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The fundamental theorem of arithmetic

Every positive integer larger than 1 can be uniquely™
factored as a product of prime numbers.

N =2" x 3™ x 5" x .-

* Up to the order of the factors.
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3 X O
7T x 13

16347336458092538484

43133883860090859841
78367003309231218111
08523893331001045081

51212118167511579

X

19008712816648221131
26801573935413975471

8967899680
85390880271

1049366663
1033021044

9895719126

1465071



“The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in
arithmetic. It has engaged the industry and wisdom of ancient
and modern geometers to such an extent that it would be
superfluous to discuss the problem at length... Further, the
dignity of the science itself seems to require that every
possible means be explored for the solution of a problem so
elegant and so celebrated.”

— Carl Friedrich Gauss, Disquisitiones Arithmeticae (1801)
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All else is the work of man

Z=1{ .., -3,-2-101,23,...}

Zn = { 0:={...,—N,0,N,2N,...}
l:={..,-N+1,1,N+1,2N +1,...}
2:={...,~-N+2,2N+22N+2,...}

N—-1={.,-N—-1,-1,N—-1,2N—-1,...}}
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T,YyCLN
] 1 1 ce 1 \
WN wd e w%—l
N T
VN .
1 w%—l wzz\fN—2 w](VN—l)(N—l)/
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Examples

I 1

1
FZ2:E<1 ~1

) = H (Hadamard gate)

(1 L1 1 1 1) (11 1 1
1 wg wi: wd wr W 1 —w? ws —1
6 “e 6 “e 3 3
R, — 111w owg 1 wi wg _ LT ws wi 1
Ve |1 wg 1w 1w vell -1 1 -1
1 wg wi 1 wi Wi 1 wi w3 1
\1 wg Wi wp Wi we / \1 —w3 wi -1

by the isomorphism Zg = 7o X 73
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QFT implementation (/N = 2")

Write = = 37~ 27, y = 37—, 27y;.

1 (501 29y;)
Fp,.|z) = Y wn T T ) @ ® [yn—)
ye{0,1}

\/7 Z ® Won’ ¥ yj)

ye{0,1}m 7=0

-y




QFT implementation (/N = 2")
Write = = 32770 22, y = 32725 2'y;.

1 2(3770 2y)
Fz,. |2) = Y wn T T ) @ ® [yn—)
ye{0,1}n

n—1 _
:\/127 > @t )

ye{0,1}m™ 57=0

n—1 .
— \/127 ® Z 627Ti xy; /2" Y ’yj>

9




QFT implementation (/N =

Write ©x = Z;L:_Ol ijj, Y = Z” 123%
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QFT implementation (/N = 2")

Write x = Z?:_Ol x5, Y= 5, ) 27y,

Fy.|x) =

e2™ ThZo 2 ek )



QFT circuit
n—1

We have Fy,, |x) = ® 2;) where
j=0

(|0> + 62W1(2j_nx0+2j+1_”w1+°°'+2_1$n—1—j) \1>)

1
25) = ﬁ



QFT circuit

n—1
We have Fy,, |x) = ® 2;) where
j=0

1
25) = ﬁ

Quantum circuit;

o) . . Hl |z01)
1) . . R éi Zn_2)

(|O> + 627Ti(2j_nx0+2j+1_%1+“'+2_1$n—1—j) \1>)

xn_3> T o o o /L o o o o o o Z2>
0 /

1 0 0
o 1 0 0
@ —lo 0 1 0 note reversal of order
0 0 0 627ri/27"
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More general QFTs

There are efficient quantum circuits for 7, for general V; see

o Kitaev, Quantum measurements and the abelian stabilizer problem, quant-
ph/9511026

e Hales and Hallgren, An improved quantum Fourier transform algorithm
and applications, FOCS 2000

In general, Fzy w..xzy, = Fzy, ® - Q@ Fgy,
F(Zz)n —H®R---®H

We can also define a Fourier transform for a nonabelian group; many
of these can be implemented efficiently as well.
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Periodic functions

A function f : Zn — S is periodic with period r € Zy if

fz)=fly) it —ZL ez

r
Example (N=32):
f(x)
1- % %o
. o o o °
2| ® ° S S
@ & S S
8 16 24
1 o o o o
B o‘..o o"‘o

(Notice that » must divide V.)
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A function f : Zn — S is injectively periodic with period r € Zy if

f(z) = f(y) if and only if ~—J ey
r
f(x)
1- %o 0%
@ ® @ ® X
8 16 24
_1 C.. .‘.
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Periodic functions

A function f : Zn — S is injectively periodic with period r € Zy if

f(z) = f(y) if and only if ~—J ey
r
Example (N = 32):
f)
150. %o,
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8 o 16 244
_1 .‘o .'o




Periodic functions

A function f : Zx — S is injectively periodic with period r € Z if

f(z) = f(y) if and only if " ey
r
Example (N = 32):
f)
150. %o,
'. | .‘
8 o 16 244
1 ®e,
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Producing a periodic state

Create the state

1
Zn) = o= 3 o)

Measure the second register:
N_1

TN\ ,
VNV Z s+ J7)
=0

s uniformly random

clasSIEarvatea ] (s
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Apply the QFT
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A useful identity

M—1
] ik _ s
Claim: Ve Wiy = Ok mod M.,0
7=0

Proof: For &k = 0 mod M, obvious.

For k # 0,
M—1 kM
]k o 1 - wM . .
Wy = 7 —  (geometric series)
j=0 “M
1 — 627Tik:
— 2 1
1 — wyy,
=0
—1 =w;
wg wé



Apply the QFT, continued

N_1

\/_Z s+ gr) — VT TZ Z (S+3T>y|y
7=0

J=0 yeZn

N _q

% X R A

YELN
N_

Z W Z wN/r

yEZN
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Apply the QFT, continued

N _ 1 N _1q

\/_Z s+ gr) — VT TZ Z (S+3T>y|y
7=0 1=0 y€Zn
N_q
% X R A
yEZN
%—1
Z W Z wN/r
yEZN
1
=— > y)
\/_yE(N/’r')Z

Z wN/r

zEZ
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Learning the period

Measure —— E wN/r

ZEZ
N N _N N
Outcome: 0, —,2—.,3—,..., N — — uniformly at random
roor r r
Strategy:  Compute z/7 in lowest terms (Euclid’s algorithm)

and assume the denominator is r.

Probability of success is

o(r) _ g 1 _0 1
r log log r log log N
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An equivalent formulation

1
Prepare —— g .z, f(x)) and discard the second register:
N el N

N_1

, /% Z s + jr) with s uniformly random
j=0

N _ 1 N _1q
r \ I v~— «—
pr=nz 2 D lstinisthrl== > > ls+ir)s|
seZn 7,k=0 seZn 7=0
| Fay
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Unknown domain of periodicity

Suppose we have a function f : Z — S satisfying

f(z) = f(y) if and only if ~—J ey

-
but we don’t know an N for which f(x + N) = f(x).

Can we still find r?

Strategy: Choose a large [V, and hope that the procedure still works,
even though 7 will probably not divide 7.
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Producing an (almost) periodic state

Create the state

‘ZN> =

Measure the second register:
1 n—1
— > s+ jr)

n~~ N/r

s ~ uniformly random




The (almost) periodic state

N

r T

r N—r|N/r|

| N/r| periods

1N [N
\/ﬁ;| +Jr) n{_N/T_

+1

where s occurs with probability n/N

s < N —r|N/r]

otherwise.




FT
ply the Q
Ap

1
Fy

> wily)
I > \/N
Recall |z)




Apply the QFT

F:

1 z
Recall |z) = JN Z el

YELN




Apply the QFT

Recall




Apply the QFT

Recall




Apply the QFT

1 z
Recall |[z) — Z Wy [Y)
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The distribution of measurement outcomes

2
n—1
1

Probability of observing y: Pr(y) = — Z WY
n

N
y mod <-,0

1
When r divides N, we have already seen that Pr(y) = —¢
74

In general, Pr(y) is sharply peaked around multiples of N/
Example (N =064, r=5):

(9a]

]

{ ]

U-I |

L]
(9a]

(]
]



The distribution of measurement outcomes

2

n—1
1 .
o . . L J’r’y
Probability of observing y: Pr(y) = N JEO Wy
When r divides [V, we have already seen that Pr(y) = 5y mod X0

In general, Pr(y) is sharply peaked around multiples of N/
Example (N =064, r=5):
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Continued fractions

Problem: Given a sample from {0, L%L LZ%}, o (r = 1)%1} :
determine 7.

Compute the continued fraction expansion

N/ 1

a3_|_...

Suppose we know that 7 < rmax. Then the closest continued fraction
approximation with denominator less than rmax is guaranteed to be r
provided N > (7max)%

If we are not given an a priori upper bound 7max, we can start with
rmax = 2 and successively double it until we find r; then the running
time will be poly(logr).
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Application: Order finding

Let GG be a group. The order of g € GG is the smallest r € {1,2,3, ...}
such that g" = 1.

The function f : Z — G defined by f(x) = g* is (injectively) periodic
with period equal to the order of g in G.

periodicity: f(z +17) = ¢ = ¢ = f(x)

injectivity: there is no x < for which f(z) = f(0)

So there is an efficient (running time poly(log|G|)) quantum algorithm
for order finding.



Reduction of factoring
to period finding
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Factoring = Finding a nontrivial factor

Suppose we want to factor the positive integer /V.

Since primality can be tested efficiently, it suffices to give a procedure
for finding a nontrivial factor of /V with constant probability.

function factor(N)

if N is prime
output N

else
repeat

x=find_nontrivial factor(N)

until success
factor(x)
factor(N/x)

end if

We can assume N is odd, since it is easy to find the factor 2.

We can also assume that /V contains at least two distinct prime
powers, since it is easy to check if it is a power of some integer.
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Miller’s reduction
Factoring IV reduces to order finding in Z7%, (Miller 1976).

Choose a € {2,3,..., N — 1} uniformly at random.
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Miller’s reduction
Factoring IV reduces to order finding in Z7%, (Miller 1976).

Choose a € {2,3,..., N — 1} uniformly at random.
If gcd(a, N) # 1, then it is a nontrivial factor of IV; otherwise a € Z.

Let r denote the (multiplicative) order of a modulo V.

Suppose 1 is even. Then

a =1 mod N
()
(a"™/?)2 =1 =0mod N
()

(a"/? = 1)(a"/? +1) = 0 mod N

so we might hope for gcd(a’/? — 1, N) to be a nontrivial factor of V.
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Miller’s reduction
Given (a2 —1)(a"’? + 1) = 0 mod N

when does gcd(a™? — 1, N) give a nontrivial factor of N?

Note that a"/? — 1 # 0 mod N (otherwise the order of a would be
r/2, or smaller).

So it suffices to ensure that a™/? + 1 # 0 mod V.

Lemma: Suppose a € Z7; is chosen uniformly at random, where N is
an odd integer with at least two distinct prime factors. Then

with probability at least 1/2, the multiplicative order r of a is
even and a’/? #+ —1 mod N.
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Proof (part | of 2)

Let N =p]"" x--- xp.* (pidistinct primes, k > 2)
a = a; mod p;"’
r; = order of a; modulo p;"

2% = largest power of 2 that divides 7;

Claim |: If ris odd ora’™/? + 1 # 0 mod N, thenci = - - - = ¢t
Since r = lem(ry,...,7%),risodd iffc1 = - - - = ¢ = 0.
If risevenand ,7/2 — _ 1 mod N>
then a’/? = —1 mod p;"" for each 1,

so r; does not divide r/2; but notice that r; does divide r.

Hence 7 /r; is an odd integer for each 7, and every r; must contain
the same number of powers of 2 as r.
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Claim 2: Prob(c; =any particular value) <1/2
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Proof (part 2 of 2)

Claim 2: Prob(c; =any particular value) <1/2

(Then the lemma follows, because in particular Prob(ci =c2) <1/2))

a 6 ZX a; E me-
N </;> 1 pz’ (
uniformly at random uniformly at random

Since Z;mi is cyclic and of even order, exactly half its elements have the

maximal value of ¢;, so in particular the probability of any particular ¢;
is at most 1/2.



Shor’s factoring algorithm

Input: Integer NV Output: A nontrivial factor of N

.
2.

3.

N Oy Ui

Choose a random a € {2,3,..., N — 1}

Compute gcd(a, N);if it is not 1 then it is a nontrivial factor, and
otherwise we continue

Prepare the uniform superposition |Z 2 )

(or replace N“ by the next largest power of 2)

. Append an ancilla register, and conditioned on the value x in the

first register, compute f(z)=a”mod N in the ancilla register;
discard the ancilla

. Perform the quantum Fourier transform over Z =
. Measure in the computational basis
. Compute the continued fraction expansion of the result divided by

N?, obtaining the best approximation with denominator less than
IN; call this denominator r

. Compute ged(a’/2— 1, N). Ifitis 1 or N then we have failed, and

we start over; otherwise the result is a nontrivial factor of V.



Performance

Most expensive step: Modular exponentiation.
Using repeated squaring, this can be done in time O((log N)3).

= Running time of Shor’s algorithm is O((log NV)3)

In contrast, the best known classical algorithm for factoring NV (the
i . 1/3 2/3
number field sieve) takes time 20 ((log V) "~ (log log N)™'7)



Performance

Most expensive step: Modular exponentiation.
Using repeated squaring, this can be done in time O((log N)3).

= Running time of Shor’s algorithm is O((log NV)3)

In contrast, the best known classical algorithm for factoring NV (the
i . 1/3 2/3
number field sieve) takes time 20 ((log V) "~ (log log N)™'7)

Note that the quantum part of Shor’s algorithm can be highly
parallelized: with polynomial-time classical pre- and post-processing,
can achieve depth O((loglog IN)2) and size O((log N)3) (Cleve and
Watrous 2000).



Beyond factoring



So much more than Shor and Grover

e Quantum simulation

* Algebraic problems

Factoring, discrete log, decomposing abelian groups, Pell’s equation, principal ideal problem,
computing unit/class groups of number fields, shifted Legendre symbol, approximating Gauss
sums, counting points on curves, some nonabelian hidden subgroup problems, ...

e Search and its applications

Unstructured search (decision, finding, counting), collision, median finding, graph connectivity,
minimum spanning trees, single source shortest paths, matchings, network flows, ...

e Quantum walk algorithms

Black box graph traversal, spatial search, element distinctness, triangle finding, checking
matrix multiplication, testing group commutativity, formula evaluation, ...

* Approximation of #P-hard problems

Jones polynomial, HOMFLYPT polynomial, Tutte polynomial/Potts model partition function, ...

¢ Miscellanea

Oracle interrogation, ordered search, gradient estimation, ...



Discrete log

Let G = {g“ : a € Zx} be a cyclic group generated by g.

Given x € G, define log, x := min{/{ € 7" : ¢" =z}
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Discrete log

Let G = {g“ : a € Zx } be a cyclic group generated by g.

Given x € G, define log, x := min{/{ € 7" : ¢" =z}

Computing log, x is (apparently) classically hard, and (as for factoring)
this assumption is used in cryptographic protocols.

Common groups:
best classical algorithm

G = Z;\} 90 ((log M)'/3(log log M)?/3)

(G = elliptic curve O(VN) = 20UosN)

But there is an efficient quantum algorithm for discrete log in general
groups (Shor 1994).
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The abelian hidden subgroup problem
Let G be an abelian group.

We say that f : G — S hides the subgroup H < G if
f(r) = f(y) ifandonly if z —y € H

Abelian HSP: Given the ability to query f, find a generating set for H.

If G =Zn, then f hides a subgroup isomorphic to Zny; iff it
is injectively periodic with period r

The function f(«a, 3) = x%¢” hides
((a,alog,x):a € Zn) <Zy X LN

There is an efficient quantum algorithm for the hidden subgroup
problem in any finitely generated abelian group.
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Counting points on curves

Problem: How many solutions are there to the polynomial equation

f(z,y) =0

where z, y € Z, (or more generally, a finite field)?

This problem appears to be hard for a classical computer.

But Kedlaya showed it can be solved in time poly(logp, d) on a
quantum computer, where d is the degree of the polynomial.

Approach: Use the algorithm for the abelian HSP to learn the
structure of the class group of the curve, which determines

the number of points.
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Pell's equation and number fields

Pell's equation: Given a squarefree positive integer d, find integer
solutions (z,y) to 2 — dy* = 1.

There are infinitely many solutions, but they are all generated by one
fundamental solution (x1,y1).

Even the fundamental solution may be too large just to write down in
polynomial time, but it can be encoded in the integer part of the
regulator, log(z1 + 11V d).

This can be found efficiently by a quantum computer using a
generalization of period finding to the real numbers.

Similar ideas lead to efficient quantum algorithms for computing
properties of number fields.
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The nonabelian hidden subgroup problem

Let G be any finite group.

We say that f : G — S hides the subgroup H < G if
f(z) = f(y) if and only if xzy~' € H

HSP: Given the ability to query f, find a generating set for H.
When G is nonabelian, this can be significantly harder.

Potential applications:

e Graph isomorphism
o [attice problems
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Graph automorphism

Problem: Given an n-vertex graph I, what is its automorphism group?

Aut(Fl) = S5 AU.t(FQ) = ZQ AU_t(Fg) — {ld}

Thisisan HSPin G = 5,
with f(7) = 7(T)
having hidden subgroup H = Aut(I)
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Shortest lattice vector problem

Basis vectors ¥y, ..., U, € R" define a lattice L :={) . c;7; : ¢; € Z}
o o o o o o o o o
o o o o o
o o o o o 4”2—)»2
o o o o o
o o o o o o o o o
o o o o o o o o o o

Problem: What is the shortest nonzero vector in the lattice?

This is NP-hard, but what if we promise that the shortest vector is
shorter than the next-shortest non-parallel vector by some factor?

Lattice cryptosystems assume this is hard with a factor poly(n).
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Dihedral hidden subgroup problem

The dihedral group of order 2N is the group of
symmetries of an /N-sided regular polygon.

Is there an efficient quantum algorithm for the
HSP in this group!?

Note: It suffices to consider hidden subgroups
of order 2 (hidden reflections).
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Dihedral hidden subgroup problem

The dihedral group of order 2N is the group of 1
symmetries of an /N-sided regular polygon.

Is there an efficient quantum algorithm for the
HSP in this group!?

“Standard method:
Given samples of |¢;) = %(|O> + e2misz/N 1))

with z uniformly random in Zp (and known), determine s.

Solving this problem would break lattice-based cryptography, one of

the few types of cryptosystems not yet known to be broken by
quantum computers!



