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Toward practical quantum speedup

IBM Google/UCSB MarylandDelft

Important early goal: demonstrate quantum computational advantage
… but can we find a practical application of near-term devices?

Challenges 
• Improve experimental systems
• Improve algorithms and their implementation, making the best use of available hardware

Our goal: Produce concrete resource estimates for the simplest possible practical application 
of quantum computers



Quantum simulation
“… nature isn’t classical, dammit, 
and if you want to make a 
simulation of nature, you’d better 
make it quantum mechanical, and 
by golly it’s a wonderful problem, 
because it doesn’t look so easy.”

Richard Feynman (1981)
Simulating physics with computers

Quantum simulation problem: Given a 
description of the Hamiltonian H, an 
evolution time t, and an initial state          , 
produce the final state          (to within 
some error tolerance ²)
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A classical computer cannot even represent 
the state efficiently.

A quantum computer cannot produce a 
complete description of the state.

But given succinct descriptions of
• the initial state (suitable for a quantum 

computer to prepare it efficiently) and
• a final measurement (say, measurements 

of the individual qubits in some basis),
a quantum computer can efficiently answer 
questions that (apparently) a classical one 
cannot.



Product formula simulation

[Lloyd 96]
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Combine individual simulations with the Lie 
product formula.  E.g., with two terms:
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To get a better approximation, use higher-order 
formulas.

[Berry, Ahokas, Cleve, Sanders 07]

E.g., second order:
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Suppose we want to simulate H =
LX
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Systematic expansions to arbitrary order are 
known [Suzuki 92]

Using the 2kth order expansion, the number of 
exponentials required for an approximation 
with error at most ² is at most
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Quantum walk simulation

[Childs10; Berry, Childs 12]

Spectral theorem: Each eigenvalue ¸ of H 
corresponds to two eigenvalues
of the walk operator (with eigenvectors 
closely related to those of H).
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Quantum walk corresponding to H
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Simulation by phase estimation
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If H is sparse, this walk is easy to implement. Theorem:               steps of this walk suffice 
to simulate H for time t with error at most ².

O(t/
p
✏)



Taylor series simulation

[Berry, Childs, Cleve, Kothari, Somma 14 & 15]
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Write                         with      unitary.H =
P

` ↵`H` H`

LCU Lemma: Given the ability to perform 
unitaries Vj with unit complexity, one can 
perform the operation                       with 
complexity                  .  Furthermore, if U is 
(nearly) unitary then this implementation can 
be made (nearly) deterministic.
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Main idea: Directly implement the series

Then

is a linear combination of unitaries.
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Main ideas:

• Boost the amplitude for success by oblivious 
amplitude amplification

|0i| i 7! sin ✓|0iU | i+ cos ✓|�i
• Implement U with some amplitude:



Quantum signal processing

Combining known lower bounds on the complexity of simulation as a function of t and ² gives
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Recent work, using an alternative method for implementing a linear combination of quantum 
walk steps, gives an optimal tradeoff.

[Low, Chuang 16]

Main idea: Encode the eigenvalues of H in a two-dimensional subspace; use a carefully-chosen 
sequence of single-qubit rotations to manipulate those eigenvalues, performing the desired 
evolution.



Algorithm comparison

Algorithm Query complexity Gate complexity

Product formula, 1st order

Product formula, (2k)th order

Quantum walk

Fractional-query simulation

Taylor series

Linear combination of q. walk steps

Quantum signal processing
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What to simulate?

Quantum chemistry? Spin systems!

Heisenberg model on a ring: H =
nX

j=1

�
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z
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hj 2 [�h, h] uniformly random

This provides a model of self-thermalization and many-body localization.

The transition between thermalized and localized phases (as a function of h) is poorly 
understood. Most extensive numerical study: fewer than 25 spins. [Luitz, Laflorencie, Alet 15]

Could explore the transition by preparing a simple initial state, evolving, and performing a simple 
final measurement. Focus on the cost of simulating dynamics.

For concreteness: h = 1, t = n, ✏ = 10�3, 20  n  100



Algorithms

Algorithm Gate complexity (t, ²) Gate complexity (n)

Product formula (PF), 1st order

Product formula (PF), (2k)th order

Quantum walk

Fractional-query simulation

Taylor series (TS)

Linear combination of q. walk steps

Quantum signal processing (QSP)

O(t2/✏)

O(52kt1+1/2k
/✏

1/2k)

O(t/
p
✏)

O(n5)

O(52kn3+1/k)

O(n4 log n)

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O
�
t

log2(t/✏)
log log(t/✏)

�
O
�
n
3 log2 n
log logn

�

O
�
t
log3.5(t/✏)
log log(t/✏)

�
O
�
n
4 log2 n
log logn

�

O(t+ log(1/✏)) O(n3)



Algorithms
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Circuit synthesis
multiplexor :: [Double] -> [Qubit] -> Qubit -> Circ ([Qubit], Qubit)
multiplexor as controls target = case controls of
  -- No controls.
  [] -> do
    let angle = as !! 0    
    expYt (- angle) target
    return ([], target)
    
  -- One control.
  [q0] -> do
    let (as0, as1) = split_angles as
    ([], target) <- multiplexor as0 [] target
    target <- qnot target `controlled` q0
    ([], target) <- multiplexor as1 [] target
    target <- qnot target `controlled` q0
    return ([q0], target)
    
  -- Two controls.
  [q0,q1] -> do
    let (as0, as1) =  split_angles as
    ([q1], target) <- multiplexor as0 [q1] target
    target <- qnot target `controlled` q0
    ([q1], target) <- multiplexor as1 [q1] target
    target <- qnot target `controlled` q0
    return ([q0,q1], target)

  -- Three controls.
  [q0,q1,q2] -> do
    let (as0, as1, as2, as3) = split_angles_3 as
    ([q2], target) <- multiplexor as0 [q2] target
    target <- qnot target `controlled` q1    
    ([q2], target) <- multiplexor as1 [q2] target
    target <- qnot target `controlled` q0    
    ([q2], target) <- multiplexor as3 [q2] target
    target <- qnot target `controlled` q1    
    ([q2], target) <- multiplexor as2 [q2] target
    target <- qnot target `controlled` q0
    return ([q0,q1,q2], target)

  -- Four or more controls.
  qs -> do
    let (as0, as1) =  split_angles as
    let (qhead:qtail) = qs
    (qtail, target) <- multiplexor as0 qtail target
    target <- qnot target `controlled` qhead
    (qtail, target) <- multiplexor as1 qtail target
    target <- qnot target `controlled` qhead
    return (qs, target)

  where
    -- Compute angles for recursive decomposition of a multiplexor.
    split_angles :: [Double] -> ([Double], [Double])
    split_angles l =
      let (l1, l2) = splitIn2 l in
        let p w x  = (w + x) / 2 in
          let m w x = (w - x) / 2 in
            (zipWith p l1 l2, zipWith m l1 l2)

    -- Compute the angles for recursive decomposition of a multiplexor
    -- with three controls, saving 2 CNOT gates, as in the
    -- optimization in Fig. 2 of Shende et.al.
    split_angles_3 :: [Double] -> ([Double],[Double],[Double],[Double])
    split_angles_3 l =
      let (l1, l2, l3, l4) = splitIn4 l in
        let pp w x y z = (w + x + y + z) / 4 in
          let pm w x y z = (w + x - y - z) / 4 in
            let mp w x y z = (w - x - y + z) / 4 in
              let mm w x y z = (w - x + y - z) / 4 in
                let lpp = zipWith4 pp l1 l2 l3 l4 in
                  let lpm = zipWith4 pm l1 l2 l3 l4 in
                    let lmp = zipWith4 mp l1 l2 l3 l4 in
                      let lmm = zipWith4 mm l1 l2 l3 l4 in
                        (lpp, lmm, lpm, lmp)

We implemented these algorithms using 
Quipper, a quantum circuit description language 
that facilitates concrete resource counts.

Gate sets:
• Clifford+Rz
• Clifford+T

Quipper can produce Clifford+T circuits 
using recent optimal synthesis algorithms 
[Kliuchnikov, Maslov, Mosca 13; Ross, Selinger 16].

We verified correctness by simulating subroutines and small instances.

Implementation available at github.com/njross/simcount

We also applied an automated quantum circuit optimizer that we developed [arXiv:1710.07345].
cnot/T gate counts improve by about 30% for PF.  Less significant improvement for TS/QSP.

http://github.com/njross/simcount
http://arxiv.org/abs/1710.07345


Product formula implementation

Empirical error bound: extrapolate 
performance from small instances
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Fourth order

Commutator bound

Empirical bound

We consider four methods for choosing the parameters of the PF algorithm:

Analytic and Minimized error bounds: tightened versions of previous analysis

Commutator error bound: exploit 
commutation relations among terms in the 
Hamiltonian

Involves extensive analysis to derive the bound 
and compute it for our model system

O(n3+1/k) ! O(n3+2/(2k+1))

Improved asymptotic performance:



Taylor series implementation

Also give concrete error analysis. Empirical error bounds are infeasible but probably not helpful.
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j=1 |jihj|⌦ VjMain implementation issue: construct circuits for the operation

We construct an optimized walk on a binary tree that encodes the control into a single qubit, 
saving a factor of about log ¡ (between 5 and 9 in our instances).



Quantum signal processing implementation

•Empirical estimate of the error in the Jacobi-Anger expansion saves about 30-45%.
•Comprehensive empirical error bounds are just barefly feasible and probably not helpful.

Empirical error bounds:

QSP is built from the same basic subroutines as TS (state preparation, reflection, select(V)).

To compute a sequence of rotation angles that define the algorithm, we must find the roots of a 
high-degree polynomial to high precision. This can be done in polynomial time (classically), but 
it’s expensive in practice.

Workarounds:
•Compute the gate count using placeholder angles
•Consider a segmented version of the algorithm: concatenate segments that are short enough 
to be simulated. Modest overhead: with M angles, O(n3+4/M) vs. O(n3) for full QSP.



Product formula comparisons

Order

Bound 1 2 4 6 8

Analytic/Minimized 5 4 3.5 3.333 3.25

Commutator 4 3.667 3.4 3.286 3.222

Empirical 2.964 2.883 2.555 2.311 2.141
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0 20 40 60 80 100

0

50

100

150

200

250

System size

Q
u
b
it
s

PF
TS
QSP

10 100

105

106

107

108

109

1010

20 30 50 70

System size

c
n
o
t
ga
te

co
u
nt

(C
li
↵
or
d
+
R

z
)

PF (com 4)

PF (emp)

TS

QSP (seg)

QSP (JA emp)



Resource estimates (logical level)
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Comparisons

Simulating 50 spins (PF6 empirical)
•50 qubits
•1.8×108 T gates

Factoring a 1024-bit number [Kutin 06]

•3132 qubits
•5.7×109 T gates

Simulating FeMoco [Reiher et al. 16]

•111 qubits
•1.0×1014 T gates

Simulating 50 spins (segmented QSP)
•67 qubits
•2.4×109 T gates
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Summary

This work establishes benchmarks for a simple quantum simulation that would be useful and 
that is classically hard.

More sophisticated algorithms (especially quantum signal processing) are competitive at 
surprisingly small sizes and give the best approach with rigorous guarantees.

Spin systems are much easier than factoring or quantum chemistry…

… but may still be out of reach of pre-fault tolerant digital quantum computers.

Higher-order product formulas are useful even at very small sizes.

Exisiting analysis of product formulas is very loose.



Outlook

Super-classical quantum simulation without invoking fault tolerance? 
• Improved error bounds

• Optimized implementations
• Alternative target systems
• New simulation algorithms
• Experiments!

Better provable bounds for simulation algorithms 
• Product formula error bounds beyond the triangle inequality
• Efficient synthesis of the QSP circuit

Resource estimates for more practical models 
• Architectural constraints, parallelism
• Fault-tolerant implementations


