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The fundamental theorem of arithmetic
Every positive integer larger than 1 can be uniquely* 
factored as a product of prime numbers.

* Up to the order of the factors.

N = 2n2 × 3n3 × 5n5 × · · ·
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85390880271038021044
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“The problem of distinguishing prime numbers from composite 
numbers and of resolving the latter into their prime factors is 
known to be one of the most important and useful in 
arithmetic. It has engaged the industry and wisdom of ancient 
and modern geometers to such an extent that it would be 
superfluous to discuss the problem at length... Further, the 
dignity of the science itself seems to require that every 
possible means be explored for the solution of a problem so 
elegant and so celebrated.”

– Carl Friedrich Gauss, Disquisitiones Arithmeticæ (1801)
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All else is the work of man

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

ZN =
{

0̄ := {. . . ,−N, 0, N, 2N, . . .}
1̄ := {. . . ,−N + 1, 1, N + 1, 2N + 1, . . .}
2̄ := {. . . ,−N + 2, 2, N + 2, 2N + 2, . . .}

...

N − 1 := {. . . ,−N − 1,−1, N − 1, 2N − 1, . . .}
}
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Z×N = {j ∈ ZN : ∃k, jk = 1}

ϕ(N) := |Z×N |
ϕ(p) = p− 1

ϕ(pn) = (p− 1)pn−1

ϕ(pn1
1 · · · pnk

k ) = (p1 − 1)pn1−1
1 · · · (pk − 1)pnk−1

k

Fact:
ϕ(N)

N
= Ω

(
1

log log N

)
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QFT circuit

We have                              whereFZ2n |x〉 =
n−1⊗

j=0

|zj〉

|zj〉 =
1√
2
(|0〉+ e2πi(2j−nx0+2j+1−nx1+···+2−1xn−1−j)|1〉)

7

|x0〉 · · · • · · · • · · · • H |zn−1〉

|x1〉 · · · • · · · • · · · H !" #$%& '(R2 |zn−2〉
...

...
...

...

|xn−3〉 • · · · • · · · · · · |z2〉

|xn−2〉 • · · · H !" #$%& '(R2 · · · !" #$%& '(Rn−2 !" #$%& '(Rn−1 · · · |z1〉

|xn−1〉 H !" #$%& '(R2 !" #$%& '(R3 · · · !" #$%& '(Rn−1 !" #$%& '(Rn · · · · · · |z0〉

FIG. 1 An efficient (size O(n2)) quantum circuit for the quantum Fourier transform over Z/2nZ. Note that the order of the n output bits
z0, . . . ,zn−1 is reversed, as compared with the order of the n input bits x0, . . . ,xn−1.

U |φ〉 = eiφ|φ〉 for some φ ∈ R. The goal is to output an esti-
mate of φ to some desired precision. (Of course, we can also
apply the procedure to a general state |ψ〉; by linearity, we
then obtain each value φ with probability |〈φ|ψ〉|2.)

The procedure for phase estimation is straightforward:

Algorithm 1 (Phase estimation).
Input: Eigenstate |φ〉 (with eigenvalue eiφ) of a given unitary
operator U .
Problem: Produce an n-bit estimate of φ.

1. Prepare the quantum computer in the state

1√
2n ∑

x∈Z/2nZ
|x〉⊗ |φ〉. (22)

2. Apply the unitary operator

∑
x∈Z/2nZ

|x〉〈x|⊗Ux, (23)

giving the state

1√
2n ∑

x∈Z/2nZ
eiφx|x〉⊗ |φ〉. (24)

3. Apply an inverse Fourier transform on the first register,
giving

1
2n ∑

x,y∈Z/2nZ
ωx( 2n

2π φ−y)
2n |y〉⊗ |φ〉. (25)

4. Measure the first register of the resulting state in the
computational basis.

If the binary expansion of φ/2π terminates after at most n
bits, then the result is guaranteed to be the binary expansion
of φ/2π. In general, we obtain a good approximation with
high probability (Cleve et al., 1998).8 The optimal way of

8 The relevant calculation appears in Section IV.D for the case where φ ∈Q;
that same calculation works for any φ ∈ R.

estimating the unknown phase is analyzed in (van Dam et al.,
2007), but the above method is sufficient for our purposes.

The complexity of Algorithm 1 can depend on the form
of the unitary operator U . If we are only given a black box
for the controlled-U gate, then there may be no better way
to implement the controlled-Ux operation than by perform-
ing a controlled-U gate x times, so that the running time is
Θ(2n) (i.e., approximately the inverse of the desired preci-
sion). On the other hand, if it is possible to implement Eq. (23)
in poly(n) time—say, using repeated squaring—then phase
estimation can be performed in poly(n) time.

One useful application of phase estimation is to implement
the QFT Eq. (14) over an arbitrary cyclic group Z/NZ (Ki-
taev, 1995). The circuit presented in the previous section only
works when N is a power of two (or, with a slight generaliza-
tion, a power of some other fixed integer). But the following
simple technique can be used to realize FZ/NZ (approximately)
using phase estimation.9

We would like to perform the transformation that maps
|x〉 '→ |x̂〉, where |x̂〉 := FZ/NZ|x〉 denotes a Fourier basis state.
(By linearity, if the transformation acts correctly on a basis, it
acts correctly on all states.) It is straightforward to perform
the transformation |x,0〉 '→ |x, x̂〉; but it remains to erase the
register |x〉 from such a state.

Consider the unitary operator P that adds 1 modulo N:

P := ∑
x∈Z/NZ

|x+1〉〈x|. (26)

The eigenstates of this operator are precisely the Fourier basis
states |x̂〉 := FZ/NZ|x〉, since

F†
Z/NZ ·P ·FZ/NZ = ∑

x∈Z/NZ
ωx

N |x〉〈x|. (27)

Thus, using phase estimation on U (with n = O(logN) bits of
precision), we can approximate the transformation

|x̂,0〉 '→ |x̂,x〉. (28)

9 While this approach is conceptually simple, it is possible to implement the
QFT over a cyclic group more efficiently (Hales and Hallgren, 2000).

note reversal of order

Quantum circuit:

6

More generally, a finite Abelian group G has |G| distinct
one-dimensional irreducible representations ψ ∈ Ĝ, which are
functions ψ : G→C with ψ(a+b) = ψ(a)ψ(b) for all a,b∈G
(using additive notation for the group operation of G). The
quantum Fourier transform FG over G acts as

|x〉 $→ 1√
|G| ∑

ψ∈Ĝ

ψ(x)|ψ〉 (11)

for each x ∈ G.
For example, the group (Z/NZ) × (Z/NZ) has N2 ir-

reducible representations defined by ψy1,y2 : (x1,x2) $→
ωx1y1+x2y2

N for all y1,y2 ∈ Z/NZ; hence its quantum Fourier
transform FZ/NZ×Z/NZ acts as

|x1,x2〉 $→
1
N ∑

y1,y2∈Z/NZ
ωx1y1+x2y2

N |y1,y2〉 (12)

for all x1,x2 ∈ Z/NZ.
Note that in this example, FZ/NZ×Z/NZ can be written as the

tensor product FZ/NZ⊗FZ/NZ. In general, the fundamental the-
orem of finite Abelian groups states that any finite Abelian
group G can be expressed as a direct product of cyclic sub-
groups of prime power order, G∼= Z/pr1

1 Z× · · ·×Z/prk
k Z, and

the QFT over G can be written as the tensor product of QFTs
FZ/pr1

1 Z⊗ · · ·⊗FZ/p
rk
k Z.

B. Efficient quantum circuit for the QFT over Z/2nZ

To use the Fourier transform over G as part of an efficient
quantum computation, we must implement it (approximately)
by a quantum circuit of size poly(log |G|). This can indeed be
done for any finite Abelian group (Barenco et al., 1996; Cleve,
1994; Coppersmith, 1994; Hales and Hallgren, 2000; Kitaev,
1995; Shor, 1997). In this section we explain a construction
for the case of the group Z/2nZ, following the presentation in
(Cleve et al., 1998).

In the bases spanned by the states {|x〉 : x ∈ G} and {|ψ〉 :
ψ ∈ Ĝ}, the matrix representation of the Fourier transforma-
tion over Z/NZ is

FZ/NZ =
1√
N





1 1 1 · · · 1
1 ωN ω2

N · · · ωN−1
N

1 ω2
N ω4

N · · · ω2N−2
N

...
...

...
. . .

...
1 ωN−1

N ω2N−2
N · · · ω(N−1)(N−1)

N




. (13)

More succinctly,

FZ/NZ =
1√
N ∑

x,y∈Z/NZ
ωxy

N |y〉〈x|, (14)

where |y〉 represents the basis state corresponding to the
character ψy with ψy(x) = ωxy

N . It is straightfoward to ver-
ify that FZ/NZ is indeed a unitary transformation, i.e., that
FZ/NZ ·F†

Z/NZ = F†
Z/NZ ·FZ/NZ = I.

Assume now that N = 2n, and let us represent the integer
x ∈ Z/NZ by n bits x0,x1, . . . ,xn−1 such that x = ∑n−1

j=0 2 jx j.
The Fourier transform of |x〉 can then be written as the tensor
product of n qubits, since

FZ/2nZ|x〉=
1√
2n ∑

y∈{0,1}n
ω

x(∑n−1
j=0 2 jy j)

2n |y0, . . . ,yn−1〉 (15)

=
1√
2n

n−1O

j=0
∑

y j∈{0,1}
e2πixy j/2n− j |y j〉 (16)

=
n−1O

j=0

1√
2
(|0〉+ e2πi∑n−1

k=0 2 j+k−nxk |1〉) (17)

=:
n−1O

j=0
|z j〉. (18)

Now, because exp(2πixk2s) = 1 for all integers s≥ 0, we see
that the jth output qubit is

|z j〉=
1√
2
(|0〉+ e2πi(2 j−nx0+2 j+1−nx1+···+2−1xn−1− j)|1〉), (19)

and hence only depends on the n− j input bits x0, . . . ,xn−1− j.
To describe a quantum circuit that implements the Fourier

transform, we define the single-qubit phase rotation

Rr :=
(

1 0
0 e2πi/2r

)
, !" #$%& '(Rr (20)

and the two-qubit controlled rotation

Λ(Rr) :=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2r



 ,
•!" #$%& '(Rr

(21)

acting as Λ(Rr)|a,b〉 = e2πiab/2r |a,b〉 for a,b ∈ {0,1}. The
circuit shown in Figure 1 uses

(n
2
)

of these gates together with
n Hadamard gates to exactly implement the quantum Fourier
transform over Z/2nZ.

In this circuit, there are many rotations by small angles that
do not significantly affect the final result. By simply omit-
ting the gates Λ(Rr) with r = Ω(logn), we obtain a circuit of
size O(n logn) (instead of O(n2) for the original circuit) that
implements the QFT with precision 1/poly(n) (Coppersmith,
1994).

C. Phase estimation and the QFT over any finite Abelian group

Aside from being directly useful in quantum algorithms,
such as Shor’s algorithm, the QFT over Z/2nZ provides a
useful quantum computing primitive called phase estimation
(Cleve et al., 1998; Kitaev, 1995). In the phase estimation
problem, we are given a unitary operator U (either as an ex-
plicit circuit, or as a black box that lets us apply a controlled-
Ux operation for integer values of x). We are also given a
state |φ〉 that is promised to be an eigenvector of U , namely

=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2r




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More general QFTs

We can also define a Fourier transform for a nonabelian group; many 
of these can be implemented efficiently as well.

• Kitaev, Quantum measurements and the abelian stabilizer problem, quant-
ph/9511026

• Hales and Hallgren,  An improved quantum Fourier transform algorithm 
and applications, FOCS 2000

There are efficient quantum circuits for        for general N; seeFZN
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A useful identity

Claim:

Proof:
For          ,k != 0

(geometric series)

ω0
6 = 1

ω1
6ω2

6

−1 = ω3
6

ω4
6

ω5
6

M−1∑

j=0

ωjk
M =

1− ωkM
M

1− ωk
M

=
1− e2πik

1− ωk
M

= 0

1
M

M−1∑

j=0

ωjk
M = δk mod M,0

For                      , obvious.k = 0 mod M
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Effect of the QFT

√
r

N

N
r −1∑

j=0

|s + jr〉
periodic, period r

unknown offset s

1√
r

∑

z∈Zr

ωsz
N/r|z N

r 〉
periodic, period N/r

zero offset

unknown phases

!−→

FZN
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ωsz
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Strategy: Compute z/r in lowest terms (Euclid’s algorithm)
and assume the denominator is r.

Probability of success is

ϕ(r)
r

= Ω
(

1
log log r

)
= Ω

(
1

log log N

)

Outcome: uniformly at random0,
N

r
, 2

N

r
, 3

N

r
, . . . , N − N

r
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Unknown domain of periodicity

f(x) = f(y) if and only if
x− y

r
∈ Z

Suppose we have a function                 satisfyingf : Z→ S

but we don’t know an N for which f(x + N) = f(x).

Can we still find r?

Strategy: Choose a large N, and hope that the procedure still works, 
even though r will probably not divide r.
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The (almost) periodic state

N︷ ︸︸ ︷
• s · · ·

︸ ︷︷ ︸
r

︸ ︷︷ ︸
r

︸ ︷︷ ︸
r

︸ ︷︷ ︸
N−r"N/r#

︸ ︷︷ ︸
"N/r# periods

1√
n

n−1∑

j=0

|s + jr〉 n =

{
!N/r" + 1 s < N − r!N/r"
!N/r" otherwise.

where s occurs with probability n/N
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The distribution of measurement outcomes

Probability of observing y: Pr(y) =
1

nN

∣∣∣∣∣

n−1∑

j=0

ωjry
N

∣∣∣∣∣

2

When r divides N, we have already seen that Pr(y) =
1
r
δy mod N

r ,0

In general, Pr(y) is sharply peaked around multiples of N/r.

Example (N = 64, r = 5):

0 64
5

128
5

192
5

256
5

Exercise:  Show                                                                           .Pr
(
y ∈ {0, "N

r #, "2
N
r #, . . . , "(r − 1)N

r #}
)

= Ω(1)
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Continued fractions
Problem: Given a sample from                                                  , 

determine r.

Compute the continued fraction expansion

!jN/r"
N

=
1

a1 +
1

a2 +
1

a3 + · · ·

Suppose we know that r  <  rmax.  Then the closest continued fraction 
approximation with denominator less than rmax is guaranteed to be r 
provided N  >  (  rmax)2.

If we are not given an a priori upper bound rmax, we can start with 
rmax = 2 and successively double it until we find r; then the running 
time will be poly(log r).

{0, !N
r ", !2

N
r ", . . . , !(r − 1)N

r "}
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Application: Order finding
Let G be a group.  The order of g 2 G is the smallest r 2 {1, 2, 3, ...} 
such that gr = 1.

The function                  defined by f(x) = g 
x is (injectively) periodic 

with period equal to the order of g in G.
f : Z→ G

So there is an efficient (running time poly(log |G|)) quantum algorithm 
for order finding.

periodicity: f(x + r) = gx+r = gx = f(x)

injectivity: there is no x < r for which f(x) = f(0)



Reduction of factoring 
to period finding
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Factoring → Finding a nontrivial factor

We can assume N is odd, since it is easy to find the factor 2.

Suppose we want to factor the positive integer N.

Since primality can be tested efficiently, it suffices to give a procedure 
for finding a nontrivial factor of N with constant probability.

We can also assume that N contains at least two distinct prime 
powers, since it is easy to check if it is a power of some integer.

function factor(N)
if N is prime

output N
else

repeat
x=find_nontrivial_factor(N)

until success
factor(x)
factor(N/x)

end if
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Factoring N reduces to order finding in       (Miller 1976).Z×N



Miller’s reduction
Factoring N reduces to order finding in       (Miller 1976).Z×N
Choose                                  uniformly at random.
If                       , then it is a nontrivial factor of N; otherwise            .

a ∈ {2, 3, . . . , N − 1}
gcd(a,N) != 1 a ∈ Z×N



Miller’s reduction
Factoring N reduces to order finding in       (Miller 1976).Z×N

Let r denote the (multiplicative) order of a modulo N.

Choose                                  uniformly at random.
If                       , then it is a nontrivial factor of N; otherwise            .

a ∈ {2, 3, . . . , N − 1}
gcd(a,N) != 1 a ∈ Z×N



Miller’s reduction
Factoring N reduces to order finding in       (Miller 1976).Z×N

Let r denote the (multiplicative) order of a modulo N.

Choose                                  uniformly at random.
If                       , then it is a nontrivial factor of N; otherwise            .

a ∈ {2, 3, . . . , N − 1}
gcd(a,N) != 1 a ∈ Z×N

Suppose r is even.  Then

ar = 1 mod N

(ar/2)2 − 1 = 0 mod N
⇔



Miller’s reduction
Factoring N reduces to order finding in       (Miller 1976).Z×N

Let r denote the (multiplicative) order of a modulo N.

Choose                                  uniformly at random.
If                       , then it is a nontrivial factor of N; otherwise            .

a ∈ {2, 3, . . . , N − 1}
gcd(a,N) != 1 a ∈ Z×N

Suppose r is even.  Then

ar = 1 mod N

(ar/2)2 − 1 = 0 mod N
⇔

(ar/2 − 1)(ar/2 + 1) = 0 mod N

⇔



Miller’s reduction
Factoring N reduces to order finding in       (Miller 1976).Z×N

Let r denote the (multiplicative) order of a modulo N.

Choose                                  uniformly at random.
If                       , then it is a nontrivial factor of N; otherwise            .

a ∈ {2, 3, . . . , N − 1}
gcd(a,N) != 1 a ∈ Z×N

Suppose r is even.  Then

ar = 1 mod N

(ar/2)2 − 1 = 0 mod N
⇔

(ar/2 − 1)(ar/2 + 1) = 0 mod N

⇔

so we might hope for                           to be a nontrivial factor of N.gcd(ar/2 − 1, N)
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Note that                                  (otherwise the order of a would be 
r/2, or smaller). 

ar/2 − 1 "= 0 mod N

So it suffices to ensure that                                .ar/2 + 1 != 0 mod N

(ar/2 − 1)(ar/2 + 1) = 0 mod NGiven
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Miller’s reduction

Lemma: Suppose             is chosen uniformly at random, where N is 
an odd integer with at least two distinct prime factors.  Then 
with probability at least 1/2, the multiplicative order r of a is 
even and                             .

a ∈ Z×N

ar/2 != −1 mod N

Note that                                  (otherwise the order of a would be 
r/2, or smaller). 

ar/2 − 1 "= 0 mod N

So it suffices to ensure that                                .ar/2 + 1 != 0 mod N

(ar/2 − 1)(ar/2 + 1) = 0 mod NGiven

when does                            give a nontrivial factor of N?gcd(ar/2 − 1, N)
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Proof (part 1 of 2)
Let                                      (pi distinct primes, k ¸ 2)N = pm1

1 × · · ·× pmk
k

a = ai mod pmi
i

ri  = order of ai modulo pmi
i

2ci = largest power of 2 that divides ri

Claim 1:  If r is odd or                                , then c1 = · · · = ck.ar/2 + 1 != 0 mod N

Since                               , r is odd iff c1 = · · · = ck = 0.r = lcm(r1, . . . , rk)

ar/2 = −1 mod NIf r is even and                             ,

then                                 for each i,ar/2 = −1 mod pmi
i

so ri does not divide r/2; but notice that ri does divide r.

Hence r/ri is an odd integer for each i, and every ri must contain 
the same number of powers of 2 as r.
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Proof (part 2 of 2)
Claim 2:  Prob(ci = any particular value) · 1/2

(Then the lemma follows, because in particular Prob(c1 =  c2) · 1/2.)

a ∈ Z×N
uniformly at random

⇔
uniformly at random

ai ∈ Z×
p

mi
i

Since         is cyclic and of even order, exactly half its elements have the 
maximal value of ci, so in particular the probability of any particular ci 
is at most 1/2.

Z×
p

mi
i



Shor’s factoring algorithm

1. Choose a random
2. Compute gcd(a, N); if it is not 1 then it is a nontrivial factor, and 

otherwise we continue
3. Prepare the uniform superposition

(or replace N 
2 by the next largest power of 2)

4. Append an ancilla register, and conditioned on the value x in the 
first register, compute f(x) = a 

x
 mod N in the ancilla register; 

discard the ancilla
5. Perform the quantum Fourier transform over 
6. Measure in the computational basis
7. Compute the continued fraction expansion of the result divided by 
N 

2, obtaining the best approximation with denominator less than 
N; call this denominator r

8. Compute gcd(a r/2
 ¡ 1, N).  If it is 1 or N then we have failed, and 

we start over; otherwise the result is a nontrivial factor of N.

a ∈ {2, 3, . . . , N − 1}

ZN2

|ZN2〉

Input:  Integer N Output:  A nontrivial factor of N



Performance

In contrast, the best known classical algorithm for factoring N (the 
number field sieve) takes time                                     .2O((log N)1/3(log log N)2/3)

Most expensive step: Modular exponentiation.
Using repeated squaring, this can be done in time O((log N)3).

) Running time of Shor’s algorithm is O((log N)3)



Performance

In contrast, the best known classical algorithm for factoring N (the 
number field sieve) takes time                                     .2O((log N)1/3(log log N)2/3)

Most expensive step: Modular exponentiation.
Using repeated squaring, this can be done in time O((log N)3).

) Running time of Shor’s algorithm is O((log N)3)

Note that the quantum part of Shor’s algorithm can be highly 
parallelized: with polynomial-time classical pre- and post-processing, 
can achieve depth O((log log N)2) and size O((log N)3) (Cleve and 
Watrous 2000).



Beyond factoring



So much more than Shor and Grover
•Quantum simulation

•Miscellanea
Oracle interrogation, ordered search, gradient estimation, ...

Jones polynomial, HOMFLYPT polynomial, Tutte polynomial/Potts model partition function, ...

•Approximation of #P-hard problems

•Quantum walk algorithms (Eddie Farhi’s lectures on Friday)
Black box graph traversal, spatial search, element distinctness, triangle finding, checking 
matrix multiplication, testing group commutativity, formula evaluation, ...

• Search and its applications (Peter Høyer’s lectures yesterday)
Unstructured search (decision, finding, counting), collision, median finding, graph connectivity, 
minimum spanning trees, single source shortest paths, matchings, network flows, ...

•Algebraic problems
Factoring, discrete log, decomposing abelian groups, Pell’s equation, principal ideal problem, 
computing unit/class groups of number fields, shifted Legendre symbol, approximating Gauss 
sums, counting points on curves, some nonabelian hidden subgroup problems, ...
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Discrete log
Let                                be a cyclic group generated by g.G = {gα : α ∈ ZN}

x ∈ GGiven          , define                                                 .logg x := min{! ∈ Z+ : g! = x}

But there is an efficient quantum algorithm for discrete log in general 
groups (Shor 1994).

Computing logg x is (apparently) classically hard, and (as for factoring) 
this assumption is used in cryptographic protocols.

Common groups:

G = Z×M
G = elliptic curve

best classical algorithm

2O((log M)1/3(log log M)2/3)

O(
√

N) = 2O(log N)
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Let G be an abelian group.

We say that                  hides the subgroup H · G iff : G→ S

f(x) = f(y) if and only if x− y ∈ H

Abelian HSP:  Given the ability to query f, find a generating set for H.
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The abelian hidden subgroup problem
Let G be an abelian group.

Example: If G = ZN, then f hides a subgroup isomorphic to ZN/r iff it 
is injectively periodic with period r

There is an efficient quantum algorithm for the hidden subgroup 
problem in any finitely generated abelian group.

We say that                  hides the subgroup H · G iff : G→ S

f(x) = f(y) if and only if x− y ∈ H

Example: The function                          hidesf(α, β) = xαgβ

〈(α, α logg x) : α ∈ ZN 〉 ≤ ZN × ZN

Abelian HSP:  Given the ability to query f, find a generating set for H.
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Counting points on curves

This problem appears to be hard for a classical computer.

But Kedlaya showed it can be solved in time poly(log p, d) on a 
quantum computer, where d is the degree of the polynomial.

Problem:

f(x, y) = 0
where x, y 2 Zp (or more generally, a finite field)?

How many solutions are there to the polynomial equation

Approach: Use the algorithm for the abelian HSP to learn the 
structure of the class group of the curve, which determines 
the number of points.
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Pell’s equation and number fields
Pell’s equation: Given a squarefree positive integer d, find integer 

solutions (x, y) to                     .x2 − dy2 = 1

There are infinitely many solutions, but they are all generated by one 
fundamental solution (x1, y1).

Even the fundamental solution may be too large just to write down in 
polynomial time, but it can be encoded in the integer part of the 
regulator,                         .log(x1 + y1

√
d)

This can be found efficiently by a quantum computer using a 
generalization of period finding to the real numbers.

Similar ideas lead to efficient quantum algorithms for computing 
properties of number fields.
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The nonabelian hidden subgroup problem

HSP:  Given the ability to query f, find a generating set for H.

Let G be any finite group.

We say that                  hides the subgroup H · G iff : G→ S

f(x) = f(y) if and only if xy−1 ∈ H

When G is nonabelian, this can be significantly harder.

Potential applications:

• Graph isomorphism
• Lattice problems
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Problem:  Given an n-vertex graph ¡, what is its automorphism group?
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Graph automorphism

Problem:  Given an n-vertex graph ¡, what is its automorphism group?

G = Sn

f(π) = π(Γ)
H = Aut(¡)

This is an HSP in

with

having hidden subgroup

¡1 = ¡2 = ¡3 =

Aut(Γ1) ∼= S5 Aut(Γ3) = {id}Aut(Γ2) ∼= Z2
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Basis vectors                          define a lattice

Shortest lattice vector problem

Problem:  What is the shortest nonzero vector in the lattice?

!v1, . . . ,!vn ∈ Rn L := {
∑

i ci!vi : ci ∈ Z}
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Shortest lattice vector problem

Problem:  What is the shortest nonzero vector in the lattice?

!v1, . . . ,!vn ∈ Rn L := {
∑

i ci!vi : ci ∈ Z}

This is NP-hard, but what if we promise that the shortest vector is 
shorter than the next-shortest non-parallel vector by some factor?

Lattice cryptosystems assume this is hard with a factor poly(n).
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Dihedral hidden subgroup problem
The dihedral group of order 2N is the group of 
symmetries of an N-sided regular polygon.

Solving this problem would break lattice-based cryptography, one of 
the few types of cryptosystems not yet known to be broken by 
quantum computers!
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