.

|E| < O(1√
n
)

If NAND(r) = 0, then for some |ªi
with H |ªi = 0.

|〈r|Ψ〉| > Ω(1)

If NAND(p) = 1, then hp|ªi = 0 for any |ªi with H |ªi = 0.

Theorem (qualitative).

If NAND(r) = 0, then |hr|ªi| > 0 for some |ªi with H |ªi = 0.

Simulating the quantum walk

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

simulation steps

(run time)2

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

simulation steps

(run time)2

≈ (eiA/2meiB/meiA/2m)m (run time)3/2

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

simulation steps

(run time)2

≈ (eiA/2meiB/meiA/2m)m (run time)3/2

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

. .
.

. .
.

(run time)1+o(1)

Simulating the quantum walk

ei(A+B) ≈ (eiA/meiB/m)m

simulation steps

(run time)2

≈ (eiA/2meiB/meiA/2m)m (run time)3/2

Instead, we can avoid the o(1) by using a discrete-time quantum walk.

We could perform phase estimation directly on the dynamics of this
Hamiltonian (i.e., measure the energy).

But this would require simulating the dynamics by a sequence of
quantum gates, using the black box to simulate the walk near the
leaves, and combining that simulation with the input-independent part.

[C., Cleve, Jordan, Yeung 07]

. .
.

. .
.

(run time)1+o(1)

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Eigenvalues of :
√

P ◦ PT λj

Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Eigenvalues of :
√

P ◦ PT λj Eigenvalues of U: e±i arcsin λj

Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Eigenvalues of :
√

P ◦ PT λj Eigenvalues of U: e±i arcsin λj

Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Claim: Any symmetric matrix H with positive entries can be factorized
as for some stochastic matrix P. (use Perron vector)H =

√
P ◦ PT

(note that locality of H → locality of P)

Continuous time → discrete time

Szegedy quantization of classical Markov chains:

Stochastic matrix P

Classical random walk

Eigenvalues of :
√

P ◦ PT λj Eigenvalues of U: e±i arcsin λj

Quantum walk

Unitary operator U derived from P
(locality of P → locality of U)

Claim: Any symmetric matrix H with positive entries can be factorized
as for some stochastic matrix P. (use Perron vector)H =

√
P ◦ PT

(note that locality of H → locality of P)

This gives a general way to relate continuous- and discrete-time
quantum walk. Small eigenphases of and U are equal up to third
order.

e−iH

Formula rebalancing
A quantum walk algorithm clearly cannot work for highly unbalanced
formulas:

. .
.

Formula rebalancing
A quantum walk algorithm clearly cannot work for highly unbalanced
formulas:

. .
.

But we can apply

Theorem [Bshouty, Cleve, Eberly 91]: Any NAND formula of size n
can be rewritten as an equivalent NAND formula of depth O(log n)
and size n1 + o(1).

Applications to recursive functions
Recursive “all equal” function [Ambainis 03]

Recursive majority function [Boppana 86]

Q. query complexity: (adversary method)

(NAND of 6)O(
√

6k) = O(2.45k)
Ω((3√

2
)k) = Ω(2.12k)

Polynomial degree: 2k

f(x, y, z) =

{
1 x = y = z

0 otherwise
recurse k times

Q. query complexity:
O(
√

5k) = O(2.24k) (NAND of 5)
Ω(2k) (adversary method)

f(x, y, z) =

{
1 x + y + z ≥ 2
0 otherwise

recurse k times

C. query complexity [JKS 03]: Ω((7
3)k) = Ω(2.33k)

o((8
3)k) = o(2.67k)

Closed problems
This also resolves a conjecture of [O’Donnell-Servedio 03]:

Any NAND formula of size n can be approximated by a polynomial
of degree .
Hence formulas are (classically!) PAC learnable in time .2

√
n1+o(1)

√
n1+o(1)

Closed problems

[Reichardt, Špalek 07]: Generalization to formulas built from other
gates, using new gate widgets, as well as the concept of span programs.
Gives optimal (or nearly optimal) algorithms for many other functions,
including an optimal algorithm (O(2k)) for recursive ternary majority.

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial
of degree .
Hence formulas are (classically!) PAC learnable in time .2

√
n1+o(1)

√
n1+o(1)

Closed problems

[Reichardt, Špalek 07]: Generalization to formulas built from other
gates, using new gate widgets, as well as the concept of span programs.
Gives optimal (or nearly optimal) algorithms for many other functions,
including an optimal algorithm (O(2k)) for recursive ternary majority.

This also resolves a conjecture of [O’Donnell-Servedio 03]:
Any NAND formula of size n can be approximated by a polynomial
of degree .
Hence formulas are (classically!) PAC learnable in time .2

√
n1+o(1)

√
n1+o(1)

Open problems
• Formulas with yet more general gates?
• Similar algorithm for circuits?
• Can we compute a certificate for the value of a formula?
• Improved formula rebalancing?

