Algorithmic challenges in quantum simulation

Andrew Childs University of Maryland

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman

Simulating physics with computers

MIT Physics of Computation Conference, 1981

Computational quantum physics

chemical reactions (e.g., nitrogen fixation)

condensed matter physics/ properties of materials

nuclear/particle physics

Implementing quantum algorithms

$$A|x\rangle = |b\rangle$$

adiabatic optimization

exponential speedup by quantum walk

evaluating Boolean formulas linear/
differential
equations,
convex
optimization

Algorithmic challenges in quantum simulation

- I. Efficient simulation with a universal quantum computer
- 2. Simulating sparse Hamiltonians
- 3. Simulating quantum mechanics in real time
- 4. High-precision simulation
- 5. An optimal tradeoff
- 6. Real-time simulation revisited
- 7. Making quantum simulation practical

1. Efficient simulation with a universal quantum computer

Universal quantum computation

The simulation problem

The dynamics of a quantum system are determined by its $Hamiltonian\ H$.

$$i\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = H|\psi(t)\rangle$$

Given a description of the Hamiltonian H, an evolution time t, and an initial state $|\psi(0)\rangle$, produce the final state $|\psi(t)\rangle$ (to within some error tolerance ϵ).

This is as hard as anything a quantum computer can do!

1. Efficient simulation with a universal quantum computer

Suppose $H=\sum_j H_j$ where each H_j is individually easy to simulate

Main idea: $H = H_A + H_B$

Complexity: $O(t^2/\epsilon)$

Higher-order version (order k): $O(5^k t(t/\epsilon)^{1/k})$

2. Simulating sparse Hamiltonians

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

For any given row, the locations of the nonzero entries and their values can be computed efficiently

Main idea: Color the edges of the graph of H. Then the simulation breaks into small pieces that are easy to handle.

A sparse graph can be efficiently colored using only local information, so this gives efficient simulations.

3. Simulating quantum mechanics in real time

No fast-forwarding theorem: Simulating Hamiltonian dynamics for time t requires $\Omega(t)$ gates.

[Berry, Ahokas, Cleve, Sanders 05]

Complexity of kth order product formula simulation is $O(5^{2k}t^{1+1/2k})$.

Can we give an algorithm with complexity precisely O(t)?

Systems simulate their own dynamics in real time!

3. Simulating quantum mechanics in real time

Challenge: mismatch between

- Schrödinger dynamics (continuous time) and
- the quantum circuit model (discrete time)

Main idea: introduce a discrete-time quantum walk corresponding to the Hamiltonian

- discrete dynamics
- easy to implement
- efficiently carries spectral information about the Hamiltonian

Complexity:
$$O(t/\sqrt{\epsilon})$$
 linear in $t!$

4. High-precision simulation?

Can we improve the dependence on ϵ ?

Many approximate computations can be done with complexity $poly(log(1/\epsilon))$:

- ullet computing π
- boosting a bounded-error subroutine
- Solovay-Kitaev circuit synthesis
- and more...

Lower bound (based on the *unbounded-error* query complexity of parity): $\Omega(\frac{\log(1/\epsilon)}{\log\log(1/\epsilon)})$

Quantum walk simulation: $O(1/\sqrt{\epsilon})$

Product formulas (kth order): $O(5^k/\epsilon^{1/k})$

Can we do better?

4. High-precision simulation

Yes! There is a simulation with complexity $O(t \frac{\log(t/\epsilon)}{\log\log(t/\epsilon)})$.

Main idea:

- Consider the truncated Taylor series $e^{-iHt} = \sum_{k=0}^{\infty} \frac{(-iHt)^k}{k!} \approx \sum_{k=0}^{K} \frac{(-iHt)^k}{k!}$
- ullet Expand H as a linear combination of unitary operators
- Directly implement the overall linear combination by oblivious amplitude amplification

5. An optimal tradeoff

Combining known lower bounds on the complexity of simulation as a function of t and ϵ gives

$$\Omega\Big(t + rac{\log rac{1}{\epsilon}}{\log \log rac{1}{\epsilon}}\Big)$$
 vs. upper bound of $O\Big(t rac{\log rac{t}{\epsilon}}{\log \log rac{t}{\epsilon}}\Big)$

Recent work, using an alternative method for implementing a linear combination of quantum

walk steps, achieves the lower bound.

Main idea:

- ullet Encode the eigenvalues of H in a two-dimensional subspace
- Manipulate those eigenvalues using a carefully-chosen sequence of single-qubit rotations (inspired by quantum control technique of *composite pulses*)

6. Real-time simulation revisited

We've focused on the complexity as a function of t (evolution time) and ϵ (precision). What about the dependence on system size?

Consider a system of n spins with nearest-neighbor interactions. To simulate for constant time, best previous methods give:

- total number of gates: $O(n^2)$
- circuit depth (execution time with parallel gates): O(n)

Execution time should not have to be extensive!

Recent improvement: simulation with O(n) gates, O(1) depth

Main ideas:

- Lieb-Robinson bound limits the speed of propagation
- Simulate small, overlapping regions, with negative-time evolutions to correct the boundaries

[Haah, Hastings, Kothari, Low 18]

7. Making quantum simulation practical

When can we use quantum computers to solve problems that are beyond the reach of classical computers?

Challenges

- Improve experimental systems
- Improve algorithms and their implementation, making the best use of available hardware

7. Making quantum simulation practical

Factoring a 1024-bit number [Kutin 06]

- •3132 qubits
- •5.7×10⁹ T gates

Simulating FeMoco [Reiher et al. 16]

- III qubits
- $1.0 \times 10^{14} T$ gates

Simulating 50 spins (segmented QSP)

- •67 qubits
- •2.4×10⁹ T gates

Simulating 50 spins (PF6 empirical)

- •50 qubits
- 1.8×108 T gates

[Childs, Maslov, Nam, Ross, Su 17]

Outlook

Interplay between physics and computer science

- Ideas from CS: distributed graph coloring, query complexity lower bounds, Markov chains, ...
- Ideas from physics: composite pulses, Lieb-Robinson bounds, scattering, ...
- Quantum simulation algorithms will be powerful computational tools for answering questions about quantum physics

Ongoing challenges

- Find faster quantum simulation algorithms that exploit system structure
- Develop efficient practical implementations
- Use real quantum computers to do science!