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Resource requirements for
quantum computation

• Well-defined Hilbert space with tensor product structure.
• Prepare the system in a standard initial state.
• Perform a universal set of state transformations.
• Read out the result of the computation.

These are abstract requirements.  What physical operations 
must be performed?

• Isolate the computer from the effects of its environment.



Circuit model of quantum computation

• Prepare a simple initial state |00L0L.
• Perform a universal set of 1- and 2-qubit unitary gates 

(e.g., H, CNOT, exp[i / Z/8]).

H

• Make a measurement in the computational basis.
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Measurement is universal

Two kinds of models:

1.) Product initial state, few-qubit measurements
(Gottesman & Chuang, Nielsen, Fenner & Zhang, Leung)

• Prepare initial state |00L0L.
• Perform a sequence of 2-qubit measurements, 

conditioned on results of previous measurements.

2.) Entangled initial state, one-qubit measurements
(Raussendorf & Briegel)

• Prepare an entangled initial state.
• Perform a sequence of 1-qubit measurements, 

conditioned on results of previous measurements.



Quantum computation
with cluster states

Simultaneous +1 eigenstate of at each vertex.

Use a sequence of 
measurements to 
manipulate quantum 
information:



Teleportation

H

or equivalently

H



Teleportation-based universality of 
single qubit measurements

Teleport logical qubits between different physical qubits.

Choice of measurement basis allows us to perform different 
basic operations.  We will show that for certain initial states, it 
is possible to do a universal set of operations.

Problem: Teleportation induces Pauli errors.

Fortunately, they are known!

Maintain the state of the computation in the form P |sL where 
|sL is the desired state and P is a known Pauli error.



Clifford group
Pauli operators:

Tensor products of n Pauli operators form a group under 
multiplication, the Pauli group C1.

Clifford group: (normalizer of C1)

Operations U in C2 are significant in quantum error correction 
because they send Pauli errors to Pauli errors.

UM MM U MM M=



Teleportation with input errors

H HXa Zb

=

By changing the measurement basis depending on the 
known values of a and b, we can teleport |sL as if there were 
no input errors.
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Chained teleportation



Notation

=

=

= ZZ

=



Chained teleportation
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Teleporting Z rotations

HXa eieZZb

=

HXa eieZZb

Xa=

HeieZ



Teleporting X rotations

H

Xa eieXZb

=

HXa eieXZb

Zb=

H
eieX



Sequence of single-qubit operations

The state

can be used to apply a sequence of single-qubit unitary 
transformations to |sL.



Interactions between logical qubits

How can we implement interactions between different (logical) 
qubits?

This is easy to do with a state that depends on the particular 
circuit being implemented.

Instead, we want to use a fixed state.  Our choice of single-
qubit measurements will determine whether two-qubit gates
are performed.

Two approaches:

1) Alternating two-qubit gates that can be made to cancel or 
combine.

2) Routing the logical qubits through the two-qubit gates.



Cancellation approach

Z Z =

Z Z
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which is a universal two-qubit gate.

Thus, to implement selective two-qubit operations, it is 
sufficient to be able to implement nonselective controlled-
phase gates (and selective one-qubit operations).

Since controlled-phase is in the Clifford group, this is easy!



Teleporting a controlled-phase gate
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Teleportating a controlled-phase gate
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Teleportation circuit for
cancellation approach
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Teleportation circuit for
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Teleportation circuit for
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Teleportation circuit for
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Teleportation circuit for
cancellation approach
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Universal state for
cancellation approach
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arbitrary single-qubit 
unitaries (Euler 
decomposition)

arbitrary single-qubit 
unitaries (Euler 
decomposition)
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Using single-qubit measurements, this state can be 
used to implement a circuit of the form

which is clearly universal.
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Routing approach

Move a logical qubit to different physical qubits by choice of 
measurement.

H
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Routing approach
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Routing approach
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Routing approach
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Selective interaction by routing
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Universal state for routing approach

Z

Z

Z

Z

Z

L



State preparation and readout

H

is extraneous; instead:

Final state is                                      , where     is the 
desired state, and a1,b1,…,an,bn are known.

Measure in the computational basis and flip the bits j for which
aj=1.



States for universal quantum 
computation by measurement
Two families of states |Cn,mL and |Rn,mL where

• n = number of logical qubits
• m = number of computational steps

|C6,1L =

|R6,1L =
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Stabilizer

Stabilizer of |sL:

=
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Stabilizer
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Stabilizer

=
weight=3

=

weight=3
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weight=4

Z =

weight=4
� Weight of |Cn,mL is 4.  Can prepare |Cn,mL from an 

unentangled state using 4-qubit measurements.



Fault tolerance?

Simple noise model: At each time step, each qubit has a 
probability p of undergoing a random Pauli error.

In the circuit model, there is a fault tolerant threshold (Shor; 
Aharonov and Ben-Or).  If (say) p<10-4, we can implement an 
arbitrarily long computation with arbitrarily small probability 
of error.

Fundamental problem: We must be able to prepare fresh 
qubits (cf. Aharonov, Ben-Or, Impagliazzo, Nissan) and 
subsequently use them in our computation.  But this cannot 
be done using only single-qubit measurements!

One way out: Allow occasional two-qubit measurements. 
(Think of them as more like state preparation steps than 
computational steps.)



Entanglement swapping

H
=

Xa Zb

� We can join our universal states using Bell measurements.

|Cn,mL + |Cn,m’L + n Bell measurements  � |Cn,m+m’L

(and similarly for |Rn,mL)



Open questions

• How do these schemes relate to the “cluster state” 
quantum computer of Raussendorf and Briegel?

• Are such approaches useful for building a quantum 
computer?

• Can these schemes be made fault tolerant in some 
reasonable model?

• If so, can we find a threshold that is competitive with, or 
perhaps even better than, the known circuit model 
thresholds?


